Debugging Distributed Programs Using Controlled
Re-execution

Neeraj Mittal
Department of Computer Sciences
The University of Texas at Austin
Austin, TX 78712-1188, USA
neerajm@cs.utexas.edu

ABSTRACT

Distributed programs are hard to write. A distributed de-
bugger equipped with the mechanism to re-ezecute the traced
computation in a controlled fashion can greatly facilitate
the detection and localization of bugs. This approach gives
rise to a general problem, called predicate control problem,
which takes a computation and a safety property specified on
the computation, and outputs a controlled computation that
maintains the property.

We define a class of global predicates, called region predi-
cates, that can be controlled efficiently in a distributed com-
putation. We prove that the synchronization generated by
our algorithm is optimal. Further, we introduce the notion
of an admissible sequence of events and prove that it is equiv-
alent to the notion of predicate control. We then give an ef-
ficient algorithm for the class of disjunctive predicates based
on the notion of an admissible sequence.

1. INTRODUCTION

With the growth of internet, distributed systems are becom-
ing more prevalent. However, correct distributed programs
are difficult to write; they often contain bugs - mismatch
between expected and actual computations. Debugging is
a process of tracking down the source of such bugs. While
the skill and intuition of the programmer play an important
role in debugging, effective tools that provide an environ-
ment for observing and replaying computations are indis-
pensable. Such tools, called debuggers, can greatly facilitate
the detection and removal of the bugs.

Debuggers have been widely used for developing traditional
sequential programs. However, distributed programs give
rise to non-trivial issues which make traditional debuggers

*supported in part by the NSF Grants ECS-9907213, CCR-
9520540, TRW faculty assistantship award, a General Mo-
tors Fellowship, and an IBM grant.

Vijay K. Garg*

Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA
garg@ece.utexas.edu

inadequate for the task. Firstly, unlike in sequential systems
where the bug is based on an observable local state, a bug in
a distributed system is often based on a global state that is
not easy to observe. Secondly, even after we have detected
a bug we may not be able to reproduce it due to inherent
non-determinism in a distributed program, brought about
by varying processor and channel speeds. Thus unobserv-
ability of global states and irreproducibility of distributed
computations are the issues that need to be addressed while
building a distributed debugging system. This has led to
research in the detection of bugs [1, 2, 3, 4, 11, 14, 15] and
the replay of distributed computations [7, 9, 13].

The correctness of a distributed program is often specified as
a combination of safety and liveness properties that should
hold throughout a computation. On detecting violation of a
safety property, a programmer can gain considerable insight
into the bug, that caused the violation, by learning whether
all possible runs or executions” of the computation are un-
safe. In that case, the bug cannot be fixed by adding or
removing synchronization alone. On the other hand, if it is
possible to eliminate unsafe executions by adding synchro-
nization to the computation then too little synchronization
is likely to be the problem. Further, the knowledge of the
exact synchronization needed to maintain a safety property
can help locate the bug in the program. The presence of
such a mechanism in a debugger can greatly improve its ef-
fectiveness. The problem of controlling a computation based
on the specification of safety properties on global states, re-
ferred to as the predicate control problem, is the focus of
this paper. Informally, given a distributed computation and
a global predicate, if it is possible to maintain the predi-
cate, without violating liveness, by adding synchronization
to the computation then the global predicate is controllable
in the distributed computation. The synchronization in-
volves adding an arrow from one process execution to an-
other which ensures that the execution after the head of the
arrow can proceed only after the execution before the tail
has completed. For example, consider the computation in
Figure 1(a). The safety property is “the clocks of no two
processes drift apart more than 1 unit”. The consistent cut
C of the computation does not satisfy the safety property as
clocko = 0 and clock: = 2 implying |clocko —clocki| = 2 > 1.
However, by adding a synchronization arrow from eq to fi,
thereby, forcing eo to occur before fi eliminates the consis-

*each distributed computation corresponds to multiple pos-
sible executions of events.

(b)

—_— underlying message
s> synchronization arrow

Figure 1: a computation (a) and a controlled com-
putation (b).

tent cuts such as C' that violate the given safety property.

Additionally, predicate control can be used to actively debug
a distributed program [16]. Debugging typically involves
multiple iterations of observing a distributed computation
and then replaying the traced computation. Active debug-
ging allows the traced computation to be replayed in a con-
trolled fashion. This ability to do a controlled replay, if used
judiciously, may accelerate the discovery and localization of
bugs. A programmer first detects a bug while observing a
certain computation. He then tries to replay the computa-
tion with added control, to determine if it would be sufficient
to eliminate the bug. This control is in the form of added
causal dependencies to the existing trace of the computa-
tion and is specified as a safety constraint. For example, the
programmer may suspect that the bug is due to an event oc-
curring before another event and specify the required syn-
chronization as a safety property. The programmer may
repeat the control mechanism to localize the bug further.
He may also determine dependencies between the bugs so
that eliminating one bug would eliminate the other. Thus a
distributed debugger equipped with predicate control mech-
anism can prove to be a valuable tool for a programmer.

Further, predicate control has applications in the area of
software fault-tolerance [17]. It has been observed that many
software failures, especially those caused by synchronization
faults, are transient in nature and may not recur when the
program is re-executed with the same inputs. A common
approach to achieving software fault-tolerance is based on
simply rolling back the processes to a previous state and
then restarting them in the hope that the transient failure
will not recur in the new execution [6, 18]. Methods based
on this approach rely on chance to recover from a transient
software failure. However, it is possible to do better in the
special case of synchronization faults. Instead of leaving

the recovery to chance, controlled re-execution of the traced
computation can be used to ensure that the transient syn-
chronization failure does not occur.

The research in distributed debugging has focussed on
mainly two problems: detecting bugs in a distributed com-
putation and replaying the traced computation. In contrast,
our approach focuses on adding a control mechanism to a
debugger to allow computations to be run under added syn-
chronization to satisfy safety constraints. The predicate con-
trol problem was formally introduced by Tarafdar and Garg.
They proved that it is NP-complete in general. However,
they solved the problem efficiently for the class of disjunc-
tive predicates and mutual exclusion [16, 17]. Besides their
work, there is another study [10] that focuses on controlling
global predicates within the class of conditional elementary
restrictions. Unlike our model of a distributed system, the
model in [10] uses an off-line specification of pair-wise mu-
tually exclusive states and does not use causality. Our con-
tributions in this paper are following.

o We identify a class of global predicates, called region
predicates, that can be controlled efficiently. The class
of region predicates is fairly rich and, in some sense, a
generalization of the class of stable predicates. Many
stable predicates, such as termination and deadlock,
belong to this class. From the point of view of pred-
icate control, it contains channel predicates such as
“there are at most k& messages in any channel at any
time”, and fairness predicates such as “the difference
between the number of times two processes are granted
a resource is bounded”. We give an efficient algorithm
to maintain a region predicate in a computation.

e We prove that the synchronization produced by our al-
gorithm for controlling a region predicate is optimal in
the sense that it eliminates all unsafe executions and
no safe execution is suppressed, thereby guaranteeing
maximum concurrency possible in the controlled com-
putation.

e We introduce the notion of an admissible sequence of
events and prove that existence of such a sequence is
a necessary and sufficient condition for a predicate to
be controllable in a computation. Informally, given a
predicate and a computation, an admissible sequence!
attempts to capture a set of properties satisfied by
some non-empty subset of the safe executions of a com-
putation.

e Further, using the notion of an admissible sequence,
we transform the problem of controlling a disjunc-
tive predicate in a computation to finding a path in
a graph. Our algorithm has O(n?p) time complexity
and O(np) message complexity, where n is the number
of processes and p is the maximum number of true-
intervals on any process. The complexities are compa-
rable to those in [16]. We also present an algorithm
that gives minimum synchronization. Our approach
is more general and can be extended to find a control
strategy for other classes of predicates.

tthe sequence may not include all the events in a computa-
tion

Figure 2: consistent cuts and frontiers.

The organization of the paper is as follows. We present our
model of a distributed system and define the problem for-
mally in Section 2. In Section 3, we define region predicates
and give an efficient algorithm for their control. We also
prove that the synchronization generated by our algorithm
is optimal. We define the notion of an admissible sequence
of events and prove its equivalence to the notion of predicate
control in Section 4. In Section 5, we derive an efficient al-
gorithm for the class of disjunctive predicates based on the
notion of an admissible sequence.

2. MODEL AND PROBLEM SPECIFICA-
TION
2.1 Model of a Distributed System

A distributed system consists of a set of processes P =
{po,p1,... ,pn—1}. Each process executes a predefined pro-
gram. Processes do not share any clock or memory; they
communicate and synchronize with each other by sending
messages over a set of channels. We assume that the mes-
sages are not lost, altered or spuriously introduced into a
channel. We do not assume that the channels are FIFO.

The ezecution of each process in the distributed system is
modeled as a sequence of distinct events transforming the
initial state of the process to a final state. We use lowercase
letters e and f to represent events, and greek letters a and
B to represent sequences of events. The process on which
an event e occurs is represented by e.proc. We use e.pred
and e.succ to denote the previous and the next event of e,
respectively, on e.proc, if they exist. We use the convention
that if e.succ does not exist then e.succ ¢ C evaluates to
true for any set C' of events. For convenience, we assume
that for each process p; there is a special event, called an
initial event and denoted by —;, that occurs before any other
event on that process. Intuitively, —; initializes the state of
pi. Let <p denote the order of events on the processes.

The computation of a distributed system is modeled as an
irreflexive partial order on a set of events. We use E~ to
denote a distributed computation with a set of events E
and a partial order <, read as “precedes”. We also use
symbols <, read as “before”, and [, read as “under” to
represent irreflexive partial orders on sets of events. Let
E.— = {—j|i € [1..n]} be the set of initial events. We assume
that E includes E.— and < includes <p. Further, events in
E.— occur before any event in E'\ E.—, i.e., for each p; € P
and e € E\ E.—, (—i,e) €<, where “\” denotes the set
difference operation. For a relation <, e < f is equivalent
to (e = f) V(e < f). We use E.T to denote the set of

final events on the processes. We use the terms “distributed
computation” and “computation” interchangeably.

Figure 2 illustrates the various concepts introduced so
far. The distributed system shown in Figure 2 consists
of processes po and pi. In the figure, a circle represents
a local state of a process and a bar denotes an event on
a process. The events e; and fo are send and receive
events, respectively, of the message m. The set of events
E:{*0,60,61,62,*1,f0,f1,f2}. The executions of Po
and p; are given by sequences —oepeiea and —ifof1fo,
respectively. The events e and e2 are the predecessor and
the successor, respectively, of the event e1, i.e., e1.pred = eg
and ej.succ = e2. The order of events on processes
<p = {(—o0,€0), (e0,€1), (e1,€2), (—1, fo), (fo, fr), (f1, f2)} "
Here, RT denotes the irreflexive transitive closure of a
relation R. The partial order on the set of events E
is the happened-before relation defined by Lamport [8],
and is given by <= (<p U{(—0, fo),(~1,e0), (e1, f2)})*.
Further, E.T = {ea, f2}.

2.2 Consistent Cuts, Frontiers and Legal Cuts
A cut of a computation F~ is a set of events C, where
E.— C C C E, such that for each event e in C, e.pred is
also in C (if it exists). Formally,

def

cut(C,EL) = (E—CQC)

ANVe:egE.—:ecC = epred e C)

A frontier of a cut C is the set of those events in C' whose
successors are not in C. Formally,

C.frontier def {e|ee C and e.succ ¢ C}

Observe that if an event in C is also in E.T then it is triv-
ially in C.frontier. A cut C passes through an event e iff e
is contained in C.frontier. A cut C is consistent iff for each
event e in C, all its preceding events are also in C'. Formally,
consistent(C, E<) ef
cut(C,E<) A (Ye,f5i(e < f)A(fEC) = e€C)

Intuitively, a consistent cut captures the partial computa-
tion of a distributed system and its frontier captures the
state of a distributed system.

In Figure 2, X = {_03605_1}3 Y = {_anoaela_lafoafl}
and Z = {—o,€0,—1, fo, f1, f2} are cuts of the computa-
tion. Here, X and Y are consistent cuts. However, Z is
not consistent because e; < fo and fo € Z but e1 ¢ Z.
Further, X.frontier = {eo, —1}, Y.frontier = {e1, f1} and
Z.frontier = {eo, f2}. Finally, X passes through events eqg
and —1.

We now define a legal cut that helps us to capture those
executions of the computation that respect the order of the
events in a given sequence. Informally, if an execution (of
a computation) and a sequence of events do not differ on
the relative order of any two events then every consistent
cut of the execution is legal with respect to the sequence.
Formally,

DEFINITION 1. (legal cut) A consistent cut C' of a
computation E. is legal with respect to a sequence of
distinct events a iff for each event o; in «a, if o; is in C
then all its preceding events in o are also in C. Formally,

legal(C,E<,) ef consistent(C, E<)
ANV k:E<j:a; €C = a,€C)

In Figure 2, Y is legal with respect to sequences eg f1 fo and
epeiea but not with respect to the sequence epes f1. We use
the concept of legality to define the notion of an admissible
sequence later.

2.3 Global Predicates

Let X; be the set of variables associated with process p; and
let X = |J,Xi. A global predicate ¢ is a boolean-valued
function of the variables in X. We use ¢.C' to denote the
value of the global predicate ¢ for the cut C. If ¢.C' = true
then C satisfies ¢ or ¢ is true for C. A global predicate ¢
is a local predicate of process p; iff it only depends on the
variables in X;. We use the terms “global predicate” and
“predicate” interchangeably.

2.4 Problem Specification

Informally, given a distributed computation and a global
predicate, if it is possible to maintain the predicate, without
violating liveness, by adding synchronization to the compu-
tation then the global predicate is controllable in the com-
putation. The predicate is often the safety property of a
distributed system. For example, “there are at most k£ mes-
sages in any channel at any time”, “no two processes are
in the critical section at the same time”, or “at least one
server is available at any time”. The synchronization in-
volves adding an arrow from one process execution to an-
other which ensures that the execution after the head of the
arrow can proceed only after the execution before the tail
has completed. It can be realized using control messages.
The implementation details can be found in [16]. Formally,

DEFINITION 2. (controllable computation) A pred:-
cate ¢ is controllable in a computation E~ iff there exists an
irreflexive partial order C on E that extends < (i.e., <CL)
such that every consistent cut of E- satisfies ¢.

Each computation of a distributed system corresponds to
multiple ways in which the events can be interleaved to form
an execution. An execution is safe iff it maintains the given
predicate; otherwise it is unsafe. The following properties
about controllability of a predicate can be easily verified.

e (¢ =) A (¢ is controllable in E)
controllable in FE~.

= @ is

o (¢ is controllable in E-) A (<CLC) = ¢ is controllable
in E<

The predicate control problem is NP-complete in general.
However, it can be solved efficiently for certain classes of
predicates including mutual exclusion and disjunctive pred-
icates. In the next section, we introduce another class of

predicates namely region predicates for which the problem
can be solved in polynomial time.

3. REGION PREDICATES

The definition of a region predicate is based on p-region
predicate, where p is a process. Intuitively, a p-region pred-
icate states that, for each event e on p, there exists a mini-
mum and a maximum consistent cut passing through e such
that every consistent cut that lies between the two cuts sat-
isfies the predicate. For example, consider the computation
in Figure 3 and the fairness predicate “the difference be-
tween the number of times p; and p, are granted a resource
is at most 17, i.e., |alloci — allocz] < 1. Consider an event
e on p1 as shown in Figure 3. Immediately after execution
of e, allocy = 2. For the fairness predicate to hold for a
consistent cut passing through e, 1 < alloca < 3 should
be true. Note that allocs is monotonically non-decreasing.
Thus there exists an earliest event on pa, say fmin, such that
alloca > 1. Likewise, there exists a latest event on ps, say
fmaz, such that alloca < 3. The fairness predicate holds for
all consistent cuts that pass through e and an event on p2
that lies between fmin and fmas (both inclusive). For any
other consistent cut that passes through e, either alloca < 1
or alloca > 3, and therefore the predicate is false. Observe
that the set of consistent cuts of a computation that pass
through a set of events forms a lattice. Therefore there ex-
ists a minimum consistent cut Cy,in.e passing through e and
fmin that satisfies ¢. Similarly, there exists a maximum con-
sistent cut Cnaz.€ passing through e and finq, for which ¢ is
true. Further, every consistent cut that lies between the two
cuts satisfies the predicate. Note that the set of consistent
cuts passing through e that satisfy the fairness predicate re-
sembles the cross-section of an hourglass. Other examples
of pi-region predicate are,

e any local predicate on p;.

e at most k;; messages in the channel from p; to p;:
send;,j — recetve; ; < ki j.

e the drift between the clocks of p; and p; is bounded:
|clock; — clockj| < ;5.

e z; < min{y;,yx}, where z;, y; and yz are variables of
pi, p;j and pj respectively. Moreover, y; and y; are
monotonically non-decreasing.

DEFINITION 3. (p-region predicate) A predicate ¢ is
a p-region predicate iff it satisfies the following properties.
For every event e on process p,

e (weak lattice) ¢.CA@p.C' = ¢.(CNC')Ag.(CUC"),
where C and C' are consistent cuts that pass through
e, and

e (weak inclusion) ¢.C' A p.C" A (C' CC CC") =
¢.C, where C, C' and C" are consistent cuts that pass
through e.

The weak lattice property says that the set of consistent
cuts passing through an event e that satisfy ¢ form a lattice,

Figure 3: an illustration of a region predicate and the required synchronization.

thereby ensuring that there is a minimum and a maximum
consistent cut passing through e for which ¢ is true. The
weak inclusion property captures the fact the predicate holds
for every consistent cut that lies between the minimum and
the maximum consistent cuts. It can be easily proved that
the class of p-region predicates, for a process p, is closed
under conjunction

We now define a region predicate. A predicate is a region
predicate iff it can be expressed as a conjunction of p-region
predicates (possibly different p’s), i.e., it can be written
as wog Awi A -+ Awm—1, where each w; is a p-region predi-
cate for some process p. Since true is a p-region predicate
for any process p, any region predicate can be written as
wo Awi A -+ A wyp—1, where each w; is a p;-region predicate.
Consider an event e on process p;. We denote the minimum
and maximum consistent cuts that pass through e and sat-
isfy wi by Cpmin.e and Craz.€, respectively. Note that if no
consistent cut that passes through e satisfies ¢ then ¢ is not
controllable. Therefore we assume that there is at least one
consistent cut that passes through e and satisfies ¢.

To control w; in a computation F-, we need to ensure
that the frontier of any consistent cut (of the controlled
computation) always lies between Cpmin.€ and Crmas.€, for
some event e on p;. In other words, whenever the compu-
tation reaches an event e on p; all events in Cpin.e \ {e}
have already been executed, and the computation does
not advance beyond Cpmaq.€ \ {e} before leaving e. To
that effect, we add synchronization arrows from events in
(Cnin.€).frontier (excluding e) to e, and from e.succ to
successor of events in (Cy,qz.€).frontier (again, excluding
e). Formally, synchronization for each event e on p;,
denoted by <.e, is defined as follows.
(D 3.1) <e &
{(f,e)| f € (Cmin.€).frontier \ {e} and e ¢ E.—}
U { (e.succ, f.succ) |e ¢ E.T, f ¢ E.T and
f € (Cmas-€).frontier \ {e} }

Figure 3 illustrates the synchronization for an event e. The
synchronization needed to control ¢ in E~, denoted by <, is
defined as |J <.e. We now prove that < is both necessary
ecE
and sufficient synchronization to control ¢ in E~. Note that
for ¢ to be controllable in E<, it must evaluate to true for
the initial consistent cut £.— and the final consistent cut E.
In the next lemma, we establish that the synchronization

given by < is sufficient by proving that < eliminates all
unsafe executions of the computation.

LEMMA 1. (< is sufficient) Let < be the synchroniza-
tion as defined (in D 3.1) for a region predicate ¢ and a
computation E-. If E.— and E satisfy ¢, and < U < is
acyclic then every consistent cut of Er, where C is any ir-
reflexive partial order that extends < U<, satisfies ¢.

PRrROOF. Consider a consistent cut C of E- and an event
e on some process p; that is contained in the frontier of C.
We claim that Chin.e C C C Chaz-€.

We first show that C.in.e C C. There are two cases: e €
E.—ore g E—. If e € E.— then Cnin.e = E.—. By
definition of a consistent cut, C' O E.— which implies C' D
Chnin-€. Therefore assume e ¢ E.—. Let f,in, be an event in
the frontier of Cy,in.e that occur on some process p;, where
pj # pi. By definition of <.e, (fmin,e) € <.e implying
(fmin,€) € <. Since <1 CC, fmin C e. Further, since C is a
consistent cut of F- and contains e, it also contains fiir-
Thus every event in the frontier of Cynin.€ is contained in C.
Equivalently, Crin.e C C. Likewise, C C Cpaz.€.

This proves our claim that Cpin.e € C C Cpaz.e. By def-
inition of Cyin.e and Ciag-€, wi.(Cryin-€) and w;.(Crigs-€)
hold. Using the weak inclusion property, w;.C holds. Since
pi was chosen arbitrarily, for each i, w;.C holds. Therefore
¢ is true for C. [

Lemma 2 proves that every controlled computation in which
the given region predicate always holds contains <, thereby
proving that the synchronization < is necessary.

LEMMA 2. (< is necessary) If a region predicate ¢ is
controllable in a computation EL then E.— and E satisfy
¢. Further, let < be the synchronization as defined (in D
3.1), and C be any irreflezive partial order that extends
< such that every consistent cut of Er satisfies ¢. Then
(U« CLC.

PROOF. Since E.— and E are consistent cuts of E-, they
satisfy ¢. We prove that < C C by showing that <.e C L,
for each event e in E. Consider an event e in E and let

e.proc = p;. Further, consider events f,in, and fia. in the
frontiers of Chpin.€ and Chay-€, respectively, that occur on
some process p;, where p; # p;. We show that if (fmin,€) €
<.e then fnin C e, and if (e.suce, fimas-succ) € <.e then
e.succ C fmaz.SUCC.

Assume (fmin,e) € <.e. By definition of <.e, e ¢ E.—.
There are two cases: fmin € E.— or frmin € E.—. If frmin €
E.— then fnin < e which implies fnin T e. Therefore as-
sume fmin € E.—. Further, assume, by the way of contradic-
tion, fmin [Z e. In that case, there exists a consistent cut of
Er, say C, that passes through e but does not contain frin.
Since w;.C' and w;.(Cpin.€) hold, w;.(C N Cpin.€) is true
(weak lattice property). However, C'NCyyin, € is strictly con-
tained in Crin.€ as fmin & (CNCmin.€) but frmin € Cmin.e€.
This contradicts the fact that C,.;,.e is the minimum con-
sistent cut that passes through e and satisfies w;. Similarly,
if (e.succ, fmaz-succ) € <.e then e.succ T fiaz-Succ.

Thus, for each e in E, <.e C[C implying << CC. Since both
< and < are contained in [, (xUC) CC. O

Theorem 3 combines Lemma 1 and Lemma 2, and gives
necessary and sufficient conditions for a region predicate to
be controllable.

THEOREM 3. Let < be the synchronization as defined (in
D 3.1) for a region predicate ¢ and a computation E<. Then
¢ is controllable in E iff (1) E.— and E satisfy ¢, and (2)
< U is acyclic.

Proor. (if) Let C= (< U <)™. Since < U < is acyclic,
C is an irreflexive partial order that extends < U <. Using
Lemma 1, every consistent cut of E- satisfies ¢. Thus ¢ is
controllable in E..

(only if) If ¢ is controllable in E< then there exists an
irreflexive partial order C that extends < such that every
consistent cut of Er- satisfies ¢. Using Lemma 2, < U < is
contained in C. Since [C is acyclic, < U< is acyclic. Also,
again using Lemma 2, E.— and FE satisfy ¢. [

We now prove the optimality of our synchronization. We
call a synchronization optimal iff it eliminates all unsafe ex-
ecutions but does not suppress any safe execution.

THEOREM 4. (< is optimal) Let < be the synchroniza-
tion as defined (in D 3.1) for a region predicate ¢ and a
computation E-. If ¢ is controllable in E4 then < is opti-
mal.

PROOF. Assume ¢ is controllable in E4 and let C= (<
U<)™. Using Lemma 2, C is an irreflexive partial order.
Further, using Lemma 1, every consistent cut of E- satisfies
¢. Thus C does not contain any unsafe execution of E.
It remains to be shown that every safe execution of E- is
an execution of E-. Every safe execution of EL can be
represented by a total order on the set of events E. Let <

be a safe execution of E.. By definition, < C < and every
consistent cut of E< satisfies ¢. Thus, using Lemma 2, <
contains < U<. This implies < extends [C or, in other words,
< is an execution of E-. [

Theorem 3 gives us an efficient way to compute the
synchronization needed to control a region predicate in a
computation provided we can efficiently compute Cin.€
and Cpnaz.e for each event e. We show that a region
predicate satisfies the linearity property which gives us an
efficient way to compute C),in.e and Cqz.€ for each event
e in E. Let e.proc = p; and C be a consistent cut of EL
that passes through e. The linearity property demands that
if w; evaluates to false for C' then there exists an event f in
C.frontier, different from e, such that f cannot be a part
of the frontier of any consistent cut of E< passing through
e that satisfies w;. Formally,

—w;.C = (Af : f € C.frontier \ {e} :
(AC" : C" is a consistent cut of E :
w;.C" and C' passes through e and f))

THEOREM 5. A region predicate satisfies the linearity
property.

PROOF. Let ¢ be a region predicate of a computation
E.. Consider a consistent cut C of E4. Let e be an
event in the frontier of C' and e.proc = p;. Assume w;
evaluates to false for C, and, on the contrary, for each
f € C.frontier \ {e} there exists a consistent cut of Ex,
say Cy, that passes through e and f, and satisfies w;. Con-
sider the cuts Ciuin and Ci... defined as the intersection
and the union, respectively, of all Cf’s. Observe that Cruin
and Cina. are consistent cuts of E< that pass through e, and
Cmin € C C Craz. Further, using the weak lattice prop-
erty, wi.(Cmin) and w;.(Cmaz) hold as w; is true for all Cy’s.
Thus, using the weak inclusion property, w;.C also holds, a
contradiction. [

Figure 4 gives an efficient algorithm to compute Cn,in.e for
an event e, given a region predicate ¢ and a computation
E.. The algorithm to compute Cp,qz.€ is similar and has
been omitted. It is easy to see that given a region predi-
cate ¢ and a computation F., the complexity of computing
Chmin.€ and Caz.€, for each event e, is O(\¢||E|2) assuming
the time complexity of invoking the linearity property every
time is O(|¢|). Figure 5 describes the algorithm to determine
whether a region predicate is controllable in a computation.
The algorithm has O(|¢|-|E|?) time complexity.

Remark: Note that the class of region predicates is in-
comparable to the class of linear and post-linear predicates
defined by Chase and Garg in [2]. Let Cy denote the set
of all consistent cuts for which ¢ is true. If ¢ is a linear
predicate, Cy is an inf-semilattice. Similarly, if ¢ is a post-
linear predicate, Cy is a sup-semilattice. However, if ¢ is
a region predicate, Cy may neither be an inf-semilattice or
a sup-semilattice. In particular, it is not necessary that
Cmin.€ C Cmin.(e.succ) or Cmaz.€ C Crmaz-(e.succ). For
example, Cy when ¢ is “c < y”, where y is a monotonically

given a computation E<, a p-region predicate ¢, and
an event e on process p:

Cinin = minimum consistent cut that passes through e;

while not done do
if there exists an event f in Cp,n . frontier
such that e.succ < f then
exit(“Cmin .e does not exist”);
endif;
if there exists events f and g, f # e, in C.frontier
such that f.succ < g then
Cmin ‘= Cmin U f.succ;
else
/* Cpmin is a consistent cut */
if ¢.C then exit(Cmin);
else
find the event f using linearity property;
Cinin = Cmin U f.succ;
endif;
endif;
endwhile;

Figure 4: an algorithm to compute C,i,.e for an
event e.

given a computation E< and a region predicate ¢:

1. if E.L or E does not satisfy ¢ then
exit(“¢ cannot be controlled in EZ");
2. for each event e € E do compute Cypipn.€ and Cryaz.€;
3. compute the synchronization < as defined (in D 3.1);
4. if < U< is acyclic then exit(<)
else exit(“¢ cannot be controlled in EL");

Figure 5: the algorithm to determine if a region
predicate is controllable in a computation.

non-decreasing variable of p; and z is a non-monotonic vari-
able of pi, does not form an inf-semilattice.

4. ADMISSIBLE SEQUENCES

In this section, we give an alternative characterization of
controllability based on the notion of an admissible se-
quence. Informally, given a predicate ¢ and a computation
E., an admissible sequence of events « tries to capture the
set of properties satisfied by some non-empty subset S of
the safe executions of F~. Each execution in S traverses
through a set of phases. The i** phase starts when a; is
executed and continues until the execution on a;.proc ad-
vances beyond «;, i.e., a;.succ is executed. Each execution
in S satisfies the following properties. Firstly, for each i,
the execution enters the i** phase before the (i + 1)t phase.
For this to hold, @ and E< cannot differ on relative order
of any two events (agreement property). Secondly, there are
no gaps in the traversal of phases implying (1) the initial
consistent cut £.— and the final consistent cut £ belong to
at least one phase (possibly different) (boundary condition),
and (2) for each 4, the (i 4+ 1)** phase is entered before leav-
ing the it" phase (continuity property). Finally, to ensure
that no unsafe execution satisfies these properties, all con-
sistent cuts of the computation that are legal with respect

to o and belong to at least one phase satisfy the given pred-
icate (weak safety property). Let || denote the length of a
sequence «. Formally,

DEFINITION 4. (admissible sequence) A sequence of
distinct events a is admissible with respect to a predicate
¢ and a computation E~ iff it satisfies the following proper-
ties.

(agreement) « is consistent with <, i.e., for each i
and j, i < j = oj £ ai,

e (boundary condition) ag € E.— and ajy|—1 € E. T,

o (continuity) for eachi, o; ¢ E.T = aj.succ £ oiy1,
and

o (weak safety) any cut C that is legal with respect to
a such that o; € C.frontier, for some i, satisfies ¢,
i.e., legal(C, E,a)\N(Ja; :: a; € C.frontier) = ¢.C.

For example, in Figure 6, the sequence egeif2 is not
an admissible sequence as the initial consistent, given by
{—0,—1}, does not belong to any phase (the boundary con-
dition is violated). The sequence —g fi€o f2 is not admissible
since every execution of the computation executes eg before
f1, thereby entering the 2" phase before the 1°¢ phase (the
agreement property is not satisfied). The sequence —qeq f1 f2
is not an admissible sequence because every execution of the
computation must execute e; (and therefore leave eg) before
it can execute fi, thereby leaving the 1°* phase before en-
tering the 2"¢ phase (the continuity property is violated).
Finally, the sequence —qeo foes satisfies the boundary con-
dition, and the agreement and continuity properties.

We now show the equivalence of the notion of an admissible
sequence and the notion of controllability. In the next theo-
rem, we prove that the existence of an admissible sequence
is a necessary condition for controllability by showing that
every safe execution of a computation constitutes an admis-
sible sequence.

THEOREM 6. If a predicate ¢ is controllable in a compu-
tation E then there exists an admissible sequence of events
with respect to ¢ and E.

PROOF. Let a be any safe execution of F<, and < be the
total order of events given by «. By construction, a sat-
isfies the agreement property and the boundary condition.
Assume, by the way of contradiction, a violates the conti-
nuity property. Therefore, for some i, a; < a;.succ < @;y1.
Since <C <, a; < a;.succ < a;+1. Further, since a contains
all events of F, a;.succ € a. Let a; = ay.succ. We have
i < j <141, acontradiction. Therefore a satisfies the con-
tinuity property. Finally, consider a consistent cut C of E«
that satisfies the antecedent of the weak safety property. In
particular, C' is legal with respect to a which implies C' is a
consistent cut of @ (or E<). Since a is a safe execution, ¢
is true for C. O

-----> synchronization <

> synchronization <"’

Figure 6: an illustration of the synchronization cor-
responding to an admissible sequence.

Next, we show that existence of an admissible sequence is a
sufficient condition for a given predicate to be controllable.
To do so, we first give the synchronization needed to be
added to a computation so as to suppress all its unsafe
executions. We then prove the synchronization does not
eliminate all safe executions. Formally, given an admissible
sequence of events «, the required synchronization consists
of two types of arrows, denoted by <’ and <", defined as
follows.

(D 4.1) < = {(ai,0;)[0<i<j<|al}, and

(D 4.2) <" def { (i1, i.suce) |0 <i < |a| —1,
a; ¢ E.T and aj.proc # ajyi.proc}

Figure 6 illustrates the synchronization for the admissible se-
quence —geg foe2. The synchronization given by <’ ensures
that every execution of the controlled computation enters
the phases in the correct order. The synchronization given
by <" guarantees that, for each i, every execution of the
controlled computation enters the (i + 1)*! phase before it
leaves the i** phase.

THEOREM 7. If there exists an admissible sequence of
events with respect to a predicate ¢ and a computation F <
then ¢ is controllable in E.

PROOF. Let a be an admissible sequence of events with
respect to ¢ and E<. As explained before, we add the syn-
chronization given by <' (defined in D 4.1) and <" (defined
in D 4.2) to E<. The proof then reduces to showing that
(1) the added synchronization does not create any dead-
locks, i.e., there are no cycles, (2) every consistent cut of
the controlled computation is legal with respect to «, and
(3) every consistent cut of the controlled computation con-
tains at least one event from « in its frontier. Due to the
lack of space, the proof is presented elsewhere [12]. [

THEOREM 8. A predicate ¢ is controllable in a computa-
tion E~ iff there exists an admissible sequence of events with
respect to ¢ and FE<.

5. DISJUNCTIVE PREDICATES

In this section, we give an efficient algorithm to solve the
predicate control problem for the class of disjunctive predi-
cates. Our algorithm is based on the notion of an admissible
sequence introduced in the previous section. Intuitively, a
disjunctive predicate states that at least one local condition

must be met at all times, or, in other words, a bad combi-
nation of local conditions does not occur. For example,

o at least one server is available at all times: availp V
availy V -+ V avatl,_1.

e two process mutual exclusion: —csg V —cs;.

e at least one philosopher is thinking at any time:
thinko V thinkl AVARIEEAV] thinknfl.

The special case of k-mutual exclusion problem, when k =
n — 1, belongs to the class of disjunctive predicates. For-
mally, a global predicate is a disjunctive predicate iff it can
be expressed as a disjunction of local predicates, i.e., it can
be written as lo VI1V---Vlyn_1, where each [; is a local
predicate of some process. Observe that false is a local
predicate of any process. Thus any disjunctive predicate
can be written as lg V{1 V ---V [,_1, where each [; is a local
predicate of p;.

Let ¢ be a disjunctive predicate and E< be a computation.
Given an event e on a process p;, since [; is a local predi-
cate of p;, we can calculate the value of [; for e. An event e
on a process p; is a true event iff [;.e evaluates to true. To
compute an admissible sequence of events, we construct a
graph G = (V, £), called “true event graph” (TEG), as fol-
lows. There is a vertex in the graph for each true event in
E. Further, there is an edge from vertex e to vertex f iff
e.succ A f. The vertex e is labeled as “initial” iff e € E.—.
Similarly, the vertex e is labeled as “final” iff e € E.T. We
call a path in the graph as permissible iff it starts from a
vertex labeled “initial” and ends at a vertex labeled “final”.
We show that there exists a permissible path in G iff ¢ is
controllable in E-. Note that there is a one-to-one corre-
spondence between paths in the graph and sequences of true
events that satisfy the continuity property. Hereafter, we
use them interchangeably. Due to the semantics of disjunc-
tion, every path satisfies the weak safety property. Further,
by definition, every permissible path satisfies the boundary
condition. In the next lemma, we prove that the shortest
permissible path satisfies the agreement property.

THEOREM 9. Let G = (V,€) be the TEG corresponding
to a disjunctive predicate ¢ and a computation E~. The
shortest permissible path in G, if it exists, corresponds to an
admissible sequence of events.

PROOF. Assume there exists a permissible path in G. Let
T = mom1--+Tm—1 be the shortest permissible path. As
argued before, 7 satisfies the boundary condition, and the
continuity and weak safety properties. Assume, by the way
of contradiction, m does not respect <. Therefore there ex-
ist vertices m; and mj, i < j, such that m; < m;. Note
that m; cannot be an “initial” vertex implying s > 0. Since
m is the shortest permissible path, there is no edge from
mi—1 to m;, otherwise we have a shorter permissible path
namely momy - mi—17j - Tm—1, a contradiction. An ab-
sence of edge from m;_; to m; implies m;_1.succ < 7. Since
m; < T, Ti—1.succ < m;, thereby precluding an edge from
mi—1 to m;, a contradiction. Thus 7 respects <. In other
words, 7 satisfies the agreement property. [

\
R 2 o % el °
B, L,) 9

@ : atrueevent

1o :initial"
®.

o;:"final"

€ :"final"

Figure 7: a computation and its corresponding TEG.

We next show that if the given disjunctive predicate is con-
trollable in a computation then there exists a permissible
path in the graph.

THEOREM 10. Let G = (V,€) be the TEG corresponding
to a disjunctive predicate ¢ and a computation E<. If ¢ is
controllable in E~ then there exists a permissible path in G.

PROOF. Assume ¢ is controllable in E. Therefore there
exists an irreflexive partial order C that extends < such
that every consistent cut of E- satisfies ¢. Without loss of
generality, assume [is a total order. Further, there exists a
vertex labeled “initial” in G, otherwise ¢ evaluates to false
for E.—. Let mo denote such a vertex. Starting from o,
we construct a permissible path = by adding vertices to the
path constructed as yet until we reach a “final” vertex.

Let 7; denote the last vertex reached in the path so far. If
m; is labeled “final”, we have a permissible path. There-
fore assume 7; is not labeled “final” implying ;.succ exists.
Observe that events in any consistent cut of E- are totally
ordered because [is a total order. Let C; be the consistent
cut of Er such that m;.succ is the last event in the cut. We
set w1 to any true event in the frontier of C;. Since ¢
satisfies C;, mi41 exists. Note that m;+1 C m;.succ because
mi.succ and w41 are events contained in C;, and m;.succ is
the last event in C;. Therefore m;.succ [wi+1. Since < CC,
mi.succ A& miy1 which implies there is an edge from m; to
Ti+1 in g

Finally, we need to prove that a vertex labeled “final” is
eventually added to the path. Observe that, for each i,
mit+1.succ L mi.succ. This is so because neither m; nor
mi+1.succ belong to C;.frontier. Therefore m;.succ C mit1
implying C; C Ci41. This implies that no vertex is revisited
while constructing the path. Since number of vertices are
finite, a vertex labeled “final” is eventually reached. [

THEOREM 11. Let G = (V,E) be the TEG corresponding
to a disjunctive predicate ¢ and a computation E~. Then ¢
is controllable in E< iff there exists a permissible path in G.

The previous algorithm can be easily modified to give an
admissible sequence that generates minimum synchroniza-
tion. To do so, we assign a weight to each edge in the TEG

as follows.

de 0,1
w'(eaf) :f { El 1;

bl

if f < e.succ
otherwise

Here, w.(e, f) denotes the weight of edge (e, f). Two weights
are compared using lexicographic ordering and added by
performing component-wise addition. Note that an admis-
sible sequence generated from a TEG consists only of true
events. As a result, we do not need to add the synchro-
nization given by <’ (defined in D 4.1) to a computation in
order to control a disjunctive predicate. The synchroniza-
tion given by <" (defined in D 4.3) suffices. This is because
the admissible sequence constructed from a TEG satisfies
a stronger property than the weak safety property namely
(Jai 2 a; € Ci.frontier) = ¢.C.

We prove elsewhere [12] that the shortest permissible path
the weighted TEG (WTEG) not only constitutes an admissi-
ble sequence of events but also gives minimum synchroniza-
tion. This is important in scenarios where the bandwidth is
limited and the number of control messages need to be min-
imized. Intuitively, the first entry in the weight of an edge
(e, f) indicates whether < subsumes the synchronization ar-
row from the event f to the event e.succ. The shortest per-
missible path in a WTEG, therefore, corresponds to a path
that minimizes two things. Firstly, it minimizes the number
of synchronization arrows in <" that are not contained in
<, i.e., | <"\ < |. Secondly, among all paths that minimize
| <"\ < |, it gives the path with the smallest number of
edges, i.e., the path that minimizes | <" |.

The algorithms presented here have O(n*m?) time complex-
ity, where n is the number of processes and m is the maxi-
mum number of true events on any process. That is because,
in the worst case, there can be as many as O(nm) vertices
and O(n’m?) edges in TEG. To reduce the number of edges
in the graph, we observe that if there is an edge from vertex
e to vertex f then there is an edge from vertex g to vertex
h for each g and h such that e <p g and h <p f. Thus
Theorem 11 still holds if, for each event e and process p, we
put an edge from the vertex e to the vertex corresponding
to the last event f on p such that e.succ A f. This ensures
that there are at most O(n’m) edges in the graph. Further,
by using true-intervals® instead of true events to construct

ia true-interval is a sequence of contiguous true events on a
process

the graph, we can reduce the time complexity to O(n’p),
where p is the maximum number of true-intervals on any
process.

6. CONCLUSIONS AND FUTURE WORK

A distributed debugger equipped with the mechanism to
re-execute a traced computation under control can greatly
facilitate the detection and localization of bugs. This ap-
proach gives rise to predicate control problem. However, the
predicate control problem was proved to be NP-complete in
general by Tarafdar and Garg. They developed efficient al-
gorithms for the class of disjunctive predicates and mutual
exclusion. We extend their work in two ways. Firstly, we
define a class of predicates called region predicates that in-
cludes channel predicates such as “there are at most k mes-
sage in any channel at any time”, and fairness predicates
such as “the difference between the number of times two
processes are granted a resource is bounded”. We give an
efficient algorithm to compute the synchronization needed
to control a region predicates in a traced computation. We
also prove that the synchronization given by our algorithm
guarantees maximum concurrency in the controlled compu-
tation. Further, we introduce the notion of an admissible
sequence of events and prove its equivalence to the notion
of predicate control. Using this notion, we reduce the prob-
lem of determining the synchronization for a computation,
given a disjunctive predicate, to finding a path in a graph.
We also give an algorithm that minimizes the number of syn-
chronization arrows (or control messages) in the controlled
computation.

We have extended the notion of an admissible sequence
of events to the notion of an admissible sequence of
sub-frontiers. A sub-frontier is a set of events that can
be a part of the frontier of some consistent cut. Based on
this notion, we have developed algorithms for the class of
k-disjunctive predicates - predicates that can be expressed
as a disjunction of predicates, where each disjunct spans at
most k processes.

7. REFERENCES
[1] K. Mani Chandy and Leslie Lamport. Distributed
Snapshots: Determining Global States of Distributed
Systems. ACM Transactions on Computer Systems,
3(1):63-75, February 1985.

[2] Craig Chase and Vijay K. Garg. Detection of Global
Predicates: Techniques and their Limitations.
Distributed Computing, 11(4):191-201, 1998.

[3] R. Cooper and Keith Marzullo. Consistent Detection
of Global Predicates. In Proceedings of the ACM/ONR
Workshop on Parallel and Distributed Debugging,
pages 163-173, Santa Cruz, California, 1991.

[4] R. Cypher and E. Leu. Efficient Race Detection for
Message-Passing Programs with Nonblocking Sends
and Recieves. In Proceedings of the IEEE Symposium
on Parallel and Distributed Processing, pages 534-541,
1995.

[6] C. Fidge. Logical Time in Distributed Computing
Systems. IEEE Computer, 24(8):28-33, August 1991.

[6] Y. Huang and Chandra Kintala. Software
Implemented Fault Tolerance: Technologies and
Experience. In Proceedings of IEEE Fault-Tolerant
Computing Symposium, pages 138-144, June 1993.

[7] Richard Kilgore and Craig Chase. Re-execution of
Distributed Programs to Detect Bugs Hidden by
Racing Messages. In Proceedings of the International
Conference on System Sciences, Hawaii, January 1997.

[8] Leslie Lamport. Time, Clocks, and the Ordering of
Events in a Distributed System. Communications of
the ACM, 21(7):558-565, July 1978.

[9] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging
Programs with Instant Replay. IEEE Transactions on
Computers, C-36(4):471-482, April 1987.

[10] A. Maggiolo-Schettini, H. Welde, and J. Winkowski.
Modeling a Solution for a Control Problem in
Distributed Systems by Restrictions. Theoretical
Computer Science, 13(1):61-83, January 1981.

[11] B. P. Miller and J. Choi. Breakpoints and Halting in
Distributed Programs. In Proceedings of the 8th IEEE
International Conference on Distributed Computing
Systems, pages 316-323, 1988.

[12] Neeraj Mittal and Vijay K. Garg. Debugging
Distributed Programs Using Controlled Re-execution.
Technical Report TR-PDS-2000-002, Parallel and
Distributed Systems Group, The University of Texas
at Austin, 2000.

[13] R. H. B. Netzer and B. P. Miller. Optimal Tracing
and Replay for Debgging Message-Passing Programs.
The Journal of Supercomputing, 8(4):371-388, 1995.

[14] Scott D. Stoller and Yanhong A. Liu. Efficient
Symbolic Detection of Global Properties in
Distributed Systems. In Proceedings of the 10th
International Conference on Computer-Aided
Verification, pages 357—-368, 1998.

[15] K. Tai. Race Analysis of Traces of Asynchronous
Message-Passing Programs. In Proceedings of the 17th
IEEFE International Conference on Distributed
Computing Systems, pages 261-268, 1997.

[16] Ashis Tarafdar and Vijay K. Garg. Predicate Control
for Active Debugging of Distributed Programs. In
Proceedings of the 9th IEEE Symposium on Parallel
and Distributed Processing (SPDP), Orlando, 1998.

[17] Ashis Tarafdar and Vijay K. Garg. Software Fault
Tolerance of Concurrent Programs Using Controlled
Re-execution. In Proceedings of the 13th International
Symposium on Distributed Computing (DISC), pages
210-224, Bratislava, Slovak Republic, September 1999.

[18] Y. M. Wang, Y. Huang, W. K. Fuchs, Chandra
Kintala, and Gaurav Suri. Progressive Retry for
Software Failure Recovery in Message-Passing
Applications. IEEFE Transactions on Computers,
46(10):1137-1141, October 1997.

