
AutoSynch:
An Automatic-Signal Monitor Based on Predicate Tagging
Wei-Lun Hung and Vijay K. Garg
wlhung@utexas.edu, garg@ece.utexas.edu

Why Implicit Signaling?
• Performance improvement: No signalAll calls. Only one thread woken up.

• Less work for programmers: No need to worry who to signal.

• Less Debugging: No lost wake-up problem.

• Separation of Concerns: Executing thread need not worry about threads that are waiting.

Parameterized Bounded Buffer
Explicit Signaling (Java)
1 class BoundedBuffer {
2 Object [] buff;
3 int putPtr , takePtr , count;
4 Lock mutex = new ReentrantLock ();
5 Condition noSpace = mutex.newCondition ();
6 Condition noItems = mutex.newCondition ();
7 public BoundedBuffer(int n) {
8 buff = new Object[n];
9 putPtr = takePtr = count = 0;
10 }
11 public Object [] take(int num) {
12 mutex.lock ();
13 while (count < num) {
14 noItems.await ();
15 }
16 Object [] ret = new Object[num];
17 for (int i = 0; i < num; i++) {
18 ret[i] = buff[takePtr ++];
19 takePtr %= buff.length;
20 }
21 count -= num;
22 noSpace.signalAll ();
23 mutex.unlock ();
24 return ret;
25 }
26 }

Implicit Signaling (AutoSynch)
1 AutoSynch class BoundedBuffer {
2 Object [] buff;
3 int putPtr , takePtr , count;
4 public BoundedBuffer(int n) {
5 buff = new Object[n];
6 putPtr = takePtr = count = 0;
7 }
8 public Object [] take(int num) {
9 waituntil(count >= num);
10 Object [] ret = new Object[num];
11 for (int i = 0; i < num; i++) {
12 ret[i] = buff[takePtr ++];
13 takePtr %= buff.length;
14 }
15 count -= num;
16 return ret;
17 }
18 }

takePtr

putPtr

count = 4

items[8]

AutoSynch Framework

AutoSynch

Java Library

AutoSynch

Preprocessor

AutoSynch

Code
Java Code Standard Java

Compiler

Java

Bytecode

Preprocessor translates AutoSych code into tra-
ditional Java code.

AutoSynch library implements with our
automatic-signal mechanism

Design Principle
Reduce the number of context switches and pred-
icate evaluations.

Context switch: A signalAll call introduces un-
necessary context switches. The signalAll
calls are unavoidable in explicit signaling
when programmers do not know which
thread should be signaled. In AutoSynch,
signalAll calls are never used.

Predicate evaluation: Since signaling a thread
is the responsibility of the system, the num-
ber of predicate evaluations is crucial for ef-
ficiency in deciding which thread should be
signaled.

Closure
Purpose: Enable the predicate of a waituntil

statement to be evaluated in any thread.

Mechanism: Substitute all the local variables in
the predicate with their values immediately
before invoking the statement

Example: A consumer wants to take 48 items at
some instant of time in the parameterized
example. Applying the closure to the com-
plex predicate (count ≥ num) in line 9, we
derive the shared predicate (count ≥ 48),
which can be evaluated in any other thread.

Relay Signaling Rule
Purpose: Avoid signalAll calls.

Mechanism: When a thread exits a monitor, it
checks whether there is some thread waiting
on a condition that has become true. If at
least one such waiting thread exists, it sig-
nals that thread.

Example: Two consumers, C1 and C2 are wait-
ing to take 24 and 32 items respectively.
When the producer owing the monitor want
leave, it evaluates predicates for the two con-
sumers. Suppose the count = 48 at the mo-
ment. Instead of signaling all consumers,
the producer only signals C1.

Predicate Tagging
Purpose: Reduce the number of predicate evaluations.

Mechanism: Tags are assigned to every waiting predicate according to its semantics. The hashtable
is used to store Equivalence tags; while the heap is used to store Threshold tags. Through
the hashtable and heap, we identify and evaluate predicates that are most likely to be true after
examining the current state of the monitor.

Example:

Max-heap of the Threshold Tag
with the shared expression x

(5, ≥)

(5, >) (8, ≥)

(3, ≤)

(3, <) (2, ≤)

3 6 7

x > 5 x < 3 x ≤ 3 (x ≠ 1) ∧ (x ≤ 2)x ≥ 5 (x ≥ 8)∨(x = 3) x = 6 x ≤ 2x = 7 x ≠ 9 x ≠ 5 (x ≠ 9) ∧ (x ≥ 2) assertion.isTrue()x ≠ 1

●● ● ● ●● ● ●● ● ● ● ●●

None

Min-heap of the Threshold Tag
with the shared expression x

Hashtable for the Equivalence
Tag with the share expression x

Evaluations
• Almost as efficient as explicit signaling in the problems with only shared predicates.

• Around 2.6 times slower than the explicit in the worst case of our experiments.

• Around 26.9 times faster than the explicit-signal in the parameterized bounded-buffer problem
that relies on signalAll calls.

0

7.5

15

22.5

30

2 4 8 16 32 64 128 256

ru
n
ti
m

e
(s

ec
o
n
d
s)

consumers/producers

Explicit AutoSynch
AutoSynch-T Baseline

(A) Bounded-Buffer

0

7.5

15

22.5

30

2 4 8 16 32 64 128 256

ru
n
ti
m

e
(s

ec
o
n
d
s)

threads

Explicit AutoSynch AutoSynch-T

(B) Round-Robin Access

0

3.75

7.5

11.25

15

2 4 8 16 32 64 128 256

ru
n
ti
m

e
(s

ec
o
n
d
s)

consumers

Explicit AutoSynch

0

750

1500

2250

3000

2 4 8 16 32 64 128 256

#
 c

o
n
te

x
t

sw
ic

h
es

 (
×

 1
0
0
0
)

consumers

Explicit AutoSynch

run time context switches

(C) Parameterized Bounded-Buffer

