
Enumerating Global States of a Distributed Computation
Vijay K. Garg�

Department of Electrical and Computer Engineering
The University of Texas at Austin

Austin, TX 78712-1084, USA
garg@ece.utexas.edu

ABSTRACT
Global predicate detection is a fundamental problem in
distributed computing in the areas of distributed debug-
ging and software fault-tolerance. It requires searching the
global state lattice of a computation to determine if any
consistent global state satisfies the given predicate. We
give an efficient algorithm that perform thelex traversal of
the lattice. We also give a space efficient algorithm for the
breadth-first-search (BFS) traversal.

KEY WORDS
Global Predicate Detection, Combinatorial Enumeration,
Lattices, Ideals

1 Introduction

Global predicate detection is a fundamental problem in dis-
tributed debugging [1, 2]. For debugging a distributed pro-
gram, it is useful to monitor and stop the execution when
the user specified condition, a global predicate, becomes
true. For example, the user may specify that the execution
should be stopped whenx1+x2 > x3 wherexi is a variable
on processPi. Here(x1 + x2 > x3) is a global predicate
and the debugger needs to detect the condition and stop the
program in a consistent global state that satisfies the condi-
tion.

Given a distributed computation, the global predicate
detection problem asks whether there exists a consistent
global state (CGS) [3] in which the predicate is true. Infor-
mally, a global state is consistent if for any message whose
receive event is included in the global state, its send event
is also included. For example, consider the computation
in Figure 1(a). Its CGS lattice is shown in Figure 1(b).
The global state(aiaj) denotes that the first process has
executedi events and the second process has executedj
events in that state. Thus, the global state(21) signifies
thatP1 has executede1 ande2 andP2 has executedf1. It
can alternatively be also viewed as the subsetfe1; e2; f1g.
The global state02 is not consistent because it includes the
receive eventf2 but not the send evente1 which happened
beforef2.�supported in part by the NSF Grants ECS-9907213, CCR-9988225,
Texas Education Board Grant ARP-320, an Engineering Foundation Fel-
lowship, and an IBM grant. Part of the work was performed whenthe au-
thor was visiting Computer Science and Engineering Department at Indian
Institute of Technology Kanpur as N. Rama Rao Visiting ChairProfessor.

Global predicate detection is a hard problem because
of combinatorial state explosion. If there aren processes,
each with at mostk events, then the total number of con-
sistent global states can be as large asO(kn). Detecting a
simple global predicate such as predicates in 2-CNF form
even when no two clauses contain variables from the same
process is NP-complete in general [4].

The CGS lattice can be traversed in multiple ways as
shown in Figure 1(c). Cooper and Marzullo’s algorithm[2]
performs a breadth-first-search (BFS) traversal and requires
space proportional to the size of the biggest level of the
CGS lattice which, in general, isexponentialin the size
of the computation. Alagar and Venkatesan’s algorithm[5]
performs a depth-first-search (DFS) traversal of the lattice
and requiresO(nM) time andO(nE) space wheren is the
number of processes,M is the number of consistent global
states andE is the number of events in the computation.
The main disadvantage of their algorithm is that it requires
recursive calls of depthO(E) with each call requiringO(n)
space resulting inO(nE) space requirements besides stor-
ing the computation itself.

In this paper, we propose a new algorithm that per-
forms thelexicographic (lex)traversal of the lattice withO(n) space (besides the input) andO(n2M) time com-
plexity. Lex traversal is the natural dictionary order usedin
many applications. It is especially important in distributed
computing applications because the user is generally inter-
ested in the CGS that satisfies the predicate to be minimal
with respect to some order. The lex order gives a total or-
der on the set of consistent global states based on priorities
given to processes and the CGS detected by this traversal
gives the lexicographically smallest CGS.

For some other distributed computing applications,
the BFS traversal is more appropriate. The component-
wise order (or the vector clock order as shown in Figure
1(b)) imposes a partial order on all global states and the
BFS traversal returns a CGS with the minimum number
of events executed. We give two algorithms for the BFS
traversal. The first algorithm has similar space require-
ments as the algorithm by Cooper and Marzullo but speeds
up enumeration of consistent global states by exploiting the
fact that the global state graph is a distributive lattice. The
second algorithm shows that the BFS traversal can be per-
formed in space proportional to the size of the computation
which may be significantly (exponentially) smaller than the

size of a level of a lattice. It is based on efficient enumera-
tion of a level set by enumerating allinteger compositions.

e1 e3

f 1 f 2 f 3

e2

BFS: 00, 01, 10, 11, 20, 12, 21, 13, 22, 23, 33

DFS: 00, 10, 20, 21, 22, 23, 33, 11, 12, 13, 01

Lexical: 00, 01, 10, 11, 12, 13, 20, 21, 22, 23, 33

(c)

(b)

00

10 01

1120

21 12

22 13

23

33
(a)

Figure 1. (a) A computation (b) Its lattice of consistent
global states (c) Traversals of the lattice.

We note that all the traversals discussed in the paper
are straightforward if one explicitly generates the graph of
the CGS lattice. Since this graph is exponential in size, the
challenge is to traverse the graph without storing either the
complete graph or a major part of it.

Enumerating CGS in the lex and the BFS order is also
useful in combinatorial applications. In [6] we have shown
that many families of combinatorial objects can be mapped
either to the CGS lattices or to the level sets of the CGS lat-
tices of appropriate computations. Thus, algorithms for lex
and BFS traversal discussed in the paper can also be used
to efficiently enumerate all subsets of[n℄, all subsets of[n℄
of sizek, all permutations, all integer partitions less than
a given partition, all integer partitions of a given number,
and alln-tuples of a product space. Note that [7] gives dif-
ferent algorithms for these enumerations. Our algorithm is
generic and by instantiating it with different posets all the
above combinatorial lex enumeration can be achieved.

2 Model and Background

The execution of a single process in a computation results
in a sequence of events totally ordered by the relationoc-
curred before. We usee < f to denote thate occurred
beforef on some process. To impose an order relation
on events across processes, we use Lamport’s happened-
before relation! [8]. We define a distributed computation
as the partially ordered set (poset) consisting of the set of
events together with the happened before relation and de-
note it by (P;!). Two eventse andf are concurrent in(P;!), (denoted byejjf), if e 6! f andf 6! e.

A global state (or, a cut) is a subsetG � P such thatf 2 G ^ e < f) e 2 G. A consistent global state
(CGS) of a computation(P;!) is a subsetG � P such
thatf 2 G ^ e ! f) e 2 G. For a global stateG, G[i℄
denotes the maximal event ofPi in G (i.e. there is no evente in G such thatG[i℄ occurred beforee). Although we have
defined global states as subsets, they can equivalently be
defined using vectors of local states as shown in Figure 1.
In this caseG[i℄ equals the number of events executed byPi in G.

A global predicate (or simply a predicate) is a
boolean-valued function defined on the set of consistent
global states. We say thatB(G) (B holds in the CGSG) if
the function evaluates to true inG.

A lattice is a posetL such that for allx; y 2 L, the
least upper bound ofx andy exists, called thejoin of x
andy (denoted byx t y); and the greatest lower bound
of x andy exists, called themeetof x andy (denoted byx u y). A latticeL is distributive if for all x; y; z 2 X :x u (y t z) = (x u y) t (x u z).

Given a computationP , we impose an order on the
set of global states as follows. Given two consistent global
states,G andH , we say thatG is less thanH iff G � H .
It is well known in the lattice theory that the set of all CGS
form a distributive lattice under� relation.

3 An Algorithm for Enumeration of Ideals in
Lex order

It is useful to impose on the set of global states thelexor the
dictionary order. We define the lex order(<l) as follows.G <l H iff9k : (8i : 1 � i � k � 1 : G[i℄ = H [i℄) ^ (G[k℄ < H [k℄):

This imposes a total order on all global states by as-
signing higher priority to small numbered processes. For
example, in Figure 1, global state(01) <l (10) becauseP1
has executed more events in the global state(10) than in(01).

We use�l for the reflexive closure of the<l relation.
Recall that we have earlier used the order� on the set of
global states which is a partial order. The� order shown
in Figure 1(b) is equivalent toG � H � 8i : G[i℄ � H [i℄

Note that01 6� 10 although01 �l 10.
Note that we have two orders on the set of global

states—the partial order based on containment (�), and the
total order based on lex ordering (�l). The relationship
between the two orders defined is given by the following
lemma.

Lemma 1 8G;H : G � H) G �l H .

Proof: G � H implies that8i : G[i℄ � H [i℄. The lemma
follows from the definition of the lex order.

Since there are two orders defined on the set of global
states, to avoid confusion we use the termleastfor infimum
over� order, and the termlexicographically minimumfor
infimum over the�l order.

Let nextLex(G) denote the CGS that is the suc-
cessor ofG in the lex order. For example, in Figure 1,nextLex(01) = 10 andnextLex(13) = 20. It is sufficient
to implementnextLex function efficiently for enumera-
tion of ideals in the lex order. One can setG to the initial
CGS h0; 0; :::; 0i and then call the functionnextLex(G)
repeatedly. We implement the functionnextLex(G) us-
ing two secondary functionssu andleastConsistent as
described next.

We definesu(G; k) to be the global state obtained
by advancing alongPk and resetting components for all
processes greater thanPk to 0. Thus,su(h7; 5; 8; 4i; 2)
is h7; 6; 0; 0i and su(h7; 5; 8; 4i; 3) is h7; 5; 9; 0i. Note
thatsu(G; k) may not exist when there is no event alongPk, and even when it exists it may not be consistent.

The second function isleastConsistent(K) which
returns the least consistent global state greater than or equal
to a given global stateK in the� order. This is well defined
as shown by the following lemma.

Lemma 2 The set of all consistent global states that are
greater than or equal toK in the CGS lattice is a sublattice.
Therefore, there exists the least CGSH that is greater than
or equal toK.

Proof: It is easy to verify that if two consistent global statesH1 andH2 are both greater than or equal toK, then so is
their union and intersection.

We now show hownextLex(G) can be computed.

Theorem 1 Assume thatG is a CGS such that it is not the
greatest CGS. Then,nextLex(G) = leastConsistent(su(G; k))
wherek is the index of the process with the smallest priority
which has an event enabled inG.

Proof: We define the following global states for conve-
nience:

K := su(G; k)H := leastConsistent(K), andG0 := nextLex(G).
Our goal is to prove thatG0 = H .G0 contains at least one eventf that is not inG; oth-
erwiseG0 � G and therefore cannot be lexically bigger.
Choosef 2 G0 �G from the highest priority process pos-
sible.

Let e be the event in the smallest priority process
enabled inG, i.e., e is on processPk. Let pro(e) andpro(f) denote the process indices ofe andf . We now do
a case analysis.

Case 1:pro(f) < k
In this case,e is from a lower priority process thanf . We
show that this case implies thatH is lexically smaller thanG0. We first claim thatH � G [feg. This is becauseG [feg is a CGS containingK andH is the smallest
CGS containingK. Now, sinceH � G [feg andG0
contains an eventf 2 G0 � G from a higher priority
process thane, it follows thatH is lexically smaller thanG0, a contradiction.

Case 2:pro(f) > k
Recall that evente is on the process with the smallest
priority that had any event enabled atG. Therefore,
existence off in CGS G0 implies existence of at least
another event inG0 � G at a process with higher priority
than e. This contradicts choice of eventf because, by
definition,f is from the highest prioriy process inG0 �G.

Case 3:pro(f) = k.
Then,K � G0 because bothG0 andK have identical
events on process with priorityk or higher andK has no
events in lower priority processes. SinceG0 is a CGS andK � G0, we get thatH � G0 by definition ofH . From
Lemma 1, it follows thatH �l G0. But G0 is the next
lecical state afterG. Therefore,H = G0.

The only task left in the design of the algorithm is
to determinek and implementleastConsistent function.
The following lemma follows from properties of vector
clocks[9, 10]. First, we determine that an evente in en-
abled in a CGSG if all the components of the vector clock
for other processes ine are less than or equal to the com-
ponents of the vector clock inG. Secondly, to computeleastConsistent(K) it is sufficient to take the component-
wise maximum of the vector clock of all maximal events inK. Formally,

Lemma 3

1. An evente onPk is enabled in a CGSG iff e:v[k℄ =G[k℄ + 1 and8j : j 6= k : e:v[j℄ � G[j℄

2. LetH = leastConsistent(K). Then,8j : H [j℄ = maxfK[i℄:v[j℄ j 1 � i � ng
Incorporating these observations, we get the algo-

rithm in Figure 2. The outerwhile loop at line (1) iterates
till all consistent global states are visited. If the current
CGSG satisfies the given predicateB, then we are done
andG is returned as the lexicographically minimum CGS.
Lines (4)-(22) generatenextLex(G). Lines (4)-(14) de-
termine the lowest priority processk which has an event
enabled inG. The for loop on line (4) is exited when
an enabled event is found at line (12). We are guaran-
teed to get an enabled event becauseG is not the final
CGS. Lines (8)-(12) check if the next event onPk is en-
abled. This is done using the vector clock. An evente
in enabled in a CGSG iff all the events thate depend on
have been executed inG; or equivalently, all the compo-
nents of the vector clock for other processes ine are less
than or equal to the components of the vector clock inG. This test is performed in lines (8)-(11). Lines (15) to
(17) computesu(G; k). Finally, lines (18)-(22) computeleastConsistent(su(G; k)).

Let us now analyze the time and space complexity of
the above algorithm. Thewhile loop iterates once per CGS
of the computation. Each iteration takesO(n2) time due to
nestedfor. Thus the total time taken isO(n2M). The algo-
rithm uses variablesG;K;H andm which requiresO(n)
space. We also assume that the events are represented using
their vector clocks.

4 Algorithms for BFS generation of Ideals

For many applications we may be interested in generat-
ing consistent global states in the BFS order, for example,
when we want to generate elements in a single level of the
CGS lattice. The lex algorithm is not useful for that pur-
pose.

Cooper and Marzullo [2] have given an algorithm to
detectpossibly : B based on the level set enumeration.
They keep two lists of consistent global states:last and
current. To generate the next level of consistent global
states, they setlast to urrent andurrent to the set of
global states that can be reached fromlast in one transi-
tion. Since a CGS can be reached from multiple global
states, an implementation of their algorithm will result in
eitherurrent holding multiple copies of a CGS or added
complexity in the algorithm to ensure that a CGS is inserted
in urrent only when it is not present. This problem oc-
curs because their algorithm does not exploit the fact that
the set of global states form a distributive lattice.

We now show an extension of their algorithm which
ensures that a CGS is enumerated exactly once and that
there is no overhead of checking that the CGS has already
been enumerated (or inserted in the list). Our extension
exploits the following observation.

lexTraverse(P;B)

Input: a distributed computation P , a predicate B
Output: the smallest CGS in lex order that satisfies B,null if none exists;
var
// current CGSG:array[1 . . .n] of int initially 8i : G[i℄ = 0;
// K = su(G; k)K:array[1 . . .n] of int;
// H = leastConsistent(K)H :array[1 . . .n] of int;
// m[i℄ equals the number of events at Pim:array[1 . . .n] of int;

(1) while (G � m) do
(2) if (B(G)) then return G;
(3) if (G = m) then return null;
(4) for k := n down to 1 do

// if next event on Pk exists
(5) if (G[k℄ 6= m[k℄) then
(6) e := next event on Pk after G[k℄
(7) boolean enabled := true;
(8) for j := 1 to n, j 6= k do
(9) if e:v[j℄ > G[j℄ then
(10) enabled := false;
(11) end// for;
(12) if (enabled) break; //goto line (15);
(13) end// if next event exists;
(14) end// for;

// compute K := su(G; k)
(15) K := G; //
(16) K[k℄ := K[k℄ + 1; // advance on Pi
(17) for j := k + 1 to n do K[j℄ := 0;

// compute H := leastConsistent(K);
(18) H := K; // initialize H to K
(19) for i := 1 to n do
(20) for j := 1 to n do
(21) H [j℄ := max(H [j℄;K[i℄:v[j℄);
(22) G := H ;
(23) end// while;

Figure 2. An Algorithm for Traversal in Lex Order

Lemma 4 If H is reachable fromG by executing an evente and there exists an eventf 2 G such thatf is maximal
in G and concurrent withe, then there exists a CGSG0 at
the same level asG such thatG0 = G� ffg+ feg andH
is reachable fromG0.
Proof: SinceG is consistent andf is a maximal event inG, it follows thatG�ffg is a CGS. Ife is enabled atG andf is concurrent withe, thene is also enabled atG � ffg.
Therefore,G0 = G� ffg+ feg is a CGS.H is reachable
fromG0 on executingf .

Thus, to avoid enumeratingH from bothG andG0, it
is sufficient to have a total order on all events and explore
execution of an evente from a global stateG iff e is smaller
than all maximal events inG which are concurrent withe.ff j f 2 G; f jjeg [feg
Let � be a topological sort of all events which maps every
evente to�(e) a number from1::E. Now the rule to decide
which events to explore from a CGSG is simple. Lete be
any enabled event inG. We explore execution ofe onG iff8f 2 maximal(G) : f jje) �(e) < �(f)

With this observation, our algorithm shown in Figure
3 keeps a queueQ of the CGS. At every iteration, it re-
moves the head of the queueG, checks if the global pred-
icate is true onG. If it is, we are done. Otherwise, the al-
gorithm inserts those successors ofG that satisfy the above
rule.

varQ:set of CGS at the current level
initially f(0; 0; : : : ; 0)g;�:a topological sort of the poset P ;

while (Q 6= ;) doG := remove first(Q);
if B(G) then return G;
// generate CGS at the next level
for all events e enabled in G do

if (8f 2 maximal(G) : f jje) �(e) < �(f)) thenH := G [feg;append(Q;H);
end //for;

end //while;

Figure 3. An Extension of Cooper Marzullo Algorithm for
BFS enumeration of CGS

The main disadvantage of Cooper and Marzullo’s al-
gorithm even with proposed extension is that it requires

space at least as large as the number of consistent global
states in the largest level set. Note that the largest level set
is exponential inn and therefore when using this algorithm
for a large system we may run out of memory.

We now give two algorithms that use polynomial
space to list the global states in the BFS order. The first
algorithm is based in integer compositions and consistency
checks and the second algorithm is based on using the DFS
(or the lex) traversal multiple number of times to enumerate
consistent global states in the BFS order.

The first algorithm for BFS traversal uses consistency
check to avoid storing the consistent global states. The
main idea is to generate all the global states in a level rather
than storing them. Assume that we are interested in enu-
merating level setr. Any global state in level setr cor-
responds to the total number of events executed byn pro-
cesses to ber. A compositionof r inton parts corresponds
to a representation of the forma1 + a2 + : : : + an = r
where eachai is a natural number and the order of the sum-
mands is important. In our application, this corresponds to
a global state(a1; a2; :::; an) such that

Pai = r. There are
many algorithms that enumerate all the compositions of an
integerr into n parts (for example, the algorithm due to
Nijenhuis and Wilf[11] (pp. 40-46) runs through the com-
positions in lexicographic order reading from right to left).
For every composition, the corresponding global state can
be checked for consistency.

The second algorithm exploits the fact that the DFS
and the lex traversal can be done in polynomial space. We
perform the DFS traversal for each level numberl. Dur-
ing the DFS traversal we explore a global state only if its
level number is less than or equal tol and visit it (evalu-
ate the predicate or print it depending upon the application)
only if its level number is exactly equal tol. The algorithm
shown in Figure 4 generates one level at a time. In line
(2) it reduces the computation to include only those events
whose sum of vector clock values is less than or equal tolevelnum. All other events can never be in a global state at
level less than or equal tolevelnum. In line (3) it performs
space efficient lex traversal of the CGS lattice using the al-
gorithm in Figure 2. The computation used is the reduced
one and the global predicate that is evaluated is modified
to include a clause that the CGS should be at level equal tolevelnum. If no CGS is found, then we try the next level.
Since the total number of levels isO(E), we can enumerate
the consistent global states in the BFS order inO(En2M)
time andO(nE) space. Note that our algorithm enumer-
ates each level itself in the lex order.

5 Conclusions

We have presented an algorithm that does lex traversal of
the CGS lattice inO(n) additional space andO(n2M)
time. We have also shown that at the expense of more time,
BFS traversal can be accomplished in polynomial space.
The previous algorithm for BFS traversal uses exponential
space.

var G:array[1 . . .n] of integer;

(1) for levelnum := 0 to E do
(2) Q := fe 2 P j Pi e:v[i℄ � levelnumg
(3) G := lexTraverse(Q;B ^ (lvl = levelnum));
(4) if (G 6= null) then
(5) return G;
(6) endfor;

(7) return null;
Figure 4. A Space Efficient algorithm for BFS Enumera-
tion

We note here that there are other approaches in the
mathematics and operations research literature for enumer-
ation of ideals of a poset. See, for example, papers by
Steiner[12], Bordat[13], Squire[14], Jegou, Medina, and
Nourine [15], and Habib, Medina, Nourine and Steiner[16].
The algorithm in [16] is the most efficient known for gener-
ating all ideals inO(nE) space. None of these algorithms
enumerate consistent global states (or ideals) in the lex or
the BFS order.

The most interesting question left open is: Is there any
traversal algorithm for the CGS lattice inO(M) time and
polynomial space?

Acknowledgments

I am thankful to James Roller Jr., Alper Sen and Stephan
Lips for discussions on the topic.

References

[1] V. K. Garg and B. Waldecker. Detection of unstable
predicates. InProc. of the Workshop on Parallel and
Distributed Debugging, Santa Cruz, CA, May 1991.
ACM/ONR.

[2] R. Cooper and K. Marzullo. Consistent detection of
global predicates. InProc. of the Workshop on Paral-
lel and Distributed Debugging, pages 163–173, Santa
Cruz, CA, May 1991. ACM/ONR.

[3] K. M. Chandy and L. Lamport. Distributed snap-
shots: Determining global states of distributed sys-
tems. ACM Transactions on Computer Systems,
3(1):63–75, February 1985.

[4] N. Mittal and V. K. Garg. On detecting global pred-
icates in distributed computations. In21st Interna-
tional Conference on Distributed Computing Systems

(ICDCS’ 01), pages 3–10, Washington - Brussels -
Tokyo, April 2001. IEEE.

[5] S. Alagar and S. Venkatesan. Techniques to tackle
state explosion in global predicate detection.IEEE
Transactions on Software Engineering, 27(8):704 –
714, August 2001.

[6] V. K. Garg. Algorithmic combinatorics based on slic-
ing posets. InProc. of 22th Conference on the Foun-
dations of Software Technology & Theoretical Com-
puter Science, pages 169 – 182. Springer Verlag, De-
cember 2002. Lecture Notes in Computer Science.

[7] D. Stanton and D. White. Constructive Combina-
torics. Springer-Verlag, 1986.

[8] L. Lamport. Time, clocks, and the ordering of events
in a distributed system.Communications of the ACM,
21(7):558–565, July 1978.

[9] C. J. Fidge. Partial orders for parallel debugging.Pro-
ceedings of the ACM SIGPLAN/SIGOPS Workshop
on Parallel and Distributed Debugging, published
in ACM SIGPLAN Notices, 24(1):183–194, January
1989.

[10] F. Mattern. Virtual time and global states of dis-
tributed systems. InParallel and Distributed Algo-
rithms: Proc. of the International Workshop on Paral-
lel and Distributed Algorithms, pages 215–226. Else-
vier Science Publishers B.V. (North-Holland), 1989.

[11] A. Nijenhuis and H. S. Wilf. Combinatorial Algo-
rithms for Computers and Calculators. Academic
Press, London, 2 edition, 1978.

[12] G. Steiner. An algorithm to generate the ideals of a
partial order. Operations Research Letters, 5(6):317
– 320, 1986.

[13] J.P. Bordat. Calcul des ideaux d’un ordonne fini.Op-
eration Research, 25(4):265 – 275, 1991.

[14] M. Squire. Gray Codes and Efficient Generation of
Combinatorial Structures. PhD Dissertation, Depart-
ment of Computer Science, North Carolina State Uni-
versity, 1995.

[15] Roland Jégou, Raoul Medina, and Lhouari Nourine.
Linear space algorithm for on-line detection of global
predicates. In Jörg Desel, editor,Proceedings of the
International Workshop on Structures in Concurrency
Theory (STRICT), Workshops in Computing, pages
175–189. Springer-Verlag, 1995.

[16] M. Habib, R. Medina, L. Nourine, and G. Steiner. Ef-
ficient algorithms on distributive lattices.DAMATH:
Discrete Applied Mathematics and Combinatorial
Operations Research and Computer Science, 110:169
– 187, 2001.

