Brief Announcement:
New Bounds for the Controller Problem

*
Yuval Emek
School of Electrical Engineering
Tel Aviv University
Tel Aviv, Israel)
yuvale@eng.tau.ac.il

ABSTRACT

The (M, W)-controller, originally studied by Afek, Awer-
buch, Plotkin, and Saks, is a basic distributed tool that
provides an abstraction for managing the consumption of a
global resource in a distributed dynamic network. We estab-
lish new bounds on the message complexity of this tool based
on a surprising connection between the controller problem
and the monotonic labeling problem.

Categories and Subject Descriptors: C.2.4 [Computer-
Communication Networks]: Distributed = Systems—
distributed applications

General Terms: Algorithms

Keywords: controller, dynamic networks

1. INTRODUCTION

Considered as one of the elementary and fundamental
tools in distributed computing (cf. [2]), controllers (origi-
nally studied in [1] and later in [10]) provide an abstraction
for global resource consumption management. In particu-
lar, controllers serve as a key ingredient in the state of the
art solutions for various problems such as majority commit-
ment in a network where some of the nodes failed before the
algorithm started, routing (and other informative labeling
problems) in dynamic trees, and dynamic name assignment.

The (M, W)-controller problem. We consider a dis-
tributed network operating in an asynchronous environment.
Initially, a set of permits resides at some designated node
called the root. A subset of permits may be delivered from
node u to any of its neighbors v by sending a single message
from u to v (this message essentially encodes the number
of permits that are being delivered). Therefore throughout
the execution the permits are distributed among the nodes
of the network and different nodes may hold different num-
bers of permits. The input to the controller arrives online in
the form of requests presented at arbitrary nodes. When a
request is presented at node u, the controller must respond
within finite time in one of the following two manners: (1) it

*Partially supported by the Israel Science Foundation, grant
664/05.

JrSupported in part by the ANR project ALADDIN, by
the INRIA project GANG, and by COST Action 295 DY-
NAMO.

Copyright is held by the author/owner(s).
PODC’09, August 10-12, 2009, Calgary, Alberta, Canada.
ACM 978-1-60558-396-9/09/08.

340

Amos KormanT
CNRS and Université Paris Diderot
Paris 7, France
amos.korman@gmail.com

may grant the request by delivering a permit to u in which
case the permit is eliminated from the network (correspond-
ing to consuming one unit of the global resource at node u);
or (2) it may reject the request.

In an (M, W)-controller, the number of permits that ini-
tially reside at the root is M, indicating that at most M
requests can be granted. On the other hand, the (M, W)-
controller may reject a request only if it is certain that
at most W permits eventually remain in the network. In
other words, if an (M, W)-controller rejects a request, then
it is guaranteed that at least M — W requests were already
granted (or will be granted within finite time).

It is assumed that a spanning tree 1" rooted at some node
r is maintained in the network and that the controller relies
on the links of 7" for communication. The global resource
whose consumption is managed by the controller may be of
various types. However, since the concept of an (M, W)-
controller finds many applications in dynamic networks, a
special attention has been given to the case where a request
presented at node u represents the desire to perform a topol-
ogy change at the vicinity of u. Such a request is referred to
as a topological request. Specifically, the topology changes
considered in this context are: (i) inserting a new child of u
as a leaf in T (ii) inserting a new child of u as an internal
node in T' by subdividing a link that connects u to one of
its children; and (iii) deleting a child v of w and turning the
children of v into children of u (the root r is never deleted).
In all three cases the actual topology change is assumed to
occur once the topological request is granted a permit.

The number of nodes that ever existed in the network
(including the deleted ones) is denoted by N. Note that
N cannot exceed the initial network size by more than M
since the insertion of every new node should be granted a
permit by the controller (in fact, the combined number of
node insertions and deletions is at most M).

The efficiency of an (M, W)-controller is measured by
means of its message complezity, namely, the total num-
ber of messages sent during the execution. This is usually
expressed as a function of M, W, and N. Afek et al. [1]
construct the first (M, W)-controller which admits message
complexity O(N log® N log WAi1). Their controller only sup-
ports the insertion of leaves. Korman and Kutten [10] in-
troduce an (M, W)-controller with a similar message com-
plexity which supports all three types of topology changes
(i.e., the insertion of leaves, the insertion of internal nodes,
and the deletion of nodes). Both the (M, W)-controller of
[1] and that of [10] are implemented by first constructing an
(M, M /2)-controller with message complexity O(N log? N),

and then invoking it in O(log V‘%_l) iterations. The con-

troller of [10] encodes each message using O(log N) bits,
while the (more restricted) controller of [1] encodes each
message using O(loglog N) bits.

On the negative side, it is easy to see that an Q(N) term
in the message complexity of any (M, W)-controller is in-
evitable. (In the case of an N-node path, for example,
merely delivering a permit from the root to a request pre-
sented at the other end requires N messages.) However, no
non-trivial lower bounds were previously known.

The monotonic labeling problem. Vital to our tech-
niques is the monotonic labeling problem. In this (central-
ized) problem n distinct elements from some dense totally
ordered set S (e.g., the real numbers) are introduced, one at
a time. Upon introduction, each element x € S should be
assigned with a label A(x) taken from some discrete totally
ordered set L of adequate (|L| > n), yet limited, cardinality
(e.g., the integers 1,...,|L]). The order of the labels must
agree with the order of the elements, that is, for every two
elements z,y € S, if < y, then A(z) < A(y). Therefore
from time to time some previously introduced elements must
be relabeled to “make room” for new elements. The objective
of a monotonic labeling algorithm is to minimize the total
number of labeling operations (including relabeling previ-
ously introduced elements). This is typically measured as a
function of n and with respect to the cardinality of the label
set L (clearly, the problem becomes easier as |L| grows).

The monotonic labeling problem is essentially introduced
in [9] and studied further in [5, 12, 11, 7, 3, 8, 4, 6], mainly in
the context of maintaining an ordered data structure. With
label sets of cardinality n, n(1+¢€), and n'*¢, where € is any
positive constant, the known upper bounds for the number
of labeling operations are O(nlog®n) [3], O(nlog?n) [9, 12,
4], and O(nlogn) [5, 11, 7). An Q(nlogn) lower bound for
the number of labeling operations with label sets of cardi-
nality polynomial in n is established in [6], thus showing
that the upper bound of [5, 11, 7] is tight. Based on a lower
bound established in [8] for the special class of smooth algo-
rithms, the authors of [8, 6] conjecture that any monotonic
labeling algorithm with O(n) labels requires Q(nlog?n) la-
beling operations, hence the upper bound of [9, 12, 4] is also
tight.

2. PROGRESS

In this work we establish new bounds on the message
complexity of the controller problem. As a warm up, we
first prove a simple lower bound stating that any (M, W)-
controller must send Q(N log M%rl) messages. Although this
lower bound is meaningful for small values of W, it is not
very informative when W is proportional to M, which is the
typical case in many applications of the controller problem.

Subsequently, we turn our attention to the case where
W is proportional to M and prove that for every constant
€ > 0, an (M, M(1 — €))-controller on a dynamically grow-
ing path of initial size M must admit message complexity
Q(Mlog M) = Q(Nlog N). This lower bound is obtained
due to a surprising reduction from the (centralized) mono-
tonic labeling problem to the (distributed) controller prob-
lem. Through this reduction, the Q(nlogn) lower bound
on the number of labeling operations that must be per-
formed by any monotonic labeling algorithm with a label
set of cardinality polynomial in n translates to the desired
Q(N log N) lower bound on the message complexity of a con-

341

troller. In fact, the reduction holds for monotonic labeling
algorithms with label sets of cardinality O(n), and therefore
as it turns out, under the conjecture of [8, 6], we obtain a
tight Q(Nlog? N) lower bound on the message complexity
of any (M, M (1 — €))-controller.

Both our lower bounds hold even when the message size is
unbounded. Furthermore, they do not rely on concurrency
considerations, and therefore remain valid even if the sys-
tem is synchronous and the requests are “spaced in time” so
that the next request is presented only after the controller
finished handling all previous ones.

As previously mentioned, the proof of the Q(N log N)
lower bound (and also of the conjectured tight Q(N log® N)
lower bound) relies on a network of initial size M which,
in particular, implies that N = ©(M). It turns out that
this is no coincidence: such a lower bound cannot hold if
M is much smaller than N. We prove it by construct-
ing a novel (M, M/2)-controller with message complexity
O(Nlog? M). Apart from demonstrating the inherent lim-
itation of our lower bound proof technique, the new con-
troller is interesting as it can be generalized (c.f. Section 5
in [1]) to an (M, W)-controller with message complexity
O(N log® M log Wiﬂ), thus exhibiting an asymptotic im-
provement to the state of the art in the case that M is
sub-polynomial in N. Moreover, the structure of our new
controller is completely different than the previously known
controllers and bears an independent algorithmic interest.

3. REFERENCES

[1] Y. Afek, B. Awerbuch, S.A. Plotkin and M. Saks.
Local management of a global resource in a
communication network. J. ACM, 43:1-19, 1996.

Y. Afek and M. Ricklin. Sparser: a paradigm for
running distributed algorithms. J. Algorithms,
14(2):316-328, 1993.

A. Andersson and T. W. Lai. Fast updating of
well-balanced trees. In SWAT, pages 111-121, 1990.
M.A. Bender, R. Cole, E.D. Demaine,

M. Farach-Colton and J. Zito. Two simplified
algorithms for maintaining order in a list. In ESA,
pages 152-164, 2002.

P. F. Dietz. Maintaining Order in a Linked List. In
STOC, pages 122—-127, 1982.

P. F. Dietz, J. I. Seiferas, and J. Zhang. A tight lower
bound for online monotonic list labeling. STAM J.
Discrete Math. 18(3):626—637, 2004.

P. F. Dietz and D. D. Sleator. Two algorithms for
maintaining order in a list. In STOC, pages 365-372,
1987.

P. F. Dietz and J. Zhang. Lower bounds for monotonic
list labeling. In SWAT, pages 173—-180, 1990.

A. Ttai, A. Konheim, and M. Rodeh. A sparse table
implementation of priority queues. In ICALP, pages
417-431, 1981.

A. Korman and S. Kutten. Controller and estimator
for dynamic networks. In PODC;, pages 175-184, 2007.
A. K. Tsakalidis. Maintaining order in a generalized
linked list. Acta Inform., 21:101-112, 1984.

D. Willard. Maintaining dense sequential files in a
dynamic environment. In STOC, pages 114-121, 1982.

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]
(11]

(12]

