String Realizers of Posets with Applications to Distributed
Computing

Vijay K. Garg*
garg@ece.utexas.edu

Chakarat Skawratananond
skawrata@ece.utexas.edu

Electrical and Computer Engineering Department
The University of Texas at Austin
Austin, Texas 78712.

ABSTRACT

In this paper, we show the connection between vector clocks
used in distributed computing and dimension theory of par-
tially ordered sets. Based on this connection, we provide
lower bounds on the number of coordinates for timestamp-
ing events in a distributed computation for capturing the
happened-before relation. To this end, we introduce the no-
tion of a string realizer and the string dimension of a poset.
For distributed computing and other applications, the con-
cept of string realizer is more natural than the chain realizer
used in the classical dimension theory. We establish the rela-
tionship between the string dimension and the chain dimen-
sion of a poset. Using this relationship and Dilworth’s the-
orem for the chain dimension of finite distributive lattices,
we obtain the desired lower bound. The concept of strings
also has applications in efficient encoding of partial orders
because it requires fewer bits to encode a string realizer than
a chain realizer.

1. INTRODUCTION

A distributed computation has been widely modeled as a
partially ordered set (poset) (E,—) where E is the set of
events in the computation and — is the happened-before
relation[12]. Fidge[10] and Mattern[13] independently intro-
duced vector clocks to timestamp events such that happened-
before relationship between any two events can be deter-
mined by examining their timestamps. In particular, in a
distributed computation of N processes, vector timestamps
provide the following property:

Ve,f € E:e— f < v(e) < v(f)

*supported in part by the NSF Grants ECS-9907213, CCR-
9988225, Texas Education Board Grant ARP-320, an Engi-
neering Foundation Fellowship, and an IBM grant.

where v(z) is the N-dimensional vector timestamp of any
event x. In other words, the poset of events is isomorphic to
the set of vectors in dimension N. The vector clock mecha-
nism requires each process to send its vector clock on all its
outgoing messages. For large N, this mechanism introduces
significant overhead during the computation. It is natural to
ask if there is an alternative mechanism with lower overhead
for timestamping events.

The first lower bound argument on the size of the vector
clocks is due to Charron-Bost[4]. Her result states that
for all N, there exists a computation on N processes such
that any assignment of events to R¥ which captures the
happened-before relation (and its complement) must have
k > N. Note that this result excludes possibility of lower
dimensional vector clocks only for that particular computa-
tion on N processes. However, it does not exclude times-
tamps which may use less than N coordinates for other
computations on NN processes. In fact, it is easy to show
distributed computations on N processes that do not require
N-dimensional vector timestamps to capture
happened-before relation and concurrency. We show that vV
is indeed a lower bound on the size of vector clocks if an ad-
ditional property is required from vector clocks. This prop-
erty states that vector clocks can also be used to determine
the relationship between consistent cuts of the computation.
We show that any vector clock mechanism that satisfies this
property must have dimension at least N for all distributed
computations on N processes (such that poset correspond-
ing to the computation has width N). Indeed, Mattern and
Fidge’s vector clocks satisfy this additional property and
therefore must have dimension at least N.

Our results are based on drawing connections between vector
clocks used in distributed computing and dimension theory
of partially ordered sets [15]. The dimension of a partially
ordered set, first introduced by Dushnik and Miller[8], is
defined as the least number of total orders such that the
partial order is the intersection of these total orders. One of
the advantages of this concept is that it provides an encod-
ing scheme (or a timestamping scheme) for a partial order.
If the dimension of a partial order on n elements is k, then
each element can be assigned a code of size klogn such that
the ordering between any two elements can be derived in k
comparisons. Essentially, each element is represented by a



k-tuple representing its position in each of the k orders. Al-
though, the concept of dimension has been used successfully
for many mathematical applications (for example in char-
acterizing planar posets [15]), we argue that the concept of
string dimension introduced in this paper is more useful for
distributed computing applications.

We first generalize the concept of a total order to that of
a string. Let (X, P) be a poset where X is a set, and P
is a reflexive, antisymmetric, and transitive binary relation
on X. (X, P) is a string if and only if there exists a map-
ping f from X to N (the set of natural numbers) so that
Ve,y € X 1z < y iff f(z) < f(y). The main difference
from a chain is that we let f(z) = f(y) when z and y are
concurrent. Every chain and every anti-chain is a string.
Mathematically, a string is a lexicographic sum of chains
and anti-chains. We then introduce the concept of a string
realizer of a poset. Informally, a string realizer of a poset is a
set of strings such that the relationships in the poset can be
derived using the strings. The vector clocks that have been
used in distributed computation correspond to realizers us-
ing strings rather than total orders. We then introduce the
notion of a string dimension of a poset as the least number
of strings required to realize the poset. We show, some-
what surprisingly, that the string dimension of a poset is
exactly equal to the dimension of the poset whenever the
string dimension is at least 2. This establishes a relation-
ship between dimension theory and vector clock mechanisms
which are more like strings.

We then use standard results in dimension theory to derive
results about vector clocks. We show that the theorem by
Charron-Bost is a corollary of a result by Dushnik-Miller.
Further, by using Dilworth’s theorem on dimension of dis-
tributive lattices, we determine the string dimension of the
lattice of consistent cuts induced by a distributed computa-
tion.

There are other advantages of strings and string dimension.
For example, we show that a string realizer leads to a more
efficient encoding scheme for a partial order than a chain
realizer. We also define the notion of a string extension of
a poset. A string extension is generalization of the concept
of topological sort of a poset. We show that for every poset
there exists a string extension whose length is equal to the
height of the poset.

In summary, the paper makes the following contributions.

e We introduce the concepts of string, string realizer and
string dimension and show that they are more natu-
ral for distributed computing applications than those
based on chains.

e We establish that the string dimension of a poset is
same as the chain dimension for any poset that is not
a string.

e We show that Charron-Bost’s result follows from a re-
sult by Dushnik and Miller[8].

e We show that Fidge and Mattern’s vector clock also
provides ordering information on the lattice of consis-
tent cuts induced by the partial order. We show that

any such mechanism must have at least dimension N
using Dilworth’s theorem.

e We show that, in general, string encoding of partial
orders is more efficient than chain encoding. We also
give an algorithm that generates a code with at most
log(height(P)+1)*width(P) bits for any poset (X, P).
This method is superior to code based on chain real-
izers when the height of the poset is small.

e We introduce and prove the existence of a normal string
extension of a poset, and show its application to task
scheduling.

Although this paper is concerned only with distributed com-
puting applications, we note that encoding of partial or-
ders also have applications in Databases[1], Artificial Intel-
ligence[9] and programming languages development[5].

2. BACKGROUND: DIMENSION THEORY

2.1 Partially Ordered Set and Lattices

A pair (X, P) is called a partially ordered set or poset if X
is a set and P is a reflexive, antisymmetric, and transitive
binary relation on X. We call X the ground set while P is
a partial order on X. We write £ < y and y > z in P when
(z,y) € P. Also, z <yandy >z in P means ¢ < y in P
and © # y.

We use Hasse diagrams' to represent finite posets. If z < y
in P, then = appears lower than y in the diagram.

Let z,y € X with x # y. If either x < y or y < z, we
say = and y are comparable, and write x L y. On the other
hand, if neither x < y nor ¢ > y, then we say x and y are
incomparable, and write z||y. A poset (X, P) is called chain
if every distinct pair of points from X is comparable in P.
Similarly, we call a poset an antichain if every distinct pair
of points from X is incomparable in P. A point z € X is
called a mazimal point (minimal point) if there is no point
y € X with z < y in P (z > y, respectively). We denote the
set of all maximal points by maxz(X, P), while min(X, P)
denotes the set of all minimal points.

A chain C of a poset (X, P) is a mazimum chain if no other
chain contains more points than C. We use similar defini-
tion for mazimum antichain. The height of the poset P,
denoted by height(P), is the number of points in the maxi-
mum chain. Similarly, the width of the poset P, denoted by
width(P), is the number of points in a maximum antichain.
We say (X, P) and (Y, Q) are isomorphic, if there exists a
1—1 and onto map f : X — Y so that 1 < z» in P if and
only if f(z1) < f(z2) in Q.

An element y € X is called an upper bound for S if s <y
in P, for every s € S. An upper bound y for S is the least
upper bound for S, abbreviated 1.u.b.(S), provided y < ¢ in
P for every upper bound y' of S. Lower bounds and greatest
lower bounds are defined similarly. The poset is called a
lattice if every nonempty finite subset S C X has the least
upper bound as well as the greatest lower bound.

!The formal definition of Hasse diagrams can be found in

[6].



b a
a b
a Cc
d b
¢ d
c d Ly Ly ! 2
Poset Chain Realizer String Realizer

Figure 1: (X, P)

When L = (X, P) is a lattice, for any z,y € P, we define

z V y=1lub{z,y} (join)

x A y=glb{z,y} (meet)

L is called distributive lattice if for all z,y,z € X
e A(yVz)=@& Ay)V (z A 2)

Next we provide the definition of down-set and the poset of
the form 2F. Let P = (X, P) be a poset and let S C X. S
is called a down-set in (X, P) if x € S whenever y € S and
z < yin P. Let D denote the family of all down-sets of P.
Define a partial order @ on D by D; < D> in @ if and only
ifPD1 C D,. Then the poset Q = (D, Q) is isomorphic to
27

2.2 Dimension

A family R = {L1, Lo, ... , L} of linear orders on X is called
a chain realizer of a poset (X, P)if P=NR. z <y € L;NL;
if x < y in both L; and L;. We also say that R realizes P.
Figure 1 shows a poset P in which {L1, Ly} realizes P.

It can be shown [15] that R is a realizer of P iff for every
z,y € X with z || y (z incomparable to y) in P, there exists
distinct integers i,j with 1 <i,j <t for which x < y in L;
and y < z in L;. In the following, we write z <. y when
z <y in L,

DEFINITION 1. [15] For any poset (X, P), the dimension
of (X, P), denoted by dim(X, P), is the least positive integer
t for which there exists a family R = {Li,Ls,... ,L¢} of
linear extensions of P so that P = NR = Ni_,L;.

The dimension of the poset in Fig. 1 is 2. The concept
of dimension provides us a way to encode a partial order.
The elements of a partial order with dimension ¢ can be
encoded with a ¢-dimensional vector as follows. For any
element z, the vector v, is defined as follows: v, [i] = number
of elements less than x in L;, for 1 < i <t¢. Given code for
two elements v, and vy, we have the following order:

Ve < Uy <= Vi:vg[i] < vyl] (1)

For example, the code for a and b in the poset in Figure 1 is
(2,3) and (3, 1) based on the realizer. Based on the code and
(1), it can be easily determined that a and b are concurrent.
We call the order given by (1) the chain order.

Figure 2: S5

The dimension of a poset can be arbitrarily large. Consider
a poset (X, P) where X = {a1,a2,... ,a,}U{b1,b2,... ,bn},
and a; < bj in P if and only if i # j, for i,j = 1,2,... ,n.
This class of posets is known as the standard erample and
denoted by S,. Figure 2 shows the diagram for S5. The
following Theorem is due to Dushnik and Miller[8].

THEOREM 2. [8] dim(S,) = n.

Let Li = [al, ey Qi—1, A1, - ,an,bi,ai,bl, - ,bifl,bijq,
., bn], where a; is the lowest element, and b, is the highest

element in chain L; Then R = {L1, Ls,... ,L,} is a realizer

of Sp.

3. STRING

In Section 2 we saw that classical dimension theory provides
lower bounds on the dimension of vectors when the compar-
ison is based on the chain order. On the other hand, the
vector clocks in distributed computing use vector ordering
given by the following (2) which we call vector order.

u<v = Vk:1<k<N:ulk] <vlk]A )
371 <5 <N ufj] <vlf]

Consider a distributed system in which the code of elements
is determined in a decentralized fashion. In this case the
relationship between two events may not be known globally.
Thus, if event e happened before f, this relationship may
be known only to a single process. From the perspective
of other processes, e and f may be indistinguishable (for
example, when both are internal to the process). This is
more easily captured in the vector order where a vector u
is deemed as smaller than vector v even when u is smaller
than v in just one component and same in all the other com-
ponents. Since chain order requires that all the coordinates
in code of event e are strictly less than all the respective



coordinates in code of event f, it is difficult to use chain
order in a distributed system. In this section, we generalize
the concepts in dimension theory so that the ordering used
between codes is identical to (2).

We first give the definition of a string.

DEFINITION 3 (STRING). A poset (X, P) is a string if
and only if 3f + X — N (the set of natural numbers) such
that Vo,y € X 1z <y iff f(z) < f(y)

The set of elements in a string which have the same f
value is called a knot. For example, a poset (X, P) where
X = {a7 b7 C’ d} and P = {(a’ b)7 (a’ C)’ (a’ d)7 (b’ d)’ (c7 d)} is
a string because we can assign f(a) = 0, f(b) = f(c) = 1,
and f(d) = 2. Here, b and c are in the same knot. The
difference between a chain and a string is that a chain re-
quires existence of a one-to-one mapping such that © < y
iff f(z) < f(y). For strings, we drop the requirement of the
function to be one-to-one. We represent a finite string by
the sequence of knots in the string. Thus, P is equivalent
to the string {(a), (b,¢), (d)}.

A chain is a string in which every knot is of size 1. An
anti-chain is also a string with exactly one knot. Note that
a string drops the distinction between elements which have
the same order relationship with all other elements. Thus,
two elements = and y have the same code f(z) = f(y) iff for
any element z, (1) z < ziff y < z, and (2) z < z iff z < y.
This is a more natural concept for ordered sets.

A string gives more efficient encoding of the partial order
than the use of chains. At an extreme, the range of f may
be finite even when the domain of f is infinite. For example,
the following order { all even numbers } < { all odd numbers
} on natural numbers can be encoded by assigning 0 to all
even numbers and 1 to all odd numbers. Such a poset cannot
be assigned codes using the classical dimension theory.

We write ¢ <; y if z < y in string s, and r <; y if z < y in
string s.

DEFINITION 4  (STRING REALIZER). For any poset (X, P),
a set of strings S is called a string realizer iff Vx,y € X :
z <y in P if and only if

1. Vse§S :z <y, and

2.teS z<y.

The definition of less-than relation between two elements
in the poset based on the strings is identical to the less-
than relation as used in vector clocks. This is one of the
motivation for defining string realizer in the above manner.
A string realizer for the poset in Fig. 1 is given by two
strings

S1 = {(C), (d7 a): (b)} S2 = {(d7 b)u (C7a)}

There are two important differences between definitions of
string realizers and chain realizers. First, if R is a chain

realizer of a poset P, then P is simply the intersection of
linear extensions in R. This is not true for a string realizer
(see Fig. 1). Secondly, all the total orders in R preserve P,
i.e., ¢ <y in P implies that x < y in all chains in R. This
is not true for string realizer. For example, d < a in poset
P of Fig. 1, but (d,a) appears as a knot in the string s;.
We are only guaranteed that a will not appear lower than d
in any string - they may appear in the same knot.

Now, analogous to the dimension we define

DEFINITION 5 (STRING DIMENSION). For any poset (X, P),
the string dimension of (X, P), denoted by sdim(X, P), is
the size of the smallest set of strings S such that S is a string
realizer for (X, P).

ExAmMPLE 6. Consider the standard example S,,. The fol-
lowing function f can be used to create a string realizer of
Sn. Forallk,i=1,2,... n,

0 ifk#i
Filai) = { 1 otherwise

N_J O ifk=i
Fi(bi) = { 1 otherwise

For example,

1,...,1)
17"'71)

In this example, the length of each string is 2 and thus each
element requires only n bits for encoding. If we use classical
dimension based on total orders, each element would require
n * logn bits.

ExAMPLE 7. Consider the poset (X, P) as follows.

X ={0,{a}, {b},{a, b}, {a, c},{a,b,c}}
P={(A,B)e X xX: AC B}.

A string realizer for the poset can be obtained as follows.
For each set A € X, we use a bit vector representation of
the set A. Thus, {a,c} is represented by (1,0,1) and the set
{a,b} is represented by (1,1,0). This representation gives
us a string realizer with three strings such that every string
has eractly two knots.

We now establish the relationship between string dimension
and chain dimension. It may appear, at first, that the
string dimension of a poset may be much smaller than the
chain dimension. However, this is not the case as shown by
the following result.

THEOREM 8 (EQUIVALENCE THEOREM). For any poset
(X, P) such that sdim(P) > 2, sdim(P) = dim(P)

PROOF. There are two cases.
sdim(P) < dim(P).




It is sufficient to show that for any chain realizer of size k,
there exists a string realizer of equal or smaller size. Given
a chain realizer C, we construct the string realizer as follows.
Each chain is simply viewed as a string. Our obligation is
to show that the order generated from the string realizer is
the same as the one based on chain realizer (recall that the
definition of less than for string realizer is different from less
than in a chain realizer.) In this proof, let z — y <= Vs €
S:x<sy N JteS:x <y Itis sufficient to show that
r <y < z+—y. First, we show that xt <y — z — y.

r<y = VecelC:x<.y
= VseS:z <y
= VseS:ex <,y NTFHeS:x<ty
= Ty

Next, we show that =(z < y) = —(x — y). There are
two cases.

case A: y<z y—z  (From case I)
—(z = y)

~(z<y) A ~(y<um)
JeeC:zx<cy NIdelC:y<arx
dseS:x<sy N FIHeSy<ix
“(y=x) A =(zey)

=(z = y)

case B:  z |y

FELLLLY

dim(P) < sdim(P).

Given a string realizer of P, §, we construct the correspond-
ing chain realizer. We achieve this by untying knots of the
string to form a chain.

First consider the case when two elements z and y belong to
the same knot in all strings. We will combine these elements
into one element say z. After finding the chain realizer of
the new set, we replace z with z and y. Further, in one
chain we keep x less than y and in another chain we keep y
less than z. Observe that we can do this because there are
at least two chains due to our assumption of sdim(P) > 2.

Now assume that there are no two elements as in the first
case. Consider any knot {z1,z2,... ,Zm} in any string s;.
Now we determine for all pairs (z;,z;) of the elements in
the knot.

1. (VseS —{s1} i <szj) N (FteS —{s1}:2: <4
zj), then we get z; < zj. or

2. If3s,t € S —{s1} : (wi <s ;) A (z; <¢ x;), then we
get x; || x;.

Then, we can untie this knot by performing the topological
sort. By repeating this process, all knots on s; can be untied,
and we obtain the chain. [

Figure 3 shows an example of this untying mechanism. Since
d and e appear in the same knot in all strings, we first com-
bine d and e into one element f. As a result we get strings
in Figure 3(C). We then untie the knot (¢, f) by keeping ¢
less than f in s; and untie the knot (a,b) in s» by keeping a
less than b. We now have the chain order. Now we replace
f by d and e, keeping d less than e in s; and e less than d
in s to get the chains in Figure 3(D).

4. APPLICATIONS OF STRING REALIZ-
ERS AND DIMENSION

4.1 LowerBoundon Dimension of Vector Clocks

As we have mentioned before, the definition of a string re-
alizer is identical to the definition for vector clocks in dis-
tributed systems. A distributed computation on N processes
can be modeled as a poset of events (E,—) of width N.
Fidge and Mattern’s vector clocks are simply string realiz-
ers of the poset (E,—). For example, consider the poset in
Fig. 3 which has width two. We can view it as a computa-
tion on two processes, the first process executes events a, b
and d in that order, and the second process executes ¢ and
e in that order. By viewing b and c as send events received
at e and d respectively, we get the following vector clocks
for all events:

v(a) = (1,0);v(b) = (2,0); v(d) = (3,1);

v(e) = (0,1);v(e) = (2,2)
This corresponds to two strings

S1 = {(C): (a)u (b: 6), (d)} and sz = {(a7b): (C7 d)7 (6)}

This is a different string realizer than shown in Figure 3, but
has the same dimension.

Now that we have established equivalence of dimension and
string dimension for non-string posets, we can use existing
results from dimension theory to prove results on dimension
of vector clocks.

We first consider lower bounds on the (string) dimension of
vector clocks. Charron-Bost[4] has shown that we require at
least N-dimensional vector timestamps to capture concur-
rency in the distributed computation consisting of N pro-
cesses. The proof is by constructing a computation in which
any timestamping scheme with less than N coordinates is
not able to capture concurrency accurately. The following
proof uses dimension theory and our equivalence theorem.

THEOREM 9. For every N, there exists a distributed com-
putation (E,—) on N processes such that any assignment
from E to N'* that captures concurrency relation on E has
k> N.

PROOF. The result is trivially true for NV equal to 1. For
any N > 2, consider the standard example Sy shown in Fig-
ure 2. Define a; and b(; moa n)+1 to be on process P;. This
computation is on N processes. By Dushnik and Miller’s
Theorem, this poset has dimension N. From Theorem 8§,
the computation has string dimension also equal to N. Any
assignment from E to A'* that captures concurrency rela-
tion, results in a string realizer with k strings. Since the
string dimension is N, it follows that £ > N. [

Although this result proves that there cannot be a uniform
timestamping mechanism of less than N coordinates, it does
not exclude timestamping mechanism which may use less
than N coordinates for a particular computation.



cde d e c f f e d
TS| EEONCR:

d e

5 h a b
TN IE I I .
b a

a a c a c
Sl 52 Sl 52 a Cc
A — = (B) - = © — - O

Figure 3: An example of untying mechanism.

As an extreme example, consider a system of N processes,
where N > 3. Assume that processes do not send any mes-
sages to each other. We can timestamp each event j on
process i by the vector v;(j) = (i,n — 4, 7). It is easy to see
that this timestamping mechanism captures concurrency re-
lation accurately?.

Next we show that /N-dimensional vector clocks of Fidge and
Mattern (FM vectors for short) have an additional property
that makes it necessary to have dimension N for all com-
putations. In particular, FM vectors satisfy the following
property. If f and g are two distinct events such that event
f is on process f.p, then

v(Nfpl <v(lfpl=f =9 3)

As a result of this property we show that FM vectors can also
be used to timestamp elements of another poset - the lattice
of consistent cuts of the computation (E,—). For notational
convenience, we use e.v[i] to denote the i'" component of
the vector clock assigned to the event e. Recall that F'is a
comnsistent cut of (E, —) iff

(feEF)AN(e—>f)=>eeF
For a consistent cut F', we define its timestamp as
F.oli] = maz{e.v[i] | e € F}
Theorem 10 shows that the proposed vector timestamp for

consistent cuts based on FM vector clocks captures the re-
lation C between consistent cuts.

THEOREM 10. FC G < Fv<Guw

PROOF. It is easy to see that

FCG = Fv<Gu

We show that Fo < Gw = F C G. Let -(F C G). This
implies that there exists f € F — G.

2In fact, this partial order can be encoded using vector
clocks of dimension 2.

{definition of <}
Fv<Gv = VidgeG: fu[i] <g.v[i]
{definition of f}
= dgeG:f#g A folfp] <go[fp]
{FM vector clock property}
= dgeG:f—=y
=
|

{G is a consistent cut}

fea

Contradiction.

We now explore the structure of the set of all consistent cuts
under the relation C. Consistent cuts are identical to down-
sets in lattice theory. A standard result in lattice theory
states

THEOREM 11. [2, 14] Given any poset P, let 27 be the
poset formed by the set of its down-sets under C order.
Then, 27 is a distributive lattice.

Further, a result due to Dilworth tells us the dimension of
a distributive lattice.

THEOREM 12. [7] Let L be a distributive lattice. Choose
a poset P = (X, P) so that L is isomorphic to 2¥. Then
dim(L) = width(P).

Combining our equivalence theorem with these results, we
get

THEOREM 13. Any vector clock mechanism that captures
C relation on the set of consistent cuts in a distributed com-
putation of width N (equivalently, on N processes), must
have at least N coordinates.

PRrROOF. Follows from Theorems 11, 12 and 8. [

4.2 Encoding Partial Orders

The concept of string realizer has the advantage over chain
realizer that it generally requires less number of bits to en-
code a partial order using string realizer. Formally, consider



the following problem. Given a partial order (X, P), define a
coding function code : X — {0, 1}* and a binary relation <
on codes such that Vz,y € X : z < yin P <= code(z) <
code(y). Note that the order relation may be any arbitrary
order (not necessarily vector order). The only requirement
is that it can only use the bits in code(z) and code(y) to
determine the order. It is clear that any partial order can
be coded using log(n) + n bits per element as follows. For
every element, we store a binary array of size n. Further,
each element is assigned a unique index into the array. Let
index(z) be the index of z in 1..n and z.v be the n bit array
for element x. Then, we determine the order between = and
y as follows. z < y iff (z.v[index(y)] < y.v[index(z)]).

Using dimension theory, partial orders of lower dimensions
can be encoded much more succintly. If a partial order has
dimension k, then it can be encoded using k * log(n) bits.
However, when the dimension is large (as for the standard
example), this method may take upto n/2 x log(n) bits per
element.

String realizers typically result in a lower number of bits
for encoding. From Theorem 8, we know that for coding
purposes, the total number of coordinates based on total
orders and strings are the same. The difference lies in the
number of bits required to code a single coordinate. Given a
string realizer R. If R has k strings each of length less than
or equal to I, then (X, P) can be coded using klogl bits.
[ is clearly less than or equal to |X|. Depending upon the
structure of the poset, I may be much smaller than log(n)
as seen for the case of the standard example.

In general, we have the following result.

THEOREM 14. Every partial order (X,P) on n > 2 el-
ements can be encoded using a string realizer in at most
log(height(P) + 1) * width(P) bits.

PrROOF. For convenience, let w = width(P). We use Dil-
worth’s chain covering theorem which states that (X, P)
can be partitioned into w chains Ci, Cy,...,C,. We then
use the transitively reduced diagram of (X, P) with w pro-
cesses as given by the chain decomposition. Further, we use
Fidge and Mattern’s algorithm to assign vector timestamp
for each event when the poset diagram is viewed as a compu-
tation. These vector timestamps determine a string realizer
with w coordinates such that no coordinate is greater than
height(P)+1. O

There is a small change in application of Fidge and Mat-
tern’s algorithm in above construction. Their algorithm as-
sumes that initial events of all processes are incomparable
and assigns the initial event at process i a vector timestamp
as follows:

Viij#ic ] = 0;

i) = 1;

In our construction (in the proof of Theorem 14), all the
initial events of chains may not be incomparable. To solve
this problem, it is sufficient to add a special initial event
for each chain whose smallest event is not a minimal event

in the partial order. For example, consider the poset in
Fig. 4. This poset can be decomposed into three chains
{a,b,c},{d,e}, and {f,g}. However, d is not a minimal
element of the poset. Hence to apply, Fidge and Mattern’s
algorithm we may assume an event smaller than d which is
incomparable to a and f in Process 2 with vector clock equal
to (0,1,0). Then, to compute the vector at d, we compute
the maximum of vectors for a, f and (0,1,0). Thus, the
vector clock for all events can be derived as

v(a) = (1,0,0);v(f) = (0,0,1);v(d) = (1,1, 1);

v(b) = (2,0,0);v(c) = (3,0,0);v(e) = (2,2,1);

v(g) = (1,1,2).

This results in the following string realizer:
S1 = {(f)a (aa d:.g)7 (b7 6)7 (C)}a

82 = {(a1 f7 b’ c)7 (d7 9)7 (e)}7 and

83 = {(aa b, C)a (da €, f)7 (g)}

Observe that some strings may be longer than others and
we need not use the same number of bits to encode positions
in all the strings. The total number of bits required for a
realizer with ¢ strings is

i=t

Z[log(length(si)]

i=1

We note here that Bouchet[3] and Trotter[15] introduced
a generalization of the original dimension by restricting the
length of chains used in the realizer. This new dimension pa-
rameter is called k-dimension (denoted by dimy(P)), when
only the chains of length k are allowed in the realizer of P.

The k-dimension of P, k > 2, is the smallest positive integer
t for which P is isomorphic to a subposet of K (ie. K" is the
product of ¢ chains of length k). Therefore, the 2-dimension
is the size of the smallest hypercube in which P can be
embedded.

Obviously [11],
dim(P) < dimy_1(P) < ... < dim2(P)

One interesting question is to determine the smallest inte-
ger k, 2 < k < |P|, such that dim(P) = dimy(P). Our
procedure in the proof of Theorem 14, shows that

Vk : k > height(P) : dim(P) = dimy(P)

Habib et al.[11] went further by allowing chains of differ-
ent length in the realizer of the poset. They defined a new
dimension parameter called encoding dimension as follows.

The encoding dimension of a poset P, denoted by edim(P),
is the least integer # such that t = 3.'="[log, k;| and P can
be embedded into K; x K> X ... K,, where K; denotes a
chain of length k;.

It is shown in [11] that when P is an antichain, then edim(P)
2log | P|. This is equal to the number of bits required in the
Dushnik-Miller’s dimension. However, by using string real-
izers, we can use only one bit to encode each element in an
antichain.



a

Figure 4: A Poset and its Normal String Extension

A key distinguishing feature of our work is that we allow
order equivalent elements to have the same code. This is
more natural concept for posets. Further, it allows hier-
archical representation of orders. Two elements may have
the same code at one level, but different at the other level
when they are not distinguishable at coarser granularity but
can be distinguished with finer granularity of the order. For
example, in a distributed computation, all internal events
between two external events may be assigned the same code
at the coarser level of granularity.

4.3 Lower bound on Dimension of a Poset
We first define the notion of string length to derive a lower
bound on dimension of any poset. The length of a realizer
S for the poset P, denoted by slength(P,S), is defined as
the length of the longest string in the string realizer S of
P. Let slength(P) denote the length of the longest string
in the string realizer with minimum number of strings. The
following definition is useful in determining the lower bound
on the dimension.

DEFINITION 15. Let (X, P) be any poset. For z,y € X,
we say that x is order-equivalent to y (denoted by x ~ y )
iff © is incomparable toy and forallz€ X 1z <z=y <z
and forallze X :z<x=2z<y

Let numeq(P) denote the number of equivalence classes of
the relation ~. The following lemma shows the relationship
among dim(P), slength(P) and numeq(P).

LEMMA 16. dim(P) > log (numeq(P))/log (slength(P)).

PRrROOF. The proof follows from the fact that the total
number of codes is equal to slength(P)?™() Further,
two elements in different equivalence classes cannot have
the identical code. This implies that slength(P)*™®*) >
numeq(P). O

The above lemma provides a lower bound on dimension of
a poset P.

4.4 String Extension of Partial Orders

Many applications, for example, task scheduling with prece-
dence constraints require that elements in a poset are pro-
cessed in a order which does not violate precedence con-
straints. In general, topological sort of a partial order which
produces a linear extension of partial order has been useful

in this and other algorithmic applications. Similar to a lin-
ear extension, we can define a string extension of a partial
order as follows.

DEFINITION 17. A string s is a string extension of a par-
tial order (X, P) ifVo,y€e X :x <py =1 <5 y.

Note that in contrast to a chain realizer which contains lin-
ear extensions of a partial order, a string realizer does not
necessarily contain string extensions.

We call s, a normal string extension of (X, P) if the length
of s is equal to the height of (X, P). We have the following
result.

THEOREM 18. For every poset (X, P), there exists a nor-
mal string ertension s.

ProOOF. The string s can be constructed by the following
algorithm (that is implicit in Dilworth’s anti-chain covering
theorem). Remove all the minimal elements of the partial
order and put them in the lowest knot. Get the next set
of minimal elements and put them as the next knot. By
repeating this procedure till all elements in (X, P) are re-
moved we get the desired string. It can be easily verified
that the string preserve order in (X, P) and has its length
equal to the height of the poset. [

For example, consider the poset in Fig. 4. The normal string
extension produced using the construction in Theorem 18 is:

{(a, f), (b, d), (c,e,9)}

It is easily verified that the above string preserves the partial
order.

If the poset (X, P) denotes tasks, then a normal string ex-
tension represents a processing schedule (assuming that con-
current tasks can be executed in parallel). The length of the
string corresponds to a critical path in (X, P).

5. CONCLUSIONS

In this paper, we introduce a new class of posets called string
and define the notions of string realizer and string dimen-
sion. We show that for distributed computing applications,
these concepts are more natural than the corresponding clas-
sical concepts based on chains. In general, string encoding
of partial orders is more efficient than chain encoding and



easier to obtain in a distributed environment. We also es-
tablish that the string dimension of a poset is the same as
the chain dimension for any poset that is not a string.

We show that Charron-Bost’s result follows from the result
by Dushnik and Miller[8]. We also show that Fidge and
Mattern’s vector clock provides ordering information on the
lattice of comsistent cuts induced by the partial order. By
invoking Dilworth’s theorem, we show that any mechanism
that provides ordering information on the consistent cuts
must have dimension equal to the width of the computation.

We also show applications of our theory in encoding partial
orders and determining string extensions of a partial order.

6. REFERENCES
[1] R. Agrawal, A. Borgida and H.V. Jagdish. Efficient
management of transitive relationships in large data
bases including is-a hierarchies. Proc. ACM SIGMOD
, 1989.

[2] G. Birkhoff. Lattice theory. American Mathematical
Society, 25, 1967.

[3] A. Bouchet. Codages et dimensions de relations
binaires. Annals of Discrete Mathematics 23, Orders:
Description and Roles, (M. Pouzet, D. Richard eds),
1984.

[4] B. Charron-Bost. Concerning the size of logical clocks
in distributed systems. Information Processing
Letters, 39:11 16, July 1991.

[5] Y. Caseau. Efficient handling of multiple inheritance
hierarchies. OOPSLA, pages 271 287, 1993.

[6] B. Davey and H. Priestley. Introduction to lattices and
orders. Cambridge University Press, 1991.

[7] R. Dilworth. Decomposition theorem for partially
order sets. Ann. Math., 51:161-165, 1950.

[8] B. Dushnik and E. Miller. Partially order sets.
American Journal of Mathematics, 63:600-610, 1941.

[9] G. Ellis and F. Lehmann. Exploiting the induced
order on type-labeled graphs for fast knowledge
retrieval. Proc. International Conference on
Conceptual Structures, Lecture Notes in Artificial
Intelligence, Springer-Verlag 1994.

[10] C. Fidge. Partial orders for parallel debugging. In
Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging,
pages 183-194, January 1989.

[11] M. Habib, M. Huchard, and L. Nourine. Embedding
partially ordered sets into chain-products. In
Proceedings of symposium on Knowledge Retrieval,
Use and Storage for Efficiency, pages 147-161, Santa
Cruz, 1995.

[12] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558 565, 1978.

[13] F. Mattern. Virtual time and global states of
distributed systems. In Proceedings of the
International Workshop on Parallel and Distributed
algorithms, pages 215226, 1989.

[14] R. Stanley. Enumerative Combinatorics Volumn 1.
Wadsworth and Brookes/Cole, Monterey, California,
1986.

[15] W. Trotter. Combinatorics and Partially Ordered Sets:
Dimension Theory. The Johns Hopkins University
Press, 1992.






