Enumerating Global States of a Distributed Computation

Vijay K. Garg*
Department of Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX 78712-1084, USA
garg@ece.utexas.edu

ABSTRACT

Global predicate detection is a fundamental problem in
distributed computing in the areas of distributed debug-
ging and software fault-tolerance. It requires searchirgg t
global state lattice of a computation to determine if any
consistent global state satisfies the given predicate. We
give an efficient algorithm that perform ttex traversal of

the lattice. We also give a space efficient algorithm for the
breadth-first-search (BFS) traversal.

KEY WORDS
Global Predicate Detection, Combinatorial Enumeration,
Lattices, Ideals

1 Introduction

Global predicate detection is a fundamental problem in dis-
tributed debugging [1, 2]. For debugging a distributed pro-
gram, it is useful to monitor and stop the execution when
the user specified condition, a global predicate, becomes
true. For example, the user may specify that the execution
should be stopped whan +x, > x3 wherez; is a variable

on process’;. Here(z1 + z2 > z3) is a global predicate
and the debugger needs to detect the condition and stop the
program in a consistent global state that satisfies the eondi
tion.

Given a distributed computation, the global predicate
detection problem asks whether there exists a consistent
global state (CGS) [3] in which the predicate is true. Infor-
mally, a global state is consistent if for any message whose
receive event is included in the global state, its send event
is also included. For example, consider the computation
in Figure 1(a). Its CGS lattice is shown in Figure 1(b).
The global statda;a;) denotes that the first process has
executed; events and the second process has executed
events in that state. Thus, the global stété) signifies
that P, has executed, ande, and P, has executed;. It
can alternatively be also viewed as the sulisgtes, f1}.

The global stat@2 is not consistent because it includes the
receive evenf, but not the send eveat which happened
beforefs.

*supported in part by the NSF Grants ECS-9907213, CCR-99B822
Texas Education Board Grant ARP-320, an Engineering Fdiom&el-
lowship, and an IBM grant. Part of the work was performed wthenau-
thor was visiting Computer Science and Engineering Depamtrat Indian
Institute of Technology Kanpur as N. Rama Rao Visiting CRaofessor.

Global predicate detection is a hard problem because
of combinatorial state explosion. If there argrocesses,
each with at most events, then the total number of con-
sistent global states can be as larg€és™). Detecting a
simple global predicate such as predicates in 2-CNF form
even when no two clauses contain variables from the same
process is NP-complete in general [4].

The CGS lattice can be traversed in multiple ways as
shown in Figure 1(c). Cooper and Marzullo’s algorithm[2]
performs a breadth-first-search (BFS) traversal and requir
space proportional to the size of the biggest level of the
CGS lattice which, in general, isxponentialin the size
of the computation. Alagar and Venkatesan’s algorithm[5]
performs a depth-first-search (DFS) traversal of the lattic
and require® (nM) time andO (n E) space where is the
number of processed/ is the number of consistent global
states andF is the number of events in the computation.
The main disadvantage of their algorithm is that it requires
recursive calls of dept®?(E) with each call requirin@(n)
space resulting i) (n E) space requirements besides stor-
ing the computation itself.

In this paper, we propose a new algorithm that per-
forms thelexicographic (lex)traversal of the lattice with
O(n) space (besides the input) att{n?M) time com-
plexity. Lex traversal is the natural dictionary order uged
many applications. It is especially important in distriodit
computing applications because the user is generally-inter
ested in the CGS that satisfies the predicate to be minimal
with respect to some order. The lex order gives a total or-
der on the set of consistent global states based on priritie
given to processes and the CGS detected by this traversal
gives the lexicographically smallest CGS.

For some other distributed computing applications,
the BFS traversal is more appropriate. The component-
wise order (or the vector clock order as shown in Figure
1(b)) imposes a partial order on all global states and the
BFS traversal returns a CGS with the minimum number
of events executed. We give two algorithms for the BFS
traversal. The first algorithm has similar space require-
ments as the algorithm by Cooper and Marzullo but speeds
up enumeration of consistent global states by exploitieg th
fact that the global state graph is a distributive latticee T
second algorithm shows that the BFS traversal can be per-
formed in space proportional to the size of the computation
which may be significantly (exponentially) smaller than the

size of a level of a lattice. It is based on efficient enumera-
tion of a level set by enumerating afiteger compositions

€ & &

o\o o

fl f2 f3
@) 3\

(b)

BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33

DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13,01
Lexical: 00, 01, 10, 11, 12, 13, 20, 21, 22, 23,
(c)

Figure 1. (a) A computation (b) Its lattice of consistent
global states (c) Traversals of the lattice.

We note that all the traversals discussed in the paper
are straightforward if one explicitly generates the graph o
the CGS lattice. Since this graph is exponential in size, the
challenge is to traverse the graph without storing either th
complete graph or a major part of it.

Enumerating CGS in the lex and the BFS order is also
useful in combinatorial applications. In [6] we have shown
that many families of combinatorial objects can be mapped
either to the CGS lattices or to the level sets of the CGS lat-
tices of appropriate computations. Thus, algorithms fer le
and BFS traversal discussed in the paper can also be used
to efficiently enumerate all subsets]ef, all subsets ofn)|
of sizek, all permutations, all integer partitions less than
a given partition, all integer partitions of a given number,
and alln-tuples of a product space. Note that [7] gives dif-
ferent algorithms for these enumerations. Our algorithm is
generic and by instantiating it with different posets a# th
above combinatorial lex enumeration can be achieved.

2 Mode and Background

The execution of a single process in a computation results
in a sequence of events totally ordered by the relation
curred before We usee < f to denote that occurred
before f on some process. To impose an order relation
on events across processes, we use Lamport’'s happened-
before relation— [8]. We define a distributed computation

as the partially ordered set (poset) consisting of the set of
events together with the happened before relation and de-
note it by (P, —). Two eventse and f are concurrent in

(P, —), (denoted by||f), if e A& fandf A e.

A global state (or, a cut) is a subg&tC P such that
fe€GANe < f = e € G Aconsistent global state
(CGS) of a computatiofP, —) is a subsetd C P such
thatf € GAe — f = e € G. Foraglobal stat&, G[i]
denotes the maximal event 8f in G (i.e. there is no event
e in G such that7[i] occurred before). Although we have
defined global states as subsets, they can equivalently be
defined using vectors of local states as shown in Figure 1.
In this case&4[i] equals the number of events executed by

A global predicate (or simply a predicatg is a
boolean-valued function defined on the set of consistent
global states. We say th&(G) (B holds in the CGS7) if
the function evaluates to true @.

A lattice is a posetl such that for allz,y € L, the
least upper bound of andy exists, called théoin of =
andy (denoted byz U y); and the greatest lower bound
of z andy exists, called theneetof = andy (denoted by
z My). A lattice L is distributive if for all z,y,z € X:
zMN(yUz)=(zNy)U(zNz).

Given a computatior?, we impose an order on the
set of global states as follows. Given two consistent global
states(G and H, we say that7 is less tharH iff G C H.

It is well known in the lattice theory that the set of all CGS
form a distributive lattice undet relation.

3 AnAlgorithm for Enumeration of Idealsin
Lex order

Itis useful to impose on the set of global statedéxer the
dictionary order. We define the lex ordex;) as follows.
G< H iff

Tk (Vi:1<i<k-1:G[i]=H[)A(GK] < HIK).

This imposes a total order on all global states by as-
signing higher priority to small numbered processes. For
example, in Figure 1, global state1) <, (10) because?,
has executed more events in the global sfatg than in
(01).

We use<; for the reflexive closure of the; relation.
Recall that we have earlier used the ordeon the set of
global states which is a partial order. Theorder shown
in Figure 1(b) is equivalent to

G C H =Vi:G[i] < H[i]

Note that01 ¢ 10 although01 <; 10.

Note that we have two orders on the set of global
states—the partial order based on containménténd the
total order based on lex ordering (). The relationship
between the two orders defined is given by the following
lemma.

Lemmal VG,H . GCH =G <; H.

Proof: G C H implies thatvi : G[i] < H[i]. The lemma
follows from the definition of the lex order.

Since there are two orders defined on the set of global
states, to avoid confusion we use the téeastfor infimum
over C order, and the terrtexicographically minimunfor
infimum over the<,; order.

Let nextLex(G) denote the CGS that is the suc-
cessor ofG in the lex order. For example, in Figure 1,
nextLex(01) = 10 andnextLex(13) = 20. Itis sufficient
to implementnextLex function efficiently for enumera-
tion of ideals in the lex order. One can %etto the initial
CGS (0,0, ...,0) and then call the functionextLex(G)
repeatedly. We implement the functierzt Lex(G) us-
ing two secondary functionsicc andieastConsistent as
described next.

We definesucc(G, k) to be the global state obtained
by advancing along’, and resetting components for all
processes greater thdf to 0. Thus,succ({7,5,8,4),2)
is (7,6,0,0) and succ((7,5,8,4),3) is (7,5,9,0). Note
thatsucc(G, k) may not exist when there is no event along
Py, and even when it exists it may not be consistent.

The second function igastConsistent(K) which
returns the least consistent global state greater thanual eq
to a given global stat& in theC order. This is well defined
as shown by the following lemma.

Lemma 2 The set of all consistent global states that are
greater than or equal té in the CGS lattice is a sublattice.
Therefore, there exists the least CEShat is greater than
or equal toK.

Proof: Itis easy to verify that if two consistent global states
H; and H, are both greater than or equal £, then so is
their union and intersection.

[
We now show howeztLex(G) can be computed.

Theorem 1 Assume thaf? is a CGS such that it is not the
greatest CGS. Then,

nextLex(G) = leastConsistent(succ(G, k))

wherek is the index of the process with the smallest priority
which has an event enabledh

Proof: We define the following global states for conve-
nience:

K := suce(G, k)

H := leastConsistent(K), and
G' :=nextLex(Q).

Our goal is to prove that’ = H.

G' contains at least one evefithat is not inG; oth-
erwiseG' C G and therefore cannot be lexically bigger.
Choosef € G' — G from the highest priority process pos-
sible.

Let e be the event in the smallest priority process
enabled inG, i.e., e is on process;. Let proc(e) and
proc(f) denote the process indiceseoénd f. We now do
a case analysis.

Case liproc(f) < k

In this caseg is from a lower priority process thaf. We
show that this case implies that is lexically smaller than
G'. We first claim thatd C G U {e}. This is because
G U {e} is a CGS containing¢ and H is the smallest
CGS containing. Now, sinceH C G U {e} andG’
contains an evenf € G' — G from a higher priority
process tham, it follows that H is lexically smaller than
G', a contradiction.

Case 2:proc(f) > k

Recall that event is on the process with the smallest
priority that had any event enabled &t Therefore,
existence off in CGS G’ implies existence of at least
another event i’ — G at a process with higher priority
thane. This contradicts choice of everft because, by
definition, f is from the highest prioriy process & — G.

Case 3:proc(f) = k.

Then, K C @' because botly’ and K have identical
events on process with priority or higher andK has no
events in lower priority processes. SinGéis a CGS and
K C G', we get thatH C G' by definition of H. From
Lemma 1, it follows thatd <; G'. But G’ is the next
lecical state aftef7. ThereforeH = G'.

The only task left in the design of the algorithm is
to determine: and implementeastConsistent function.
The following lemma follows from properties of vector
clocks[9, 10]. First, we determine that an evenn en-
abled in a CGS7 if all the components of the vector clock
for other processes ia are less than or equal to the com-
ponents of the vector clock iF. Secondly, to compute
leastConsistent(K) itis sufficient to take the component-
wise maximum of the vector clock of all maximal events in
K. Formally,

Lemma3

1. An event on Py is enabled in a CG% iff e.w[k] =
Glk] + 1and

Vj:j# k:elj] < Gl

2. LetH = leastConsistent(K). Then,

Vj i HJj] = maa{K[ilofj] | 1 < i < n}

Incorporating these observations, we get the algo-
rithm in Figure 2. The outewhile loop at line (1) iterates
till all consistent global states are visited. If the cutren
CGS(satisfies the given predicate, then we are done
andG@ is returned as the lexicographically minimum CGS.
Lines (4)-(22) generateextLex(G). Lines (4)-(14) de-
termine the lowest priority procegswhich has an event
enabled inG. The for loop on line (4) is exited when
an enabled event is found at line (12). We are guaran-
teed to get an enabled event becatsés not the final
CGS. Lines (8)-(12) check if the next event & is en-
abled. This is done using the vector clock. An event
in enabled in a CG$% iff all the events that depend on
have been executed i@; or equivalently, all the compo-
nents of the vector clock for other processeg iare less
than or equal to the components of the vector clock in
G. This test is performed in lines (8)-(11). Lines (15) to
(17) computesuce(G, k). Finally, lines (18)-(22) compute
leastConsistent(succ(G, k)).

Let us now analyze the time and space complexity of
the above algorithm. Thehile loop iterates once per CGS
of the computation. Each iteration tak@$n?) time due to
nestedor. Thus the total time taken @(n? M). The algo-
rithm uses variable&, K, H andm which requires)(n)

space. We also assume that the events are represented using

their vector clocks.

4 Algorithmsfor BFS generation of 1deals

For many applications we may be interested in generat-
ing consistent global states in the BFS order, for example,
when we want to generate elements in a single level of the
CGS lattice. The lex algorithm is not useful for that pur-
pose.

Cooper and Marzullo [2] have given an algorithm to
detectpossibly : B based on the level set enumeration.
They keep two lists of consistent global statéast and
current To generate the next level of consistent global
states, they sdtst to current andcurrent to the set of
global states that can be reached frbmt in one transi-
tion. Since a CGS can be reached from multiple global
states, an implementation of their algorithm will result in
eithercurrent holding multiple copies of a CGS or added
complexity in the algorithm to ensure that a CGS is inserted
in current only when it is not present. This problem oc-
curs because their algorithm does not exploit the fact that
the set of global states form a distributive lattice.

We now show an extension of their algorithm which
ensures that a CGS is enumerated exactly once and that
there is no overhead of checking that the CGS has already
been enumerated (or inserted in the list). Our extension
exploits the following observation.

lexTraverse(P, B)

Input: a distributed computation P, a predicate B
Output: the smallest CGS in lex order that satisfies B,
null if none exists;
var
I/l current CGS
G:array[l ...n] of intinitially Vi : G[i] = 0;
Il K = suce(G, k)
K:array[1...n] of int;
/Il H = leastConsistent(K)
H:array[1l ...n] of int;
/I m[i] equals the number of events at P;
m:array[1 ...n] of int;

(1) while (G < m) do
(2) if (B(@)) then return G;
3 if (G = m) then return null;

4 for k:=n downto1do
/I if next event on P, exists

(5) if (Gk] # m[k]) then
(6) e := next event on P, after G[k]
(7 boolean enabled := true;
(8) for j:=1ton,j#kdo
9) if e.v[j] > G[j] then
(20) enabled := false;
(112) end// for;
(12) if (enabled) break; //goto line (15);
(13) end// if next event exists;
(14) end// for;

Il compute K := succ(G, k)
(15) K:=aG;ll
(16) KIk] := K[k] + 1; /l advance on P,
(17) forj:=k+1tondo K[j]:=0;

I/l compute H := leastConsistent(K);
(18) H := K;/linitialize H to K
(19) fori:=1tondo
(20) for j :=1ton do
(21) H[j) := maz(H[j], K[i]v[j]);
(22) G :=H;

(23) end// while;

Figure 2. An Algorithm for Traversal in Lex Order

Lemmad4 If H is reachable fronG by executing an event
e and there exists an evelfite G such thatf is maximal
in G and concurrent witke, then there exists a CG&' at
the same level a8 suchthat?’ = G — {f} + {e} and H

is reachable fronGG’.

Proof: Since@ is consistent ang is a maximal event in
G, itfollows thatG —{f} isa CGS. Ife is enabled a7 and
f is concurrent withe, thene is also enabled at — {f}.
ThereforeG' = G — {f} + {e} isa CGS.H is reachable
from G’ on executingf.

Thus, to avoid enumerating from bothG andG’, it
is sufficient to have a total order on all events and explore
execution of an evenrtfrom a global staté/ iff e is smaller
than all maximal events i&' which are concurrent with.

{f1feq, flleyu{e}

Let o be a topological sort of all events which maps every
evente to o (e) a number from... E. Now the rule to decide
which events to explore from a CG$is simple. Lete be
any enabled event i¥. We explore execution afonG iff

Vi € mazimal(G) : flle = a(e) < o(f)

With this observation, our algorithm shown in Figure
3 keeps a queu@ of the CGS. At every iteration, it re-
moves the head of the queGk checks if the global pred-
icate is true orG. If it is, we are done. Otherwise, the al-
gorithm inserts those successorgdthat satisfy the above
rule.

var
():set of CGS at the current level
initially {(0,0,...,0)};
o:a topological sort of the poset P;

while (Q # 0) do
G = remove_first(Q);
if B(G) then return G,
/I generate CGS at the next level
for all events e enabled in G do
if Vf € mazimal(QG) : flle = o(e) < o(f)) then
H:=GU{e};
append(Q), H);
end //for;
end //while;

Figure 3. An Extension of Cooper Marzullo Algorithm for
BFS enumeration of CGS

The main disadvantage of Cooper and Marzullo’s al-
gorithm even with proposed extension is that it requires

space at least as large as the number of consistent global
states in the largest level set. Note that the largest l&tel s

is exponential im and therefore when using this algorithm
for a large system we may run out of memory.

We now give two algorithms that use polynomial
space to list the global states in the BFS order. The first
algorithm is based in integer compositions and consistency
checks and the second algorithm is based on using the DFS
(or the lex) traversal multiple number of times to enumerate
consistent global states in the BFS order.

The first algorithm for BFS traversal uses consistency
check to avoid storing the consistent global states. The
main idea is to generate all the global states in a level rathe
than storing them. Assume that we are interested in enu-
merating level set. Any global state in level set cor-
responds to the total number of events executed pyo-
cesses to be. A compositiorof r into n. parts corresponds
to a representation of the formy + as + ... +a, = r
where eacla; is a natural number and the order of the sum-
mands is important. In our application, this corresponds to
aglobal statéa; , as, ..., a,) suchthal " a;, = r. There are
many algorithms that enumerate all the compositions of an
integerr into n parts (for example, the algorithm due to
Nijenhuis and Wilf[11] (pp. 40-46) runs through the com-
positions in lexicographic order reading from right to)eft
For every composition, the corresponding global state can
be checked for consistency.

The second algorithm exploits the fact that the DFS
and the lex traversal can be done in polynomial space. We
perform the DFS traversal for each level numbemDur-
ing the DFS traversal we explore a global state only if its
level number is less than or equalt@and visit it (evalu-
ate the predicate or print it depending upon the application
only if its level number is exactly equal fo The algorithm
shown in Figure 4 generates one level at a time. In line
(2) it reduces the computation to include only those events
whose sum of vector clock values is less than or equal to
levelnum. All other events can never be in a global state at
level less than or equal fevelnum. Inline (3) it performs
space efficient lex traversal of the CGS lattice using the al-
gorithm in Figure 2. The computation used is the reduced
one and the global predicate that is evaluated is modified
to include a clause that the CGS should be at level equal to
levelnum. If no CGS is found, then we try the next level.
Since the total number of levelsd¥ E), we can enumerate
the consistent global states in the BFS ordediion? M)
time andO(nFE) space. Note that our algorithm enumer-
ates each level itself in the lex order.

5 Conclusions

We have presented an algorithm that does lex traversal of
the CGS lattice inO(n) additional space an®(n>M)
time. We have also shown that at the expense of more time,
BFS traversal can be accomplished in polynomial space.
The previous algorithm for BFS traversal uses exponential
space.

var
G:array[l ...n] of integer;

(1) for levelnum := 0to E do

(2) Q:={ee P| Y, ev[i] <levelnum}

(3) G :=lexTraverse(Q, B A (lvl = levelnum));
4) if (G # null) then

(5) return G,

(6) endfor;

(7) return null;

Figure 4. A Space Efficient algorithm for BFS Enumera-
tion

We note here that there are other approaches in the
mathematics and operations research literature for enumer
ation of ideals of a poset. See, for example, papers by
Steiner[12], Bordat[13], Squire[14], Jegou, Medina, and
Nourine [15], and Habib, Medina, Nourine and Steiner[16].
The algorithmin [16] is the most efficient known for gener-
ating all ideals inO(nE) space. None of these algorithms
enumerate consistent global states (or ideals) in the lex or
the BFS order.

The most interesting question left openiis: Is there any
traversal algorithm for the CGS lattice (M) time and
polynomial space?

Acknowledgments

| am thankful to James Roller Jr., Alper Sen and Stephan
Lips for discussions on the topic.

References

[1] V. K. Garg and B. Waldecker. Detection of unstable
predicates. IrProc. of the Workshop on Parallel and
Distributed DebuggingSanta Cruz, CA, May 1991.
ACM/ONR.

[2] R. Cooper and K. Marzullo. Consistent detection of
global predicates. IRroc. of the Workshop on Paral-
lel and Distributed Debuggingages 163-173, Santa
Cruz, CA, May 1991. ACM/ONR.

[3] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems
3(1):63-75, February 1985.

[4] N. Mittal and V. K. Garg. On detecting global pred-
icates in distributed computations. BRist Interna-
tional Conference on Distributed Computing Systems

(ICDCS’ 01) pages 3-10, Washington - Brussels -
Tokyo, April 2001. IEEE.

[5] S. Alagar and S. Venkatesan. Techniques to tackle
state explosion in global predicate detectiolitEE
Transactions on Software Engineerjng7(8):704 —
714, August 2001.

[6] V. K. Garg. Algorithmic combinatorics based on slic-
ing posets. IrProc. of 22th Conference on the Foun-
dations of Software Technology & Theoretical Com-
puter Sciencgpages 169 — 182. Springer Verlag, De-
cember 2002. Lecture Notes in Computer Science.

[7] D. Stanton and D. White. Constructive Combina-
torics. Springer-Verlag, 1986.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed systemCommunications of the ACM
21(7):558-565, July 1978.

[9] C.J. Fidge. Partial orders for parallel debuggiRgo-
ceedings of the ACM SIGPLAN/SIGOPS Workshop
on Parallel and Distributed Debugging, published
in ACM SIGPLAN Notices24(1):183-194, January
1989.

[10] F. Mattern. Virtual time and global states of dis-
tributed systems. IdParallel and Distributed Algo-
rithms: Proc. of the International Workshop on Paral-
lel and Distributed Algorithmspages 215-226. Else-
vier Science Publishers B.V. (North-Holland), 1989.

[11] A. Nijenhuis and H. S. Wilf. Combinatorial Algo-
rithms for Computers and Calculators Academic
Press, London, 2 edition, 1978.

[12] G. Steiner. An algorithm to generate the ideals of a
partial order. Operations Research Letters(6):317
- 320, 1986.

[13] J.P. Bordat. Calcul des ideaux d’'un ordonne fidp-
eration Researci25(4):265 — 275, 1991.

[14] M. Squire. Gray Codes and Efficient Generation of
Combinatorial StructuresPhD Dissertation, Depart-
ment of Computer Science, North Carolina State Uni-
versity, 1995.

[15] Roland Jégou, Raoul Medina, and Lhouari Nourine.
Linear space algorithm for on-line detection of global
predicates. In Jorg Desel, editéitoceedings of the
International Workshop on Structures in Concurrency
Theory (STRICT)Workshops in Computing, pages
175-189. Springer-Verlag, 1995.

[16] M. Habib, R. Medina, L. Nourine, and G. Steiner. Ef-
ficient algorithms on distributive lattice DAMATH:
Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Sciedd®:169
—187,2001.

