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ABSTRACTIn this paper, we show the 
onne
tion between ve
tor 
lo
ksused in distributed 
omputing and dimension theory of par-tially ordered sets. Based on this 
onne
tion, we providelower bounds on the number of 
oordinates for timestamp-ing events in a distributed 
omputation for 
apturing thehappened-before relation. To this end, we introdu
e the no-tion of a string realizer and the string dimension of a poset.For distributed 
omputing and other appli
ations, the 
on-
ept of string realizer is more natural than the 
hain realizerused in the 
lassi
al dimension theory. We establish the rela-tionship between the string dimension and the 
hain dimen-sion of a poset. Using this relationship and Dilworth's the-orem for the 
hain dimension of �nite distributive latti
es,we obtain the desired lower bound. The 
on
ept of stringsalso has appli
ations in eÆ
ient en
oding of partial ordersbe
ause it requires fewer bits to en
ode a string realizer thana 
hain realizer.
1. INTRODUCTIONA distributed 
omputation has been widely modeled as apartially ordered set (poset) (E;!) where E is the set ofevents in the 
omputation and ! is the happened-beforerelation[12℄. Fidge[10℄ and Mattern[13℄ independently intro-du
ed ve
tor 
lo
ks to timestamp events su
h that happened-before relationship between any two events 
an be deter-mined by examining their timestamps. In parti
ular, in adistributed 
omputation of N pro
esses, ve
tor timestampsprovide the following property:8e; f 2 E : e! f () v(e) < v(f)�supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ation Board Grant ARP-320, an Engi-neering Foundation Fellowship, and an IBM grant.

where v(x) is the N -dimensional ve
tor timestamp of anyevent x. In other words, the poset of events is isomorphi
 tothe set of ve
tors in dimension N . The ve
tor 
lo
k me
ha-nism requires ea
h pro
ess to send its ve
tor 
lo
k on all itsoutgoing messages. For large N , this me
hanism introdu
essigni�
ant overhead during the 
omputation. It is natural toask if there is an alternative me
hanism with lower overheadfor timestamping events.The �rst lower bound argument on the size of the ve
tor
lo
ks is due to Charron-Bost[4℄. Her result states thatfor all N , there exists a 
omputation on N pro
esses su
hthat any assignment of events to Rk whi
h 
aptures thehappened-before relation (and its 
omplement) must havek � N . Note that this result ex
ludes possibility of lowerdimensional ve
tor 
lo
ks only for that parti
ular 
omputa-tion on N pro
esses. However, it does not ex
lude times-tamps whi
h may use less than N 
oordinates for other
omputations on N pro
esses. In fa
t, it is easy to showdistributed 
omputations onN pro
esses that do not requireN -dimensional ve
tor timestamps to 
apturehappened-before relation and 
on
urren
y. We show that Nis indeed a lower bound on the size of ve
tor 
lo
ks if an ad-ditional property is required from ve
tor 
lo
ks. This prop-erty states that ve
tor 
lo
ks 
an also be used to determinethe relationship between 
onsistent 
uts of the 
omputation.We show that any ve
tor 
lo
k me
hanism that satis�es thisproperty must have dimension at least N for all distributed
omputations on N pro
esses (su
h that poset 
orrespond-ing to the 
omputation has width N). Indeed, Mattern andFidge's ve
tor 
lo
ks satisfy this additional property andtherefore must have dimension at least N .Our results are based on drawing 
onne
tions between ve
tor
lo
ks used in distributed 
omputing and dimension theoryof partially ordered sets [15℄. The dimension of a partiallyordered set, �rst introdu
ed by Dushnik and Miller[8℄, isde�ned as the least number of total orders su
h that thepartial order is the interse
tion of these total orders. One ofthe advantages of this 
on
ept is that it provides an en
od-ing s
heme (or a timestamping s
heme) for a partial order.If the dimension of a partial order on n elements is k, thenea
h element 
an be assigned a 
ode of size k log n su
h thatthe ordering between any two elements 
an be derived in k
omparisons. Essentially, ea
h element is represented by a



k-tuple representing its position in ea
h of the k orders. Al-though, the 
on
ept of dimension has been used su

essfullyfor many mathemati
al appli
ations (for example in 
har-a
terizing planar posets [15℄), we argue that the 
on
ept ofstring dimension introdu
ed in this paper is more useful fordistributed 
omputing appli
ations.We �rst generalize the 
on
ept of a total order to that ofa string. Let (X;P ) be a poset where X is a set, and Pis a re
exive, antisymmetri
, and transitive binary relationon X. (X;P ) is a string if and only if there exists a map-ping f from X to N (the set of natural numbers) so that8x; y 2 X : x < y i� f(x) < f(y). The main di�eren
efrom a 
hain is that we let f(x) = f(y) when x and y are
on
urrent. Every 
hain and every anti-
hain is a string.Mathemati
ally, a string is a lexi
ographi
 sum of 
hainsand anti-
hains. We then introdu
e the 
on
ept of a stringrealizer of a poset. Informally, a string realizer of a poset is aset of strings su
h that the relationships in the poset 
an bederived using the strings. The ve
tor 
lo
ks that have beenused in distributed 
omputation 
orrespond to realizers us-ing strings rather than total orders. We then introdu
e thenotion of a string dimension of a poset as the least numberof strings required to realize the poset. We show, some-what surprisingly, that the string dimension of a poset isexa
tly equal to the dimension of the poset whenever thestring dimension is at least 2. This establishes a relation-ship between dimension theory and ve
tor 
lo
k me
hanismswhi
h are more like strings.We then use standard results in dimension theory to deriveresults about ve
tor 
lo
ks. We show that the theorem byCharron-Bost is a 
orollary of a result by Dushnik-Miller.Further, by using Dilworth's theorem on dimension of dis-tributive latti
es, we determine the string dimension of thelatti
e of 
onsistent 
uts indu
ed by a distributed 
omputa-tion.There are other advantages of strings and string dimension.For example, we show that a string realizer leads to a moreeÆ
ient en
oding s
heme for a partial order than a 
hainrealizer. We also de�ne the notion of a string extension ofa poset. A string extension is generalization of the 
on
eptof topologi
al sort of a poset. We show that for every posetthere exists a string extension whose length is equal to theheight of the poset.In summary, the paper makes the following 
ontributions.� We introdu
e the 
on
epts of string, string realizer andstring dimension and show that they are more natu-ral for distributed 
omputing appli
ations than thosebased on 
hains.� We establish that the string dimension of a poset issame as the 
hain dimension for any poset that is nota string.� We show that Charron-Bost's result follows from a re-sult by Dushnik and Miller[8℄.� We show that Fidge and Mattern's ve
tor 
lo
k alsoprovides ordering information on the latti
e of 
onsis-tent 
uts indu
ed by the partial order. We show that

any su
h me
hanism must have at least dimension Nusing Dilworth's theorem.� We show that, in general, string en
oding of partialorders is more eÆ
ient than 
hain en
oding. We alsogive an algorithm that generates a 
ode with at mostlog(height(P )+1)�width(P ) bits for any poset (X;P ).This method is superior to 
ode based on 
hain real-izers when the height of the poset is small.� We introdu
e and prove the existen
e of a normal stringextension of a poset, and show its appli
ation to tasks
heduling.Although this paper is 
on
erned only with distributed 
om-puting appli
ations, we note that en
oding of partial or-ders also have appli
ations in Databases[1℄, Arti�
ial Intel-ligen
e[9℄ and programming languages development[5℄.
2. BACKGROUND: DIMENSION THEORY
2.1 Partially Ordered Set and LatticesA pair (X;P ) is 
alled a partially ordered set or poset if Xis a set and P is a re
exive, antisymmetri
, and transitivebinary relation on X. We 
all X the ground set while P isa partial order on X. We write x � y and y � x in P when(x; y) 2 P . Also, x < y and y > x in P means x � y in Pand x 6= y.We use Hasse diagrams1 to represent �nite posets. If x < yin P , then x appears lower than y in the diagram.Let x; y 2 X with x 6= y. If either x < y or y < x, wesay x and y are 
omparable, and write x ? y. On the otherhand, if neither x < y nor x > y, then we say x and y arein
omparable, and write xjjy. A poset (X;P ) is 
alled 
hainif every distin
t pair of points from X is 
omparable in P .Similarly, we 
all a poset an anti
hain if every distin
t pairof points from X is in
omparable in P . A point x 2 X is
alled a maximal point (minimal point) if there is no pointy 2 X with x < y in P (x > y, respe
tively). We denote theset of all maximal points by max(X;P ), while min(X;P )denotes the set of all minimal points.A 
hain C of a poset (X;P ) is a maximum 
hain if no other
hain 
ontains more points than C. We use similar de�ni-tion for maximum anti
hain. The height of the poset P ,denoted by height(P ), is the number of points in the maxi-mum 
hain. Similarly, the width of the poset P , denoted bywidth(P ), is the number of points in a maximum anti
hain.We say (X;P ) and (Y;Q) are isomorphi
, if there exists a1�1 and onto map f : X �! Y so that x1 � x2 in P if andonly if f(x1) � f(x2) in Q.An element y 2 X is 
alled an upper bound for S if s � yin P , for every s 2 S. An upper bound y for S is the leastupper bound for S, abbreviated l.u.b.(S), provided y � y0 inP for every upper bound y0 of S. Lower bounds and greatestlower bounds are de�ned similarly. The poset is 
alled alatti
e if every nonempty �nite subset S � X has the leastupper bound as well as the greatest lower bound.1The formal de�nition of Hasse diagrams 
an be found in[6℄.
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Figure 1: (X;P )When L = (X;P ) is a latti
e, for any x; y 2 P , we de�nex _ y = l:u:bfx; yg (join)x ^ y = g:l:bfx; yg (meet)L is 
alled distributive latti
e if for all x; y; z 2 Xx ^ (y _ z) = (x ^ y) _ (x ^ z)Next we provide the de�nition of down-set and the poset ofthe form 2P. Let P = (X;P ) be a poset and let S � X. Sis 
alled a down-set in (X;P ) if x 2 S whenever y 2 S andx � y in P . Let D denote the family of all down-sets of P.De�ne a partial order Q on D by D1 � D2 in Q if and onlyif D1 � D2. Then the poset Q = (D;Q) is isomorphi
 to2P.
2.2 DimensionA familyR = fL1; L2; : : : ; Ltg of linear orders onX is 
alleda 
hain realizer of a poset (X;P ) if P = \R. x < y 2 Li\Ljif x < y in both Li and Lj . We also say that R realizes P .Figure 1 shows a poset P in whi
h fL1; L2g realizes P .It 
an be shown [15℄ that R is a realizer of P i� for everyx; y 2 X with x k y (x in
omparable to y) in P , there existsdistin
t integers i; j with 1 � i; j � t for whi
h x < y in Liand y < x in Lj . In the following, we write x <
 y whenx < y in L
,Definition 1. [15℄ For any poset (X;P ), the dimensionof (X;P ), denoted by dim(X;P ), is the least positive integert for whi
h there exists a family R = fL1; L2; : : : ; Ltg oflinear extensions of P so that P = \R = \ti=1Li.The dimension of the poset in Fig. 1 is 2. The 
on
eptof dimension provides us a way to en
ode a partial order.The elements of a partial order with dimension t 
an been
oded with a t-dimensional ve
tor as follows. For anyelement x, the ve
tor vx is de�ned as follows: vx[i℄ = numberof elements less than x in Li, for 1 � i � t. Given 
ode fortwo elements vx and vy, we have the following order:vx < vy () 8i : vx[i℄ < vy[i℄ (1)For example, the 
ode for a and b in the poset in Figure 1 is(2; 3) and (3; 1) based on the realizer. Based on the 
ode and(1), it 
an be easily determined that a and b are 
on
urrent.We 
all the order given by (1) the 
hain order.

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5Figure 2: S5The dimension of a poset 
an be arbitrarily large. Considera poset (X;P ) where X = fa1; a2; : : : ; ang[fb1; b2; : : : ; bng,and ai < bj in P if and only if i 6= j, for i; j = 1; 2; : : : ; n.This 
lass of posets is known as the standard example anddenoted by Sn. Figure 2 shows the diagram for S5. Thefollowing Theorem is due to Dushnik and Miller[8℄.Theorem 2. [8℄ dim(Sn) = n.Let Li = [a1; : : : ; ai�1; ai+1; : : : ; an; bi; ai; b1; : : : ; bi�1; bi+1;: : : ; bn℄, where a1 is the lowest element, and bn is the highestelement in 
hain Li Then R = fL1; L2; : : : ; Lng is a realizerof Sn.
3. STRINGIn Se
tion 2 we saw that 
lassi
al dimension theory provideslower bounds on the dimension of ve
tors when the 
ompar-ison is based on the 
hain order. On the other hand, theve
tor 
lo
ks in distributed 
omputing use ve
tor orderinggiven by the following (2) whi
h we 
all ve
tor order.u < v � 8k : 1 � k � N : u[k℄ � v[k℄ ^9j : 1 � j � N : u[j℄ < v[j℄ (2)Consider a distributed system in whi
h the 
ode of elementsis determined in a de
entralized fashion. In this 
ase therelationship between two events may not be known globally.Thus, if event e happened before f , this relationship maybe known only to a single pro
ess. From the perspe
tiveof other pro
esses, e and f may be indistinguishable (forexample, when both are internal to the pro
ess). This ismore easily 
aptured in the ve
tor order where a ve
tor uis deemed as smaller than ve
tor v even when u is smallerthan v in just one 
omponent and same in all the other 
om-ponents. Sin
e 
hain order requires that all the 
oordinatesin 
ode of event e are stri
tly less than all the respe
tive




oordinates in 
ode of event f , it is diÆ
ult to use 
hainorder in a distributed system. In this se
tion, we generalizethe 
on
epts in dimension theory so that the ordering usedbetween 
odes is identi
al to (2).We �rst give the de�nition of a string.Definition 3 (string). A poset (X;P ) is a string ifand only if 9f : X ! N (the set of natural numbers) su
hthat 8x; y 2 X : x < y i� f(x) < f(y)The set of elements in a string whi
h have the same fvalue is 
alled a knot. For example, a poset (X;P ) whereX = fa; b; 
; dg and P = f(a; b); (a; 
); (a; d); (b; d); (
; d)g isa string be
ause we 
an assign f(a) = 0; f(b) = f(
) = 1,and f(d) = 2. Here, b and 
 are in the same knot. Thedi�eren
e between a 
hain and a string is that a 
hain re-quires existen
e of a one-to-one mapping su
h that x < yi� f(x) < f(y). For strings, we drop the requirement of thefun
tion to be one-to-one. We represent a �nite string bythe sequen
e of knots in the string. Thus, P is equivalentto the string f(a); (b; 
); (d)g.A 
hain is a string in whi
h every knot is of size 1. Ananti-
hain is also a string with exa
tly one knot. Note thata string drops the distin
tion between elements whi
h havethe same order relationship with all other elements. Thus,two elements x and y have the same 
ode f(x) = f(y) i� forany element z, (1) x < z i� y < z, and (2) z < x i� z < y.This is a more natural 
on
ept for ordered sets.A string gives more eÆ
ient en
oding of the partial orderthan the use of 
hains. At an extreme, the range of f maybe �nite even when the domain of f is in�nite. For example,the following order f all even numbers g < f all odd numbersg on natural numbers 
an be en
oded by assigning 0 to alleven numbers and 1 to all odd numbers. Su
h a poset 
annotbe assigned 
odes using the 
lassi
al dimension theory.We write x �s y if x � y in string s, and x <s y if x < y instring s.Definition 4 (String Realizer). For any poset (X;P ),a set of strings S is 
alled a string realizer i� 8x; y 2 X :x < y in P if and only if1. 8s 2 S : x �s y, and2. 9t 2 S : x <t y.The de�nition of less-than relation between two elementsin the poset based on the strings is identi
al to the less-than relation as used in ve
tor 
lo
ks. This is one of themotivation for de�ning string realizer in the above manner.A string realizer for the poset in Fig. 1 is given by twostrings s1 = f(
); (d; a); (b)g s2 = f(d; b); (
; a)gThere are two important di�eren
es between de�nitions ofstring realizers and 
hain realizers. First, if R is a 
hain

realizer of a poset P , then P is simply the interse
tion oflinear extensions in R. This is not true for a string realizer(see Fig. 1). Se
ondly, all the total orders in R preserve P ,i.e., x < y in P implies that x < y in all 
hains in R. Thisis not true for string realizer. For example, d < a in posetP of Fig. 1, but (d; a) appears as a knot in the string s1.We are only guaranteed that a will not appear lower than din any string - they may appear in the same knot.Now, analogous to the dimension we de�neDefinition 5 (String Dimension). For any poset (X;P ),the string dimension of (X;P ), denoted by sdim(X;P ), isthe size of the smallest set of strings S su
h that S is a stringrealizer for (X;P ).Example 6. Consider the standard example Sn. The fol-lowing fun
tion f 
an be used to 
reate a string realizer ofSn. For all k; i = 1; 2; : : : ; n,fk(ai) = � 0 if k 6= i1 otherwisefk(bi) = � 0 if k = i1 otherwiseFor example,a1 = (1; 0; 0; : : : ; 0); b1 = (0; 1; 1; : : : ; 1)a2 = (0; 1; 0; : : : ; 0); b2 = (1; 0; 1; : : : ; 1)In this example, the length of ea
h string is 2 and thus ea
helement requires only n bits for en
oding. If we use 
lassi
aldimension based on total orders, ea
h element would requiren � log n bits.Example 7. Consider the poset (X;P ) as follows.X = f;; fag; fbg; fa; bg; fa; 
g; fa; b; 
ggP = f(A;B) 2 X �X : A � Bg.A string realizer for the poset 
an be obtained as follows.For ea
h set A 2 X, we use a bit ve
tor representation ofthe set A. Thus, fa; 
g is represented by (1; 0; 1) and the setfa; bg is represented by (1; 1; 0). This representation givesus a string realizer with three strings su
h that every stringhas exa
tly two knots.We now establish the relationship between string dimensionand 
hain dimension. It may appear, at �rst, that thestring dimension of a poset may be mu
h smaller than the
hain dimension. However, this is not the 
ase as shown bythe following result.Theorem 8 (Equivalen
e Theorem). For any poset(X;P ) su
h that sdim(P ) � 2; sdim(P ) = dim(P )Proof. There are two 
ases.sdim(P ) � dim(P ).



It is suÆ
ient to show that for any 
hain realizer of size k,there exists a string realizer of equal or smaller size. Givena 
hain realizer C, we 
onstru
t the string realizer as follows.Ea
h 
hain is simply viewed as a string. Our obligation isto show that the order generated from the string realizer isthe same as the one based on 
hain realizer (re
all that thede�nition of less than for string realizer is di�erent from lessthan in a 
hain realizer.) In this proof, let x 7! y () 8s 2S : x �s y ^ 9t 2 S : x <t y. It is suÆ
ient to show thatx < y () x 7! y. First, we show that x < y =) x 7! y.x < y =) 8
 2 C : x <
 y=) 8s 2 S : x <s y=) 8s 2 S : x �s y ^ 9t 2 S : x <t y=) x 7! yNext, we show that :(x < y) =) :(x 7! y). There aretwo 
ases.
ase A: y < x =) y 7! x (From 
ase I)=) :(x 7! y)
ase B: x k y =) :(x < y) ^ :(y < x)=) 9
 2 C : x <
 y ^ 9d 2 C : y <d x=) 9s 2 S : x <s y ^ 9t 2 S : y <t x=) :(y 7! x) ^ :(x 7! y)=) :(x 7! y)dim(P ) � sdim(P ).Given a string realizer of P , S, we 
onstru
t the 
orrespond-ing 
hain realizer. We a
hieve this by untying knots of thestring to form a 
hain.First 
onsider the 
ase when two elements x and y belong tothe same knot in all strings. We will 
ombine these elementsinto one element say z. After �nding the 
hain realizer ofthe new set, we repla
e z with x and y. Further, in one
hain we keep x less than y and in another 
hain we keep yless than x. Observe that we 
an do this be
ause there areat least two 
hains due to our assumption of sdim(P ) � 2.Now assume that there are no two elements as in the �rst
ase. Consider any knot fx1; x2; : : : ; xmg in any string s1.Now we determine for all pairs (xi; xj) of the elements inthe knot.1. If (8s 2 S � fs1g : xi �s xj) ^ (9t 2 S � fs1g : xi <txj), then we get xi < xj . or2. If 9s; t 2 S � fs1g : (xi <s xj) ^ (xj <t xi), then weget xi k xj .Then, we 
an untie this knot by performing the topologi
alsort. By repeating this pro
ess, all knots on s1 
an be untied,and we obtain the 
hain.Figure 3 shows an example of this untying me
hanism. Sin
ed and e appear in the same knot in all strings, we �rst 
om-bine d and e into one element f . As a result we get stringsin Figure 3(C). We then untie the knot (
; f) by keeping 
less than f in s1 and untie the knot (a; b) in s2 by keeping aless than b. We now have the 
hain order. Now we repla
ef by d and e, keeping d less than e in s1 and e less than din s2 to get the 
hains in Figure 3(D).

4. APPLICATIONS OF STRING REALIZ-
ERS AND DIMENSION

4.1 Lower Bound on Dimension of Vector ClocksAs we have mentioned before, the de�nition of a string re-alizer is identi
al to the de�nition for ve
tor 
lo
ks in dis-tributed systems. A distributed 
omputation onN pro
esses
an be modeled as a poset of events (E;!) of width N .Fidge and Mattern's ve
tor 
lo
ks are simply string realiz-ers of the poset (E;!). For example, 
onsider the poset inFig. 3 whi
h has width two. We 
an view it as a 
omputa-tion on two pro
esses, the �rst pro
ess exe
utes events a, band d in that order, and the se
ond pro
ess exe
utes 
 ande in that order. By viewing b and 
 as send events re
eivedat e and d respe
tively, we get the following ve
tor 
lo
ksfor all events:v(a) = (1; 0); v(b) = (2; 0); v(d) = (3; 1);v(
) = (0; 1); v(e) = (2; 2)This 
orresponds to two stringss1 = f(
); (a); (b; e); (d)g and s2 = f(a; b); (
; d); (e)gThis is a di�erent string realizer than shown in Figure 3, buthas the same dimension.Now that we have established equivalen
e of dimension andstring dimension for non-string posets, we 
an use existingresults from dimension theory to prove results on dimensionof ve
tor 
lo
ks.We �rst 
onsider lower bounds on the (string) dimension ofve
tor 
lo
ks. Charron-Bost[4℄ has shown that we require atleast N -dimensional ve
tor timestamps to 
apture 
on
ur-ren
y in the distributed 
omputation 
onsisting of N pro-
esses. The proof is by 
onstru
ting a 
omputation in whi
hany timestamping s
heme with less than N 
oordinates isnot able to 
apture 
on
urren
y a

urately. The followingproof uses dimension theory and our equivalen
e theorem.Theorem 9. For every N , there exists a distributed 
om-putation (E;!) on N pro
esses su
h that any assignmentfrom E to N k that 
aptures 
on
urren
y relation on E hask � N .Proof. The result is trivially true for N equal to 1. Forany N � 2, 
onsider the standard example SN shown in Fig-ure 2. De�ne ai and b(i mod N)+1 to be on pro
ess Pi. This
omputation is on N pro
esses. By Dushnik and Miller'sTheorem, this poset has dimension N . From Theorem 8,the 
omputation has string dimension also equal to N . Anyassignment from E to N k that 
aptures 
on
urren
y rela-tion, results in a string realizer with k strings. Sin
e thestring dimension is N , it follows that k � N .Although this result proves that there 
annot be a uniformtimestamping me
hanism of less than N 
oordinates, it doesnot ex
lude timestamping me
hanism whi
h may use lessthan N 
oordinates for a parti
ular 
omputation.
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S S21 S S1 2Figure 3: An example of untying me
hanism.As an extreme example, 
onsider a system of N pro
esses,where N > 3. Assume that pro
esses do not send any mes-sages to ea
h other. We 
an timestamp ea
h event j onpro
ess i by the ve
tor vi(j) = (i; n� i; j). It is easy to seethat this timestamping me
hanism 
aptures 
on
urren
y re-lation a

urately2.Next we show that N -dimensional ve
tor 
lo
ks of Fidge andMattern (FM ve
tors for short) have an additional propertythat makes it ne
essary to have dimension N for all 
om-putations. In parti
ular, FM ve
tors satisfy the followingproperty. If f and g are two distin
t events su
h that eventf is on pro
ess f:p, thenv(f)[f:p℄ � v(g)[f:p℄) f ! g (3)As a result of this property we show that FM ve
tors 
an alsobe used to timestamp elements of another poset - the latti
eof 
onsistent 
uts of the 
omputation (E;!). For notational
onvenien
e, we use e:v[i℄ to denote the ith 
omponent ofthe ve
tor 
lo
k assigned to the event e. Re
all that F is a
onsistent 
ut of (E;!) i�(f 2 F ) ^ (e! f)) e 2 FFor a 
onsistent 
ut F , we de�ne its timestamp asF:v[i℄ = maxfe:v[i℄ j e 2 FgTheorem 10 shows that the proposed ve
tor timestamp for
onsistent 
uts based on FM ve
tor 
lo
ks 
aptures the re-lation � between 
onsistent 
uts.Theorem 10. F � G () F:v � G:vProof. It is easy to see thatF � G =) F:v � G:vWe show that F:v � G:v =) F � G. Let :(F � G). Thisimplies that there exists f 2 F �G.2In fa
t, this partial order 
an be en
oded using ve
tor
lo
ks of dimension 2.

fde�nition of �gF:v � G:v =) 8i9g 2 G : f:v[i℄ � g:v[i℄fde�nition of fg=) 9g 2 G : f 6= g ^ f:v[f:p℄ � g:v[f:p℄fFM ve
tor 
lo
k propertyg=) 9g 2 G : f ! gfG is a 
onsistent 
utg=) f 2 GContradi
tion.We now explore the stru
ture of the set of all 
onsistent 
utsunder the relation �. Consistent 
uts are identi
al to down-sets in latti
e theory. A standard result in latti
e theorystatesTheorem 11. [2, 14℄ Given any poset P , let 2P be theposet formed by the set of its down-sets under � order.Then, 2P is a distributive latti
e.Further, a result due to Dilworth tells us the dimension ofa distributive latti
e.Theorem 12. [7℄ Let L be a distributive latti
e. Choosea poset P = (X;P ) so that L is isomorphi
 to 2P. Thendim(L) = width(P ).Combining our equivalen
e theorem with these results, wegetTheorem 13. Any ve
tor 
lo
k me
hanism that 
aptures� relation on the set of 
onsistent 
uts in a distributed 
om-putation of width N (equivalently, on N pro
esses), musthave at least N 
oordinates.Proof. Follows from Theorems 11, 12 and 8.
4.2 Encoding Partial OrdersThe 
on
ept of string realizer has the advantage over 
hainrealizer that it generally requires less number of bits to en-
ode a partial order using string realizer. Formally, 
onsider



the following problem. Given a partial order (X;P ), de�ne a
oding fun
tion 
ode : X �! f0; 1gk and a binary relation <on 
odes su
h that 8x; y 2 X : x < y in P () 
ode(x) <
ode(y). Note that the order relation may be any arbitraryorder (not ne
essarily ve
tor order). The only requirementis that it 
an only use the bits in 
ode(x) and 
ode(y) todetermine the order. It is 
lear that any partial order 
anbe 
oded using log(n) + n bits per element as follows. Forevery element, we store a binary array of size n. Further,ea
h element is assigned a unique index into the array. Letindex(x) be the index of x in 1::n and x:v be the n bit arrayfor element x. Then, we determine the order between x andy as follows. x < y i� (x:v[index(y)℄ < y:v[index(x)℄).Using dimension theory, partial orders of lower dimensions
an be en
oded mu
h more su

intly. If a partial order hasdimension k, then it 
an be en
oded using k � log(n) bits.However, when the dimension is large (as for the standardexample), this method may take upto n=2 � log(n) bits perelement.String realizers typi
ally result in a lower number of bitsfor en
oding. From Theorem 8, we know that for 
odingpurposes, the total number of 
oordinates based on totalorders and strings are the same. The di�eren
e lies in thenumber of bits required to 
ode a single 
oordinate. Given astring realizer R. If R has k strings ea
h of length less thanor equal to l, then (X;P ) 
an be 
oded using k log l bits.l is 
learly less than or equal to jXj. Depending upon thestru
ture of the poset, l may be mu
h smaller than log(n)as seen for the 
ase of the standard example.In general, we have the following result.Theorem 14. Every partial order (X;P ) on n � 2 el-ements 
an be en
oded using a string realizer in at mostlog(height(P ) + 1) � width(P ) bits.Proof. For 
onvenien
e, let w = width(P ). We use Dil-worth's 
hain 
overing theorem whi
h states that (X;P )
an be partitioned into w 
hains C1; C2; :::; Cw. We thenuse the transitively redu
ed diagram of (X;P ) with w pro-
esses as given by the 
hain de
omposition. Further, we useFidge and Mattern's algorithm to assign ve
tor timestampfor ea
h event when the poset diagram is viewed as a 
ompu-tation. These ve
tor timestamps determine a string realizerwith w 
oordinates su
h that no 
oordinate is greater thanheight(P ) + 1.There is a small 
hange in appli
ation of Fidge and Mat-tern's algorithm in above 
onstru
tion. Their algorithm as-sumes that initial events of all pro
esses are in
omparableand assigns the initial event at pro
ess i a ve
tor timestampas follows:8j : j 6= i : v[j℄ = 0;v[i℄ = 1;In our 
onstru
tion (in the proof of Theorem 14), all theinitial events of 
hains may not be in
omparable. To solvethis problem, it is suÆ
ient to add a spe
ial initial eventfor ea
h 
hain whose smallest event is not a minimal event

in the partial order. For example, 
onsider the poset inFig. 4. This poset 
an be de
omposed into three 
hainsfa; b; 
g; fd; eg, and ff; gg. However, d is not a minimalelement of the poset. Hen
e to apply, Fidge and Mattern'salgorithm we may assume an event smaller than d whi
h isin
omparable to a and f in Pro
ess 2 with ve
tor 
lo
k equalto (0; 1; 0). Then, to 
ompute the ve
tor at d, we 
omputethe maximum of ve
tors for a, f and (0; 1; 0). Thus, theve
tor 
lo
k for all events 
an be derived asv(a) = (1; 0; 0); v(f) = (0; 0; 1); v(d) = (1; 1; 1);v(b) = (2; 0; 0); v(
) = (3; 0; 0); v(e) = (2; 2; 1);v(g) = (1; 1; 2).This results in the following string realizer:s1 = f(f); (a; d; g); (b; e); (
)g,s2 = f(a; f; b; 
); (d; g); (e)g, ands3 = f(a; b; 
); (d; e; f); (g)g.Observe that some strings may be longer than others andwe need not use the same number of bits to en
ode positionsin all the strings. The total number of bits required for arealizer with t strings isi=tXi=1dlog(length(si)eWe note here that Bou
het[3℄ and Trotter[15℄ introdu
eda generalization of the original dimension by restri
ting thelength of 
hains used in the realizer. This new dimension pa-rameter is 
alled k-dimension (denoted by dimk(P )), whenonly the 
hains of length k are allowed in the realizer of P .The k-dimension of P , k � 2, is the smallest positive integert for whi
h P is isomorphi
 to a subposet of Kt (ie. Kt is theprodu
t of t 
hains of length k). Therefore, the 2-dimensionis the size of the smallest hyper
ube in whi
h P 
an beembedded.Obviously [11℄,dim(P ) � dimk�1(P ) � : : : � dim2(P )One interesting question is to determine the smallest inte-ger k, 2 � k � jP j, su
h that dim(P ) = dimk(P ). Ourpro
edure in the proof of Theorem 14, shows that8k : k > height(P ) : dim(P ) = dimk(P )Habib et al.[11℄ went further by allowing 
hains of di�er-ent length in the realizer of the poset. They de�ned a newdimension parameter 
alled en
oding dimension as follows.The en
oding dimension of a poset P , denoted by edim(P ),is the least integer t su
h that t =Pi=pi=1dlog2 kie and P 
anbe embedded into K1 � K2 � : : : Kp, where Ki denotes a
hain of length ki.It is shown in [11℄ that when P is an anti
hain, then edim(P ) =2 log jP j. This is equal to the number of bits required in theDushnik-Miller's dimension. However, by using string real-izers, we 
an use only one bit to en
ode ea
h element in ananti
hain.



c

e

fa

b

c

d

g

a

b d

e g

fFigure 4: A Poset and its Normal String ExtensionA key distinguishing feature of our work is that we alloworder equivalent elements to have the same 
ode. This ismore natural 
on
ept for posets. Further, it allows hier-ar
hi
al representation of orders. Two elements may havethe same 
ode at one level, but di�erent at the other levelwhen they are not distinguishable at 
oarser granularity but
an be distinguished with �ner granularity of the order. Forexample, in a distributed 
omputation, all internal eventsbetween two external events may be assigned the same 
odeat the 
oarser level of granularity.
4.3 Lower bound on Dimension of a PosetWe �rst de�ne the notion of string length to derive a lowerbound on dimension of any poset. The length of a realizerS for the poset P , denoted by slength(P;S), is de�ned asthe length of the longest string in the string realizer S ofP . Let slength(P ) denote the length of the longest stringin the string realizer with minimum number of strings. Thefollowing de�nition is useful in determining the lower boundon the dimension.Definition 15. Let (X;P ) be any poset. For x; y 2 X,we say that x is order-equivalent to y (denoted by x � y )i� x is in
omparable to y and for all z 2 X : x < z � y < zand for all z 2 X : z < x � z < yLet numeq(P ) denote the number of equivalen
e 
lasses ofthe relation �. The following lemma shows the relationshipamong dim(P ); slength(P ) and numeq(P ).Lemma 16. dim(P ) � log (numeq(P ))= log (slength(P )).Proof. The proof follows from the fa
t that the totalnumber of 
odes is equal to slength(P )dim(P ). Further,two elements in di�erent equivalen
e 
lasses 
annot havethe identi
al 
ode. This implies that slength(P )dim(P ) �numeq(P ).The above lemma provides a lower bound on dimension ofa poset P .
4.4 String Extension of Partial OrdersMany appli
ations, for example, task s
heduling with pre
e-den
e 
onstraints require that elements in a poset are pro-
essed in a order whi
h does not violate pre
eden
e 
on-straints. In general, topologi
al sort of a partial order whi
hprodu
es a linear extension of partial order has been useful

in this and other algorithmi
 appli
ations. Similar to a lin-ear extension, we 
an de�ne a string extension of a partialorder as follows.Definition 17. A string s is a string extension of a par-tial order (X;P ) if 8x; y 2 X : x <P y ) x <s y.Note that in 
ontrast to a 
hain realizer whi
h 
ontains lin-ear extensions of a partial order, a string realizer does notne
essarily 
ontain string extensions.We 
all s, a normal string extension of (X;P ) if the lengthof s is equal to the height of (X;P ). We have the followingresult.Theorem 18. For every poset (X;P ), there exists a nor-mal string extension s.Proof. The string s 
an be 
onstru
ted by the followingalgorithm (that is impli
it in Dilworth's anti-
hain 
overingtheorem). Remove all the minimal elements of the partialorder and put them in the lowest knot. Get the next setof minimal elements and put them as the next knot. Byrepeating this pro
edure till all elements in (X;P ) are re-moved we get the desired string. It 
an be easily veri�edthat the string preserve order in (X;P ) and has its lengthequal to the height of the poset.For example, 
onsider the poset in Fig. 4. The normal stringextension produ
ed using the 
onstru
tion in Theorem 18 is:f(a; f); (b; d); (
; e; g)gIt is easily veri�ed that the above string preserves the partialorder.If the poset (X;P ) denotes tasks, then a normal string ex-tension represents a pro
essing s
hedule (assuming that 
on-
urrent tasks 
an be exe
uted in parallel). The length of thestring 
orresponds to a 
riti
al path in (X;P ).
5. CONCLUSIONSIn this paper, we introdu
e a new 
lass of posets 
alled stringand de�ne the notions of string realizer and string dimen-sion. We show that for distributed 
omputing appli
ations,these 
on
epts are more natural than the 
orresponding 
las-si
al 
on
epts based on 
hains. In general, string en
odingof partial orders is more eÆ
ient than 
hain en
oding and



easier to obtain in a distributed environment. We also es-tablish that the string dimension of a poset is the same asthe 
hain dimension for any poset that is not a string.We show that Charron-Bost's result follows from the resultby Dushnik and Miller[8℄. We also show that Fidge andMattern's ve
tor 
lo
k provides ordering information on thelatti
e of 
onsistent 
uts indu
ed by the partial order. Byinvoking Dilworth's theorem, we show that any me
hanismthat provides ordering information on the 
onsistent 
utsmust have dimension equal to the width of the 
omputation.We also show appli
ations of our theory in en
oding partialorders and determining string extensions of a partial order.
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