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Abstract 1 Introduction 

Content-based subscription systems are an emerging alternative to 
traditional publish-subscribe systems, because they permit more 
flexible subscriptions along multiple dimensions. In these systems, 
each subscription is a predicate which may test arbitrary attributes 
within an event. However, the matching problem for content-based 
systems-determining for each event the subset of all subscriptions 
whose predicates match the event - is still an open problem. We 
present an efficient, scalable solution to the matching problem. Our 
solution has an expected time complexity that is sub-linear in the 
number of subscriptions, and it has a spacecomplexity that is linear. 
Specifically, we prove that for predicates reducible to conjunctions 
of elementary tests, the expected time to match a random event is 
no greater than O(N’-‘) where N is the number of subscriptions, 
and X is a closed-form expression that depends on the number and 
type of attributes (in some cases, X M l/2). We present some 
optimizations to our algorithms that improve the search time. We 
also present the results of simulations that validate the theoretical 
bounds and that show acceptable performance levels for tens of 
thousands of subscriptions.. 

Publish/subscribe (pub/sub) is a paradigm for interconnecting in- 
formation providers to information consumers in a distributed en- 
vironment. Information providers publish information in the form 
of events to the pub/sub system, information consumers subscribe 
to a particular category of events within the system, and the sys- 
tem ensures the timely delivery of published events to all interested 
subscribers. A pub/sub system is typically implemented over a 
network of brokers that are responsible for routing events between 
publishers and subscribers. 

The earliest pub/sub systems were group-based. In these sys- 
tems, each event is classified as belonging to one of a fixed set of 
groups (also known as subjects, channels, or topics). Publishers 
are required to label each event with a group name; consumers sub- 
scribe to all events in a particular group. For example a group-based 
pub/sub system for stock trading may define a group for each issue. 
Publishers post information labeled with the appropriate issue as 
the group name, and subscribers subscribeto information regarding 
some issue. In the past decade, systems supporting this paradigm 
have matured significantly resulting in several academic and indus- 
trial strength solutions [2, 7, 8, 91. A similar approach has been 
adopted by the OMG for CORBA event channels [5]. 
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An emerging alternative to group-based systems is content- 
based subscription systems [l, 3, lo]. These systems support 
a number of information spaces, each associated with an event 
schema defining the type of information contained in each event. 
Our stock trade example may be defined as an information space 
whose event schema is a tuple containing three attributes: an is- 
sue, a price, and a volume, of string, dollar, and integer types 
respectively. A subscription is then a predicate over these at- 
tributes, suchas (issue=“IBM”) and (price420) and 
(volume>lOOO). 

Note that with content-based pub/sub, subscribers have the 
added flexibility of choosing filtering criteria along multiple di- 
mensions, without requiring pre-definition of groups. In our stock 
trading example, the group-based subscriber is forced to select 
trades by issue name. In contrast, the content-based subscriber is 
free to use an orthogonal criterion, such as volume, or indeed a 
collection of criteria, such as issue, price and volume. Further- 
more, content-based pub/sub removes the administrative overhead 
of maintaining and defining groups, thereby making the system eas- 
ier to manage. Finally, content-based pub/sub is more general in 
that it can be used to easily implement group-based pub/sub while 
the reverse is not true. While content-based pub/sub is the more 
powerful paradigm, efficient and scalable implementations of such 
systems have not yet been developed. 

In order to efficiently implement a pub/sub system, one must 
first find an efficient solution to the problem of matching an event 
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against a large number of subscriptions. We refer to this problem as 
the matchingproblem. One of the strengths of group-based pub/sub 
systems is that this problem is straightforward to solve using a mere 
table lookup. However, for content-based pub/sub systems, the 
matching problem does not have a known, scalable solution. 

A simple algorithm for content-based matching is to test all 
subscriptions against each event. This naive algorithm runs in 
time linear in the number of subscriptions. In practice, pub/sub 
systems may be deployed in environments with tens of thousands 
of publishers and subscribers, and in general pub/sub systems have 
been aimed at providing support for large-scale, widely distributed 
applications. Therefore, a linear time solution to the matching 
problem is not adequate. 

In this paper, we propose an algorithm whose time complex- 
ity is sub-linear in the number of subscriptions, and whose space 
complexity is linear. Our algorithm initially pre-processes the set 
of subscriptions into a data structure that allows fast matching. 
Pre-processing makes sense in most pub/sub environments, where 
subscriptions tend to change infrequently enough that they can be 
considered approximately static, but where events are published at 
a fast rate. In such cases, the speed-up gained by pre-processing far 
outweighs its cost. Furthermore, our algorithm allows subscription 
updates to be incrementally incorporated into existing pre-processed 
data. 

In the pre-processing phase, our algorithm creates a matching 
tree. In the matching tree, each node is a test on some of the 
attributes, and the edges are results of such tests. Each lower level 
of the tree is a refinement of the tests performed at higher levels, 
and at the leaves of the tree we have the subscriptions. With such a 
tree, we can find the subscriptions that match an event by traversing 
the tree starting from the root; at each node, we perform the test 
prescribed by the node and follow all those edges consistent with 
the result (there may be more than one edge). We then repeat these 
steps until we get to the leaves. The leaves that are finally visited 
correspond to the subscriptions that match the event. 

In the case where subscriptions consist of equality tests on the 
attributes, the asymptotic complexity of our algorithm is signifi- 
cantly better than the one of the naive algorithm. More precisely, 
the expected time to match a random event is O(N’-‘) where N 
is the number of subscriptions, and X depends on the number and 
type of attributes (in some cases, X M l/2). The constants hidden 
behind the big-0 notation are quite reasonable. 

In summary, the main contributions of this paper are as follows: 

1. We present a generic matching algorithm whose performance 
scales better than that of the naive algorithm; 

2. In the case where subscriptions consist of equality tests, we 
show that the matching time grows only sub-linearly in the 
number of subscriptions, and that the space requirement is 
linear in the number of subscriptions. This is the first match- 
ing algorithm with such characteristics. 

We also present some optimizations to the matching algorithm, 
and show the result of simulations that validate the practicality of 
the algorithm. 

This paper is organized as follows: In Section 2 we formally 
define the matching problem. We give the general version of our 
algorithm for this problem in Section 3. This version allows sub- 
scriptions that consist of conjunctions of arbitrary tests on attributes. 
In Section 4 we present a version of our algorithm specialized for 
the case when subscriptions contain only equality tests on attributes, 
and show that the asymptotic time complexity of this algorithm is 
sub-linear in the number of subscriptions. In Section 5 we discuss 
enhancements that speed up the algorithm. In Section 6 we de- 
scribe related work, and we conclude the paper in Section 7. In the 
appendices, we provide some algorithmic details that were omitted 
from our explanations. 

2 The matching problem 

An event schema defines the space of possible events, by specifying 
attribute names and types. A subscription sub is a boolean predicate 
on events. We say that an event e matches a subscription sub if and 
only if sub(e) = trne. In the matching problem, we are given an 
event schema and a finite set Sub of subscriptions.’ Subsequently, 
we are given an event e, and the goal is to determine all those 
subscriptions in Sub that match e. We allow pre-processing of the 
set Sub before we are given e. 

A solution to the matching problem has two phases: preproc- 
ess( Sub) and match(preprocesseddata, event). The first phase 
preprocess(Sub) takes the set of subscriptions Sub and outputs 
an internal representation of the subscriptions. The second phase 
match(pre-processeddata, event) takes this internal representa- 
tion and an event, and outputs those subscriptions that match the 
event. 

We measure the performance of the solution by three parame- 
ters: 

. 

. 

. 

Pre-processing space complexity. The amount of data gener- 
ated by preqrocess; 

Pre-processing time complexity The time needed to run 
pm-process; 

Matching time complexity. The time needed to run match. 

3 The tree matching algorithm 

The matching problem can be solved easily by testing an event 
against each subscription (in this case, there is no pre-processing). 
This naive solution runs in time proportional to the number of 
subscriptions. In many applications, the number of subscriptions 
can be extremely high - in the order of magnitude of tens or 
hundreds of thousands. If events are published at a fast rate, then 
events need to be matched at a fast rate as well, and the naive 
solution does not perform adequately. In this section, we provide 
an algorithm that performs significantly better. 

Our algorithm initially pre-processes the set of subscriptions 
into a matching tree. We now describe this tree in detail, and then 
we explain how it is used to match events. Henceforth, we assume 
that each subscription is a conjunction of elementary predicates, 
where each elementary predicate represents one possible result of 
an elementary test. An elementary test is a simple operation on one 
or more attributes of the event e. 

That is, a subscription sub is as follows: 

sub := pr, A pr2 A . . . A PTk 

Pri := testi + TeSi 

where the notation t&i(. . .) + resi means that t&i produces 
result resi. For example, in the subscription (city = New 
York) and (temperature < 40), we have two elementary 
predicates, pr, and pr,, where 

PI-1 = testl(. . .) + New York 

P72 = testz(. . .) + “<‘I 
test1 = “examine attribute city” 
test2 = “compare attribute temperature 40” 

‘We assume that subscriptions with identical predicates are. coalesced into a single 
subscription. 
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Figure 1: Example of a matching tree 

In the matching tree, each non-leaf node contains a test, and 
edges from that node represent results of that test. A leaf node 
! contains a subscription sub, instead of a test. Intuitively, sub 
is the subscription described by walking the tree from the root to 
! and taking the conjunction of the elementary predicates. More 
precisely, for any node v on the tree, we define a predicate pred(v) 
as follows*: let the path from the root to v be (testt, rest, test*, 

Te.92,. . . , testj, TeSj, v); then 

pWd(V) := (test1 ---) WZSl) A *.. A(teStj + RSj) (1) 

With this, we require that the subscription sub contained in a leaf L 
satisfies: 

prd(e) = sub (4 
where = denotes logical equivalence. 

Here are some simple examples of the matching tree. Suppose 
subscriptions subI and sub2 share test1 as follows: 

sub1 = (test1 --) 9-es1) A (test2 -+ res2) (3) 
sub2 = (test1 + res:) A (test3 -+ 772.93) (4) 

In this case, the matching tree is shown in Figure 1. 
The tree can have special “don’t care edges”- which we call *- 

edges-that represent the fact that subscriptions reachable through 
the edge do not care about the result of a test. These edges are 
necessary when some of the subscriptions are independent of that 
test. For example, suppose: 

sub:, = (test] * rest) A (test2 + res2) 

sub4 = (tests + ~3) A (test4 + ~2.94) 

In this case, the matching tree is shown in Figure 2. When the 
matching tree has *edges, for each node v we define pred(v) 
exactly as before (see Equation l), and we assume by convention 
that testi + * is equivalent to true. For example, in Figure 2, we 
havethatpred(sub4) = (test, + *)A(tests + res3)A(test + 
~34) E (tests ---) res3) A (test4 -+ res4) = sub4. 

If test1 and test3 happen to be related, the matching tree could 
look different. More precisely, if (test3 -+ 7~3) =k- (test1 + 
rest) then another possible matching tree is shown in Figure 3. 
Note that it is still the case that pred(sub4) z sub4. Intuitively, 
this matching tree is better than the one in Figure 2, because to match 
an event, in Figure 2 we always need to evaluate test1 and tests, 

whereas in Figure 3, we only evaluate test3 when test1 evaluates 
to resr . 

*If v is the root node, we define pred (v) to be he. 

0 test, 

r=/ \ 

@@zJ 

resz 1 1 res, 

1 res, 

0 sub, 

Figure 2: Matching tree with a *-edge 

0 test, 

res, 
1 

1 res, 

0 test 

1 res, 

0 sub, 

Figure 3: Matching tree when (tests + 92x3) =S (test, + resl) 
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I procedure match( 5’%ee, event) 
2 visit( Ree, root, event) 
3 
4 procedure visit( Dee, V, event) 
J if v is a leaf node of Tree then output(v) 
6 else 
7 perform test prescribed by v on event 
8 if v has an edge e with the result of test 
9 then visit(Tree, (child of v at the endpoint 
10 of e in Tree), event) 
II if v has a *-edge e 
I2 then visit(Tree. (child of v at the endpoint 
13 of * in Tree), event) 

Figure 4: General matching algorithm 

In the specialization of the generic matching algorithm that we 
consider in Section 4. different tests in the tree will never be related. 

The algorithm pre-process that creates the matching tree works 
as follows. We assume that the elementary predicates in subscrip- 
tions are ordered according to a fixed total order. To create the 
matching tree, we start with the empty tree, and we process one sub- 
scription at a time by examining each of its elementary predicates 
(in order), and adding nodes to the tree as necessary. For instance, 
the processing of sub1 (see Equation 3) would create nodes test], 
tests and s~br of Figure 1; and the subsequent processing of sub2 
(see Equation 4) would create the remaining two nodes (note that 
test1 is not added again to the tree). The details of the algorithm 
are given in Appendix A. 

The algorithm march that uses the tree to match events is given 
in Figure 4. The idea is to walk the matching tree by performing the 
test prescribed by each node and following the edge that represents 
the result of the test, and the *-edge if it is present. The set of 
matching subscriptions will be all those leaves that are visited. 
This particular algorithm traverses the tree in a depth-first order, 
but clearly other orderings, such as breadth-first, would also work. 

4 Matching equality tests 

We now consider a version of the tree matching algorithm spe- 
cialized to the case where subscriptions consist of conjunctions of 
equality tests of attributes against constant values. We analyze the 
performance of the tree matching algorithm in this special case, and 
show that (1) the time complexity to match events is sub-linear in 
the number of subscriptions, (2) the space complexity is linear in the 
number of subscriptions, and (3) the time complexity to pre-process 
is linear in the number of subscriptions. 

More precisely, in this section we assume subscriptions are of 
the form 

sub := (attrt = VI) A . . . A (a&K = UK) 

where K is the number of attributes in the schema, and each uj is 
either a constant or it is *, meaning that any value matches the j-th 
predicate. 

With this assumption, we can assign each level of the matching 
tree to an attribute. For simplicity we assume that the i-th attribute 
is assigned to level i. At level i, all nodes contain the test “exam- 
ine the contents of attribute i”, and edges from the nodes are the 
values against which the i-th attribute is being tested. For example, 
suppose the set of subscriptions is 

sub1 := (attr, = VI) A (attrz = v2) A (attr3 = v3) 

Figure 5: A matching tree for equality tests 

sub2 := (attrl = ~1) A (attrz = *) A (attr3 = v;) 

sub3 := (attn = v;) A (attrz = v2) A (h-3 = I$ 

In this case, the subscription tree is shown in Figure 5. 
The pre-processing function that creates this tree is straightfor- 

ward and is given in Appendix B. The matching function is the 
same as in Section 3. We now analyze the performance of the 
algorithm. 

Pre-processing time complexity 

For each subscription that we need to add to the matching tree, we 
spend time proportional to the number K of attributes in procedure 
preprocess. Therefore, if there are N subscriptions, the total time 
spent in preprocess is O(NK).3 Since K is a constant (which 
depends on the event schema), the pre-processing time is linear in 
the number of subscriptions. 

Space complexity 

For the space complexity,note that each subscription can add at most 
K + 1 nodes to the matching tree, namely, one for each attribute 
and one for the leaf node containing the subscription. Thus, the 
space required for the matching tree is O(NK), that is, linear in 
the number of subscriptions. 

Matching time complexity 

We now analyze the time required to match an event in procedure 
match. We measure the event matching time by counting the num- 
ber of tree nodes that are visited during the match. In any reasonable 
implementation of the matching procedure match, this number is 
proportional to the actual time necessary to match the event, since 
the algorithm performs a simple elementary test per node, which is 
assumed to take constant time. For example, in a typical implemen- 
tation, the attribute is evaluated, and its value searched in a hash 
table to determine the successor edge (if any); that successor edge, 
if present, and the *-edge, if present, are then followed. 

The event matching time is a function of the set of subscriptions: 
a large set of subscriptions generates a large matching tree, which 
requires a larger time to run the algorithm. The matching time is also 
a function of the particular event being matched; indeed, different 
events cause different sets of nodes to be visited during matching 
- even if the set of subscriptions is kept constant. One way to 

‘Note that any algorithm that reads all N subscriptions requires time at least NK. 



handle this difficulty is to consider the worst case: how long does 
it take to match the worst possible event, as a function of the set of 
subscriptions? Unfortunately, there are cases where the worst case 
performance is linear in the number of subscriptions. For example, 
let w be any value and consider a tree that contains only edges 
labeled u and *-edges. To match the event whose attributes are all 
v, we need to visit all nodes in the tree. Thus the matching time is 
equal to the size of the tree. It is easy to see that the size of the tree is 
between IS] and (KS l)]S] where S is the set of subscriptions and 
K is the number of attributes in the schema. Thus, in this example, 
the (worst-case) matching time grows linearly with the number of 
subscriptions. 

In the rest of this section we take a different approach. We 
compute the expected time to match a random event, and show that 
even with the subscriptions chosen to maximize this expected time, 
the expected time is sub-linear in the number of subscriptions. 
Although here we assume a uniform distribution on events, the 
techniques we describe can be used to analyze other distributions 
as well. We also make the simplifying assumption that all attributes 
range over the same set of values, but our analysis can be extended 
to the more general case where attributes range over different set of 
values (this extension is very cumbersome, however). 

Henceforth, let: 

l K be the number of attributes in the schema, and R := K+ 1; 

l V be the number of possible values for each attribute; 

l S be an arbitrary set of subscriptions. 

l C(S) the expected time to match a random event against the 
set S of subscriptions. 

We can obtain an easy upper bound on C(S) by noting that 
when we match an event we follow at most two branches for every 
level in the tree. Thus, the total number of nodes visited is at 
most2’+2l +...+2K.4 This bound, however, is unsatisfactory 
because it is exponential in K. We are interested in bounds that are 
polynomial in K, V and IS], and we next show one such a bound 
that is sublinear in ] S] . 

Theorem 1 Suppose that all events are equally likely. The expected 
time C(S) to match a random event is bounded above by 

C(s) I V~(ir(KISY - l)(ln V + ln K) 
(VR- l)lrlR (5) 

where 

x := 

Since V 2 2 and k 2 2, we have (Vl?)/(Vl? - 1) 5 4/3. 
Also, since K > 2, we have l/in R < 3/2. By introducing these 
results in equat& (5), we derive the following 

Corollary 1 C(S) < 2KISI’-’ (ln V + 1nR). 

We now proceed to prove Theorem 1. Henceforth, let ST be 
the subscription tree obtained when we pm-process S. For each 
node u of this tree, we define cost(v) to be the number of times that 
this node is visited when we run the matching algorithm with all 
the possible VK events. Note that this number is always a power 
of V. For example, if v is the root node of the tree, then cost(v) is 
VK. In general, cost(v) = V K-X where X is the number of non-* 
edges in the path from the root to node v. 

4This achldiy gives a boundon the time to match any event, notjust on the average 
matching time. 

When all VK events are equally likely, then the probability that 
a node v is visited when matching a random event is clearly equal 
to VeK cost(v). Thus, the expected number C(S) of nodes of ST 
visited is: 

C(S) = V-K c cost(v) 
vmwdes(+) 

where nodes(&) is the set of nodes of the tree ST. 

Lemma 1 For any j : 0 < j 5 K, ST contains at most Vj (jT,) 

nodes with cost equal to VK-j. 
Proof. Let j be such that 0 5 j 5 K. A node n has cost VK-j 
if and only if the path from the root to the node has exactly j non-* 
edges. Such paths are uniquely determined by (1) the number of 
edges in the path, (2) the position of the non-* edges and (3) the 
values of the non-* edges. We can bound the number of paths with 
j non-* edges by counting the possible ways to specify (l), (2) and 
(3). The number n of edges is between j and K; the position of 
the non-* edges are j distinct numbers between 1 and n, and so 
there are xi=j..K (f) = (7:;) ways of choosing (1) and (2). 
Moreover, we can assign V distinct values for each non-* edges. 
Therefore, the number of paths in ST with exactly j non-* edges is 
at most Vj (T$). 0 

Corollary2 For any j : 0 5 j 5 K. ST contains at most 
@?V]’ nodes with cost equal to VK-j. 
Proof. 

(7) 

Lemma 2 ST has at most k]S] nodes. 
Proof. A subscription is associated with a path with K edges (one 
edge for each attribute). This path contains K + 1 E k nodes. 
Thus, if the tree has IS] subscriptions, it has at most KlS] nodes. 
0 

Henceforth, we order the nodes of ST by decreasing order of 
their cost, and we let f(i) be the cost of the i-th node in the order 
(if i is greater than the number of nodes, we let f(i) be zero). By 
Equation (6) and Lemma 2, we have that 

C(s) = TK c f(i) (8) 
i=l 

Definition 1 Henceforth, let 

g(z) := (AZ + I?)-’ 

where 

A := v-yv - l/k] (9) 
B := v-m (10) 

x := 
ln$--nR < I (11) 

Le-a3 f(z) I g(s) 
Proof. By Corollary 2 and the definition of f, we have that for 
each i such that 0 5 i 5 K and for each j such that 

1 WW” <j I C I?[I?V]p 

the following holds: 

57 



Now, 

g( c k[KV]P) = g(~~RVl’+’ - 1) 
p=O...i KV-1 

By using the definition of g, we conclude that 

g( c R[RV]p) = v-‘. 
p=O...i 

The lemma now follows becauseg is a non-increasing function. 
Cl 
Proof of Theorem 1. We have that 

WI 
C(s) = V-K cm 

JWl 
I TK Cg(c) 

z=l 

J WI I V-K g(x)& 
0 

= V-~ (AklSl + B)‘-A - B’-A 
A(1 - X) 

After replacing the values of A and B given in (9) and (IO), and 
simplifying, we obtain: 

c(s) I VB[(VRlSl - ISI + 1)‘-x - l] 
(VK - I)(1 - A) 

After using the fact that VklSl - ISI f 1 5 VklSl and that 
( VI?)ITX = k, and after replacing the value of X given in (11) we 
obtain Equation (5). 0 

5 Optimizations to the general tree matching algorithm 

A certain amount of static analysis of the subscription tree can be 
used to streamline the search in the above algorithm. An extremely 
straightforward and obvious optimization is to collapse a chain of 
edges into a single edge whenever the intermediate nodes have 
only a *-edge. For example, the edge from node J to node A in 
Figure 6 can be rewritten to lead directly to node B. In the simulation 
runs discussed later, where some attributes are rarely tested by a 
subscription, this simple transformation of the tree led to a 60% 
reduction in matching time. 

A second optimization allows some successor nodes to be pre- 
computed at analysis time, thereby reducing the number of attribute 
re-evaluations needed at matching time. This optimization is based 
upon the assumption that the parallel subsearches (steps 9 and 12 of 
Figure 4) will be performed in some known serial order, e.g. a non- 
* edge will be followed before a *-edge. We can then annotate the 
search data structure to use the information obtained by traversing 
the non-* edges to skip over tests in the *-path which are implied 
by tests already performed in the non-* path. 

For example, let us suppose that all subscriptions are equality 
tests, that each elementaty test is a simple evaluation of an attribute, 
that the matching tree is the one shown in Figure 6, and that we 
always follow non-* paths before *-paths. Suppose that we are 

0 0 l J 0 0 

Figure 6: A matching tree with successor node annotations 

matching the event (1,2,3,8,2). We follow the path (at = 1, az = 
2, as = 3) to node C in Figure 6, and then find ourselves blocked 
when a4 = 8 and there is no non-* path to follow. Static analysis 
can predict that any search reaching node C must later traverse the 
paths labeled (at = *, a2 = 2, as = 3), (at = 1, as = *, as = 3) 
and (at = 1, a2 = 2, as = *), if they exist, since these predicates 
are implied by (at = 1, as = 2, as = 3). The second and third of 
these paths exist and lead to nodes G and H. At analysis time, we 
designate G and H as successors of C. But the remaining path (to the 
dotted node labeled D) does not exist; so instead of D, D’s successors 
(the nodes E and F whose paths are (at = *, aa = *, a3 = 3) and 
(at = *, as = 2, as = *)) are designated as successors of C. (Of 
course, the node I, reached from C via a *edge, is also designated 
as a successor.) 

More formally, if the path p to a node N ends in n consecutive 
non-* segments, the successorset SS(p) corresponding to that path 
consists of the n paths pi obtained by replacing one of the non-* 
segments with a *. The successor node set stored in the node at p 
contains: for each pi in SS(p), a pointer to the node reached by 
path pi if it exists, else the nodes in the successor node set of the 
node at pi. If there is a child node reachable from N by a segment 
labeled *, this child node is also included in the successor node set. 

In the general case, node Ns is a successor of Nt iff 
pred(Art) 3 pred(Nz) and there does not exist an intermediate 
node Ns such that pred(jVt) + pred(l\rz) =+ pred(iVs). 

Even more aggressive static analysis can be performed. For 
example, suppose we know at analysis time that we will always 
follow a successful test before following *-edges. Then if we have 
reached node C and if we are blocked, we know not only that 
(al = 1,as = 2, as = 3), but also that w # 1. This information 
allows US to refine the successor set, since we know that at nodes F, 
G, and H, the test of a4 will also fail. We replace F, G, and H with 
their successor nodes, which in this case is the single node K, the 
successor of G. 

When this form of static analysis is used, the order of following 
nodes at matching time is constrained so that only non-* branches 
are followed until a node is reached for which there is no child 
node labeled with the value of the tested attribute, or until a leaf is 
reached. Then the successor node set is used to determine where 
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to continue the search. The performance of this approach has been 
measured, and leads to increased (but still linear) space, and about 
a 20% additional improvement in search time relative to the first 
optimization. 

The search can be further improved, at the cost of increased 
space, by factoring out certain attributes. That is, certain attributes 
-preferably those for which the subscriptions rarely contain “don’t 
care” tests - are selected as indices. A separate subtree is built 
for each possible value of the index attributes. The subtrees do not 
include tests for the index attributes. A subscription (minus the 
tests for index attributes) is placed into each subtree consistent with 
those of its elementary predicates which test the index attributes. 
This means that if the subscription has “don’t care” on m of the 
index attributes, and there are V values per attribute, it must be 
inserted into Vm subtrees. Therefore, in order for this optimization 
to be scalable, the number of index attributes must be kept small 
enough so that V” is small relative to the number of subscriptions. 

6 Related Work 

As far as we know, there are no other algorithms for the matching 
problem with sub-linear time-complexity, and linear space com- 
plexity. The content-based subscription systems that have been de- 
veloped so far have not yet adapted scalable matching algorithms. 
SIENA allows content-based subscriptions to a distributed network 
of event servers (brokers) [3]. SIENA filters events before forward- 
ing them on to servers or clients. However, a scalable matching 
algorithm for use at each server has not been developed. The Elvin 
system [lo] uses an approach similar to that used in SJENA. Fublish- 
ers are informed of subscriptions so that they may “quench” events 
(not generate events) for which there are no subscribers. In [lo], 
plans are discussed for optimizing Elvin event matching by inte- 
grating an algorithm similar to the one in this paper. This algorithm, 
presented in [4], converts subscriptions into a deterministic finite 
automata for matching. However, the main difference between [4] 
and our work is that we seek matching algorithms with (worst-case) 
space complexity linear in the number of subscriptions, while in 
[4], the space complexity is exponential. 

Another algorithm for optimizing matching is discussed in [6]. 
At analysis time, one of the tests Gj of each subscription is chosen 
as the gating test; the remaining tests of the subscription (if any) 
are residual tests. At matching time, each of the attributes aj in the 
event being matched is examined. The event value uj is used to 
select those subscriptions i whose gating tests include aij = Vj . The 
residual tests of each selected subscription are then evaluated: if any 
residual test fails, the subscription is not matched, if all residual tests 
succeed, the subscription is matched. Our tree matching algorithm 
performs this type of test for each attribute, not just a single gating 
test attribute. 

7 Discussion 

In this paper, we have presented a matching algorithm suitable for 
a content-based subscription system. For the case where subscrip- 
tions contain only equality tests, the algorithm matches events in 
expected time sub-linear in the number of subscriptions, given a 
uniform distribution of events but a worst-case set of subscriptions. 
The space requirement for the matching tree is linear in the number 
of subscriptions. 

In addition to the theoretical analysis of this algorithm, perfor- 
mance was also tested with a variety of simulated loads. In these 
tests, we assumed an event schema of K attributes, each attribute 
having V possible values. 

We generated a random mix of N subscriptions as follows: 
We assumed that the attributes varied in “popularity”, where pop- 
ularity measured the likelihood p,,rc that a particular subscrip- 

1000s of Subscriptions 

Figure 7: Performance of matching algorithm under simulated 
workload 

tion would contain a test for this attribute as opposed to a “don’t 
care”. By convention, the first attribute was the most popu- 
lar, with a pcore(l) = pl. Each successive attribute was pro- 
gressively less popular by a degradation factor of D; that is 
p,,,,(i + 1) = Dp,,,,(i). The values tested in the subscriptions 
varied according to a Zipf distribution. 

We generated random events assuming that the V possible val- 
ues of each attribute were uniformly distributed. 

Figure 7 shows a set of simulations for V = 3. K = 30, and the 
factoring optimization for 3 index attributes (that is, 27 subtrees). 
Values of pl and D were chosen so that the number of matches per 
event was held at 100 independent of N. The space was measured 
by counting the number of edges plus the size of the successor sets 
used by the optimization discussedin Section 5. 

Other measurements in an actual Java-based prototype have 
shown that even with as many as 25,000 subscriptions, we can match 
an event in under 4 milliseconds, even with a fairly unoptimized 
algorithm.5 

The analysis and results above are for the special case where 
all attribute tests are equality tests. We also have a version of 
the algorithm for inequality and range tests. However, we do not 
yet have a good enough definition for “typical” ranges to generate 
simulated loads for a performance analysis. Work on a theoretical 
analysis of the algorithm with range tests is underway. We are 
also working on analyzing the performance improvements of the 
optimizations of Section 5. 

The authors’ Gryphon pub/sub system [l] uses this matching 
algorithm (for both equality and inequality tests) to implement a 
distributed, high-performance content-based pub/sub system. The 
goal of the Gryphon project is to advance the state-of-the-art in 
distributed messaging from simple group-based pub/sub, to a full 
featured me~ruge brokering system incorporating content-based 
queries and customized message transformations. 
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A The pre-processing algorithm 

We now present in detail the pregrocess algorithm that is briefly 
outlined in Section 3. This algorithm is used to generate the match- 
ing tree, and is shown in Figure 8. The matching tree is represented 
by a set T of triples (v, r, v’), where such a triple represents the fact 
that is an edge labeled T from node v to node v’. The root of the 
tree is represented by a specially designed node called tree-root. 
For each node v, v.data represents the data associated with v (this 
data is a test if v is not a leaf, and it is a subscription if v is a leaf). 

Procedure pregrocess processes each subscription in the set 
Sub, one at a time, by invoking procedure process-sub. The latter 
procedure is responsible for adding the subscription to the currently 
existing tree. Initially, we check if the tree already exists, and if 
not we create it (lines 7 and 8). Next, we loop over the primitive 
predicates in the subscription to check which are already present 
in the tree (loop in lines 11-25). Finally, we add the remaining 
primitive predicates that are not yet in the tree (lines 26-35). 

The loop in lines 11-25 starts at the root of the tree (v = 
tree-root) and proceeds down the tree by successively checking 
that the tree contains the primitive predicates tl --) ~1, . . . , t, ---) rq 
of the subscription. In line 12 we check if the current tree node v 
is a leaf, and in that case, we replace that node with a primitive 
predicate and we exit the loop by setting found tofalse. In line 17, 
we deal with the case that the current tree node v is the current test 
ti. In this case, there are two sub-cases: the tree does not contain an 
edge for the current result ri (line 18), and the tree already contains 
such an edge (line 19). In the first sub case, we simply exit the loop 
by setting found to false. In the second sub case, we follow that 
edge on the tree, and continue the loop with the next primitive test. 

If v is not the current test ti. we continue searching the tree for 
ti as follows: (1) if the test in the current node v is related to result 
T’ of test ti as we described in Section 3 (that is, (ti -t ri) 3 
(v.data --) T’) for some edge T’ in the tree), then we follow edge 
T’ (line 21), (2) if there is some *-edge at v, then we follow that 
edge (line 22); or (3) if there are no *-edges at v, then we create a 
*-edge at v pointing to a node with ti and we exit the loop (lines 24 
and 25). 

Once we exit the loop of lines 1 l-25, we check if there are still 
primitive predicates that need to be added to the tree (line 26). In that 
case, we add those predicates, followed by the subscription itself 
(lines 27-29). Else, we add the subscription to the tree as follows: 
if the current node is a leaf node, there is nothing to be done - the 
subscription is already in the tree (line 31); else, we follow *-edges 
until it is no longer possibIe, and then add the subscription to the 
tree (lines 33-35). 

B The pre-processing algorithm for equality tests 

In this section, we present the preprocess algorithm specialized for 
the case when subscriptions contain only equality tests. The algo- 
rithm is given in Figure 9. and is much simpler than the general one. 
As in Section A, we assume that the matching tree is represented by 
T. Just as before, leaf nodes of T contain subscriptions, but unlike 
before, non-leaf nodes of T do not contain any data; this is because 
the test associated with a non-leaf node is implicit by the position 
of the node in the tree. More precisely, if a node v is at level i of 
the tree, then the test associated with a node in level i is always 
“examine the contents of attribute i”, and the edges leaving v are 
possible values of attribute i (or it could be the *-edge). 

Procedure preprocess(Sub) works as before: it loops over 
each subscription to be added, and invokes processsub. Function 
follow, takes a vertice v and a value T, and returns the node v’ 
obtained by following edge T of node v (if such an edge does not 
exist at node v, the function adds it to the tree). In procedure 
processsub(sub), for each i we set ri to be the value against which 

attribute i is being tested in the subscription (if attribute i is not 
being tested, we set ri to *). This is done in line 10. Then, we 
simply succesively call function follow on values ~1, rz, . . . ,TK 

(lines 13 and 14). With this, we obtain a leaf node, and then add 
the subscription to that node (line 15). 
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procedure pre_process( Sub) 
for each sub E Sub do processsub(sub) 

procedure processsub(sub) 
let sub be given by (tl + ~1) A . . . A (I& -+ rq) 

is 
i’,L?-oot = I 

e number of conjunctions in sub } 

then tree-root t- new node; tree-rookdata +-- tl; found + false 
else found t true 
v t tree-root; i c 1 
while found and i <= q do 

if v is a leaf node then 
let 20, r’ be such that (w, r’, v) E T 
V' + new node; v’.data + ti 
T+T\{(w,~‘,v)}U((w,r’,v’),(v’,*,v)) 
v + v’; found +- false 

else if v.data = ti then 
if ,&u : (ti, ri, W) E T then found +- false 
elseletur:(ti,ri,zo)ET,vcur;iti+l 

else 
if 3r’, w : (v, r’, w) E T A [(td --) ri) =+- (v.data + V-‘)] then v t w 
elseif%:(v,*,w)ETthenvtw 
else 

v’ + new node; v’.data + ti 
T +- T U {(v, *, v’)}; v + v’;found + false 

if not found then 
while i <= q do 

v’ + new node; if i < q then v’.data = ti+l else v’.data = sub 
TtTU{(v,ri,v’)};i+i+l 

else 
if v is a leaf node then nop 
else 

while 3w : (v, *, w) E T do v t w 
if v is a leaf node then nop 
else v’ c new node; v’.data + sub; T +- T U (v, *, v’) 

{ edge going into v } 

v.data # ti 

{ found} 
{ subscription already in tree } 

{ subscription already in tree } 

Figure 8: The pre-processing algorithm 

procedure preprocess(Sub) 
for each sub E Sub do processsub(sub) 

function follow(v, r): node 
if 3v’ : (v, T, v’) E T then return v’ 
else v’ t new node; T t T U (v, r, v’); return v’ 

procedure processsub(sub) 
{ K is the number of attributes in the schema } 
let sub be given by (at&l = ~1) A . . . A (attrK = rK) 
if tree-root = I then tree-root c new node 
v +- tree-foot 
foritltoKdo 

V +fOlZOW(V,Ti) 
v.data + sub 

{ we set Ti to “*” if attribute i is not tested in sub } 

Figure 9: The pre-processing algorithm for equality tests 
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