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Abstract

Maintaining spanning trees in a distributed fashion
is central to many networking applications and self-
stabilizing algorithms provide an elegant way of doing
it in fault-prone environments. In this paper, we propose
a self-stabilizing algorithm for maintaining a spanning
tree in a distributed fashion for a completely connected
topology. Our algorithm requires a node to process O(1)
messages on average in one asynchronous round as com-
pared to previous algorithms which need to process mes-
sages from every neighbor, resulting in O(n) work in a
completely connected topology. Our algorithm also sta-
bilizes faster than the previous approaches. Our approach
demonstrates a new methodology which uses the idea of
core and non-core states for developing self-stabilizing
algorithms. The algorithm is also useful in security re-
lated applications due to its unique design.

1 Introduction

Fault tolerance is a major concern in distributed systems.
The self-stabilization paradigm, introduced by Dijkstra
[Dij74], is an elegant and a powerful mechanism to han-
dle one particular class of faults. These faults are the
transient faults which can corrupt the state of the system
and will be called data faults. Self-stabilizing systems
ensure that a system starting from any state would con-
verge to a legal state provided the faults cease to occur.

∗supported in part by the NSF Grants ECS-9907213, CCR-
9988225, Texas Education Board Grant ARP-320, an Engineering
Foundation Fellowship, and an IBM grant.

Spanning trees have many uses in computer networks.
Once a spanning tree is established in a network, it may
be used in broadcast of a message, convergecast, β syn-
chronizer, and many other algorithms. As a result, it is
desirable to have an efficient self-stabilizing algorithm
for spanning trees. Self-stabilizing algorithms for span-
ning tree construction have been extensively studied. The
first algorithm in this area was given in [DIM89, DIM90]
which deals with building BFS tree for a graph. Other
algorithms were also proposed for self-stabilizing BFS
trees which dealt with different system models and as-
sumptions [AKY91],[AG94], [HC92]. Algorithms have
also been proposed for other types of trees - like DFS tree
[CD94] and minimum spanning tree [AS97]. There have
been other papers which try to optimize on the memory
used and stabilization time [Joh97], [AK93].

In this paper, we demonstrate a new technique for con-
structing self-stabilizing algorithms by using it for main-
taining spanning trees. It is well known that one can de-
sign self-stabilizing algorithms with detection and reset
strategy [AG94]. In this strategy, the nodes periodically
test if the system is in legal state and on detection of a
fault, carry out the reset strategy. Many self-stabilizing
algorithms have local detection, i.e., the detection by
each node corresponds to evaluation of a boolean pred-
icate only on its and its neighbors’ variables. The reset
procedure may be complicated depending upon the ap-
plication.

Our method is an extension of the above strategy. We
view the set of global states as cross-product of core
states and non-core states. The core states satisfy the
property: There exists a legal state for every core state.
The non-core component of a global state is maintained
only for performance reason. Given the core component,
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one could always recreate the non-core component. In
our algorithm for maintaining a spanning tree, we will
use Neville’s code [Nev53] of the tree as the core com-
ponent and parent structure as the non-core component.
Given any Neville’s code, there exists a unique labeled
spanning tree in a completely connected graph. Now as-
sume that our program suffers from a data fault. The
data fault could be in the core component or the non-core
component. The crucial property that we use is that every
bit pattern in the core component results in a valid code.
Therefore, in either case, we will assume that it is the
non-core component that has changed. If there is an ef-
ficient method of detecting that the non-core component
does not correspond to the core component, we simply
reset the non-core component to a value corresponding to
the core component. The challenge lies in efficient detec-
tion and reset of the state when information is distributed
across the network. Similarly, for maintaining a permu-
tation, its inversion vector can be the core component and
then some auxiliary data structures can be maintained to
make the fault detection and correction efficient. Details
of this example are given in the full version of this paper
[GA04].

We assume our system to be a completely connected
graph with n nodes having ids from 1 to n. Our algo-
rithm is designed for asynchronous message-passing sys-
tems, and unlike many other self-stabilizing algorithms,
it does not require a central daemon [Dij74] for schedul-
ing decisions. Although some of our assumptions are
stronger than the previous work, our algorithm has some
significant advantages. Traditionally, the notion of time
used in asynchronous algorithms is the number of asyn-
chronous rounds [DIM90] it executes. Previous algo-
rithms require examining every neighbor’s variables dur-
ing correction, needing O(n) asynchronous rounds in one
asynchronous cycle [DIM90] for a completely connected
topology. Our algorithm does not fit in well with model
of asynchronous rounds due to presence of asynchronous
receives. We use a model similar to synchronous model
for evaluating the time complexity of our algorithm. In
this model, the stabilization time of the previous algo-
rithms remains the same as that in asynchronous rounds
model. In the new model, our algorithm requires every
process to handle only O(1) messages on average in one
cycle. The stabilization time of our algorithm is O(d),
where d is an upper bound on the number of times a
node appears in the Neville’s code. It turns out that d
is O((logn)/ loglogn) with very high probability for a

randomly chosen code. This gives a very small stabiliza-
tion time. Moreover, as a result of using the idea of core
and non-core states, we also provide the individual nodes
with the ability to systematically change the structure of
the tree. This renders the algorithm useful in settings not
traditionally associated with self-stabilizing systems. As
an example, we consider an application where the partic-
ipating nodes would like to periodically change the struc-
ture of the tree in a distributed fashion for security pur-
poses. This can be done using our algorithm by changing
code value for some node which would result in a differ-
ent tree upon stabilization. Another useful feature of our
algorithm is that it allows the root of the tree to change
dynamically. This is different from most of the previous
approaches where the root node executes a different algo-
rithm from the rest of the nodes, resulting in a fixed root.
We also discuss an application which requires this fea-
ture. In summary, the main advantages of our algorithm
are:

• Fast stabilization.

• Allows systematic change in tree structure.

• Root node can change dynamically.

2 Neville’s Third Encoding

We assume that processes are labeled as P1, . . . ,Pn and
they form a completely connected graph. To maintain
a spanning tree (in a non-stabilizing manner), it is suffi-
cient for each process to maintain the parent variable but
this method is not self-stabilizing as a fault in the parent
pointer of some process may result in an invalid struc-
ture.

For simplicity we assume that all spanning trees rooted
at Pn constitute the set of legal structures. Later we ex-
plain how this assumption can be relaxed to allow any
node to become the root. We represent a tree through
an encoding for labeled trees called the Neville’s third
encoding [Nev53] (The reader can find a discussion
on other labeled tree encodings and their properties in
[DM01]). In this paper the term “Neville’s code” refers
to Neville’s third code. Each labeled spanning tree has
a one-to-one correspondence with a Neville’s code. This
code is a sequence of n−2 numbers from the set {1 . . .n}.
Let Neville’s code of the tree be denoted by code[i] for
i ∈ {1 . . .n− 2}. For completeness sake, derivation of
Neville’s code from a labeled spanning tree is discussed.
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Given a labeled spanning tree with n nodes, the Neville’s
code can be obtained by deleting n− 1 edges in the tree
as shown in Figure 1.

x[1] = least node with degree 1
for (i = 1; i < n; i++)

y[i] = neighbor of x[i]
delete edge between x[i] and y[i]
if (degree[y[i]] == 1)

x[i+1] = y[i]
else

x[i+1] = least node with degree 1

Figure 1: Algorithm to compute Neville’s code of a la-
beled tree

The algorithm starts by deleting the least leaf node
(leaf with least label). In iteration i, a node x[i] is deleted
and its neighbor y[i] is recorded. The edge between x[i]
and y[i] is deleted as well. Then, variable x[i + 1] is set
to y[i] if the degree of y[i] is 1, otherwise it is set to the
least leaf node. The sequence {y[i]|1 ≤ i ≤ n− 2}, thus
obtained, is called Neville’s code. Note that even though
there are n− 1 iterations, we only consider n− 2 entries
as the value of y[n−1] is always n. For all the algorithms
in this paper we consider the n−1 length code which ex-
plicitly includes n at the end. As an example, consider the
labeled tree given in Figure 2. To compute the Neville’s
code for the tree, we start by deleting the least leaf node,
1. Since the parent of 1 is 5, at this point the code is (5).
Now 5 is still not a leaf, so we again choose the least leaf
node in the remaining tree, 3. We proceed by deleting 3
and adding its parent 2 to the code. Continuing in a simi-
lar fashion, after n−1 = 6 iterations of the algorithm, the
code (5,2,7,5,5,7) is obtained.

Given Neville’s code, the labeled spanning tree can
also be computed easily. We first calculate the degree
of each node v in the labeled spanning tree as follows:
degree(v) = 1 + number of times v appears in the code.
Note that for the root node n, this gives a value which is
one higher than the actual degree of the root but this is re-
quired for the correctness of the algorithm. Once degree
of each node is known, the procedure given in Figure 3
can be used to compute the code.

We require Pi to maintain code[i] as the core data struc-
ture and parent[i] as the non-core data structure. If effi-
ciency were not an issue, this would be sufficient for a
self-stabilizing algorithm. Periodically, all nodes would
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Figure 2: A spanning tree with Neville’s code
(5,2,7,5,5,7)

j = least node with degree 1
for (i = 1; i < n; i++)

parent[ j] = code[i]
degree[ j]−−
degree[code[i]]−−
if (degree[code[i]] == 1) then

j = code[i]
else

j = least degree node with degree 1

Figure 3: Algorithm to compute labeled tree from
Neville’s code

send their code to Pn. Pn would calculate parent[i] for
each node Pi and send it back. Pi would reset parent[i]
to the value received from Pn. Even if parent[i] was
corrupted, it would be reset to agree with the spanning
tree given by Neville’s code. If the variable code[i] gets
changed, it would still result in a valid spanning tree. The
parent pointers would then be reset to agree with the new
code.

This method would be wasteful when there are no er-
rors. The code and the parent values would be exchanged
without serving any purpose. In a large network, it is de-
sirable to have local detection of error and only on an
error, the correction algorithm should be invoked.

3 Non-Core Data Structures for
Spanning Trees

Our strategy would be to introduce new data structures
in the system so that by imposing a set of constraints on
these data structures, we can efficiently detect and correct
data faults. For this purpose, the following data struc-

3



tures are used:

• parent: The variable parent[i] gives the parent of
node Pi in the spanning tree.

• f : The variable f [i] gives us the iteration in which
the node Pi is deleted in the algorithm for obtaining
Neville’s code of a tree. Therefore, code[ f [i]] gives
us the parent[i]. Since Pn is not deleted in first n−1
iterations, we assume that f [n] = n.

• z: The variable z[i] gives the largest value of j such
that code[ j] = i. If there is no such j, then z[i] = 0.

Based on the properties of Neville’s code, it can be
verified that the variables — code, parent, f and z —
satisfy the following constraints:

(R1) ∀i : code[ f [i]] = parent[i]
Follows from the property of the f relating it to the
parent.

(R2) (∀i : 1 ≤ i ≤ n−2 ⇒ 1 ≤ code[i] ≤ n)
∧(code[n−1] = n)∧ (code[n] = 0)
This constraint is the definition of code extended to
all the nodes.

(R3) (i) ∀i : 1 ≤ i < n ⇒ 1 ≤ f [i] ≤ n−1
This constraint puts restriction on the range of val-
ues that a node other than the root is allowed to take.

(ii) f is a permutation on [1 . . .n]
The definition of f along with the topology of the
algorithm in Figure 1 imply that the f values are
distinct and range from 1 . . .n.

(R4) ∀ j : z[ j] = max{i|code[i] = j}∪{0}
This is the definition of z.

(R5) ∀i : z[i] 6= 0 ⇒ ( f [i] = z[i]+1)
If a node i, which at the starting of the algorithm
was not a leaf node, becomes a leaf node during the
iteration j of the algorithm, then it is deleted in the
iteration j + 1. This constraint enforces this condi-
tion.

These constraints are strong enough to characterize a
spanning tree, i.e., given a set of data structures code,
parent, f and z which satisfy these constraints, the
parent structure results in a valid spanning tree regard-
less of the definitions of these data structures. From now
on, when we consider the data structures code, parent,

f and z, we would just think of them as obeying a cer-
tain set of constraints and not necessarily corresponding
to the original definitions that were given for them.

We would be dealing with two sets of con-
straints — R = {R1,R2,R3(i),R4,R5} and C =
{R1,R2,R3,R4,R5}. It is evident that any algorithm
which satisfies the constraint set C would also satisfy
the constraint set R . The trees resulting from obeying
these constraint sets possess different guarantees. The
two theorems that follow provide a characterization of
those guarantees.

Theorem 1 If code, parent, f and z satisfy constraint
set R then parent forms a valid spanning tree rooted at
Pn.

Proof: Let the directed graph formed by the parent re-
lation satisfying constraints R be Tparent . The edges of
Tparent are directed from the child to the parent.
We first show that Tparent is acyclic. Let i = parent[ j] in
Tparent for some nodes i and j. Then,

code[ f [ j]] = i (Using (R1))
⇒ (z[i] 6= 0)∧ ( f [ j] ≤ z[i]) (Using (R4))
⇒ f [ j] < f [i] (Using (R5) for i)

Applying this argument repeatedly shows that ancestor of
a node has higher f value than the f value for the node
itself. This implies that no node is ancestor of itself and
hence Tparent is acyclic.

We now show that every node except Pn has outdegree
1 and Pn has outdegree 0. Consider a node i 6= n. Then,

f [i] 6= n (Using (R3)(i))
⇒ 1 ≤ code[ f [i]] ≤ n (Using (R2))
⇒ 1 ≤ parent[i]≤ n (Using (R1))

This implies that in Tparent , every node except Pn has out-
degree 1. For Pn, consider the following:

code[n−1] = n∧ code[n] = 0 (Using (R2))
⇒ z[n] = n−1 (Using (R4))
⇒ f [n] = z[n]+1 (Using (R5))
⇒ f [n] = n
⇒ code[ f [n]] = 0 (Using (R2))
⇒ parent[n] = 0 (Using (R1))

Therefore, Pn does not have a parent. Since all other
nodes have a parent within the range 1 . . .n and there are
no cycles in Tparent , Tparent forms a spanning tree rooted
at Pn.

The above theorem just ensures that the parent forms
a spanning tree. It does not enforce any relationship be-
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tween the structure of the tree formed by parent and tree
corresponding to code. The next theorem establishes this
relationship.

Theorem 2 If code, parent, f and z satisfy constraint set
C , then parent forms a rooted spanning tree isomorphic
to the tree generated by code.

Proof: Since code, parent, f and z satisfy the constraint
set C , they also satisfy the constraint set R . Hence, by
Theorem 1, parent forms a spanning tree rooted at Pn.

Here we would be dealing with two trees:

(1) Tparent : The tree formed by parent which satisfies C
and

(2) Tcode: The tree generated using code by the algo-
rithm given in Figure 3.

We define data structures parent ′, f ′ and z′ for Tcode.
Variable parent ′[i] represents the parent of node i in
Tcode, f ′[i] gives the iteration in which the node i is as-
signed its parent during the execution of algorithm for
building Tcode from code and z′[i] gives the last occur-
rence of i in code. Since the constraint (R4) is the same
as definition for z′, z′ is same z. Both f and f ′ are permu-
tations on 1 . . .n. This implies that ∀i(∃ j : f [i] = f ′[ j])
and moreover, this j is unique. This allows us to define
an isomorphism function, M : [n] → [n] as:

M(i) = j such that f [i] = f ′[ j]

Now, Tparent and Tcode are isomorphic iff

∀i, j : (i = parent[ j]) ⇒ M(i) = parent ′[M( j)]

We prove the above condition by showing that
∀i, j : (i = parent[ j]) ⇒ M(i) = i followed by proving
that ∀i, j : (i = parent[ j])⇒ i = parent ′[M( j)]. The data
structures parent ′, f ′ and z obey the constraint set C .
Consider a node i = parent[ j] for some nodes i and j.
Then,

z[i] 6= 0 (Using (R1) and (R4))
⇒ f ′[i] = z[i]+1 (Using (R5) for f ′ and z[i] = z′[i])
⇒ f [i] = f ′[i] (Using (R5) for f )
⇒ M(i) = i (Definition of M) — (1)

Node i also satisfies the following property:
i = code[ f [ j]] (Using (R1) for f )
⇒ i = code[ f ′[M( j)]] (Definition of M)
⇒ i = parent ′[M( j)] (Using (R1) for f ′) — (2)

Conditions (1) and (2) together prove the required
isomorphism condition and hence the two trees Tparent

and Tcode are isomorphic.

i 1 2 3 4 5 6 7
parent 2 7 5 5 7 5 0
code 5 2 7 5 5 7 0

f 2 3 1 4 6 5 7
z 0 2 0 0 5 0 6

Table 1: Example of structures parent, code, f and z
satisfying the constraints (R1)-(R5)
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Figure 4: Tree corresponding to parent given in Table 1

The above theorem suggests that there is a possibility
that the tree formed by parent is not the same as the tree
generated by the code. For example, consider the value
of the variables given in Table 1. It can be easily verified
that these values satisfy the constraint set C . The tree
corresponding to the code is the one we considered ear-
lier in Figure 2. The tree generated by parent is shown
in Figure 4. The two trees are not the same but they are
isomorphic.

4 Maintaining Constraints

Each node i maintains parent[i], code[i], f [i] and z[i] and
cooperate to ensure that the required constraints are satis-
fied, resulting in a valid rooted spanning tree. We present
a strategy for efficient detection and correction of the
faults for each of the constraints.

4.1 Constraints (R1) and (R2)

The constraint (R1) is trivial to check locally. Each node
i inquires node j = f [i] for code[ j]. If this value does
not match parent[i], then the constraint (R1) is violated.
On violation, (R1) can be ensured by setting parent[i] to
code[ j]. The constraint (R2) is also trivial to check and
correct locally.
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4.2 Constraint (R3)

Constraint (R3)(i) is a local constraint which can be
checked easily. Violation of this constraint can be fixed
by simply setting f to a random number between 1 and
n−1. Constraint (R3)(ii) requires f to be a permutation
on 1 . . .n. This can in turn be modeled in terms of the
following constraints:

(C1) ∀i : 1 ≤ f [i] ≤ n

(C2) ∀i, j : f [i] 6= f [ j]

A data fault may change any of the numbers such
that the above constraints are not met. The goal is to
detect efficiently when this happens. The violation of
(C1) is easy to detect. Every node i checks the value f [i]
periodically. If it is not between 1 and n, then a fault
has occurred. The constraint (C2) is more interesting.
At first glance it seems counter-intuitive that we can
detect violation of (C2) in O(1) messages. However, by
adding auxiliary variables, the above task can indeed be
accomplished. We maintain g[i] at each process Pi such
that in a legal global state the following holds:

f [i] = j ≡ g[ j] = i

Thus, g represents the inverse of the array f . Note that
the inverse of a function exists iff it is one-one and onto
which is true in this case. If each process Pi maintains
f [i] and g[i], then it is sufficient for a node to check peri-
odically the following constraints:

(D1) ∀i : 1 ≤ f [i] ≤ n

(D2) ∀i : 1 ≤ g[i] ≤ n

(D3) g[ f [i]] = i

It is easy to show that (C2) is implied by (D1)-(D3). If
for some distinct i and j, f [i] is equal to f [ j], then g[ f [i]]
and g[ f [ j]] are also equal. This means that (g[ f [i]] = i)
and (g[ f [ j]] = j) cannot be true simultaneously.

(D3) can be checked by Pi by sending a message
to Pf [i] periodically, prompting Pf [i] to check whether
g[ f [i]] = i is true.

Note that by introducing additional variables we have
also introduced additional sources of data faults. It may
happen that requirements (C1)-(C2) are met, but due to
faults in g, constraints (D1)-(D3) are not met. We believe
that the advantage of local detection of a fault outweighs
this disadvantage.

The above scheme has an additional attractive prop-
erty: If we assume that there is a single fault in f or g,
then it can also be automatically corrected as shown next.
The function g being inverse of f also implies that f is
inverse of g. This implies that the following constraint
(D4) is also met for a fault-free data structure:

(D4) f [g[i]] = i

Pi::
var

f ,g: array[1..n] of integer;

Periodically do
if (g[ f [i]] 6= i)∧ f [g[ f [i]]] 6= f [i]

g[ f [i]] = i
if ( f [g[i]] 6= i)∧g[ f [g[i]]] 6= g[i]

f [g[i]] = i

Figure 5: Implementation of Permutation with local cor-
rection of 1 fault

Now assume that a node i discovers that g[ f [i]] 6= i.
This means that either f [i] or g[ f [i]] got corrupted. To
detect which of the case has happened, it is sufficient to
check whether

f [g[ f [i]]] = f [i]

If the above equation does not hold, then g[ f [i]] is cor-
rupted and is set back to i. If the above equation holds,
but g[ f [i]] 6= i then f [i] is corrupted and it needs to be
reset. What value should f [i] be set to? We need to set
it to k such that g[k] equals i. This correction would be
done by node k because node k will find that f [g[k]] 6= k.
Hence, by the similar reasoning as above it will deduce
that f [g[k]] is corrupted and will reset it to k. The pro-
gram for Pi is shown in Figure 5. For simplicity, we let
process Pi simply read and write variables of other pro-
cesses. In practice, this may be translated into messages.
Note that in our scheme a permutation may undetectably
change into another permutation (when there are multi-
ple faults) but if f is not a valid permutation, the violation
will be detected.

4.3 Constraint (R4)

This constraint can be modeled in terms of the following
constraints:
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(E1) ∀i : (z[i] 6= 0) ⇒ (code[z[i]] = i)

(E2) ∀i, j : (code[ j] = i) ⇒ (z[i] ≥ j)

For checking (E1), node i prompts the node z[i] to verify
that code[z[i]] = i. If the check fails, then z[i] can be set to
0, which may not be the correct value for z[i]. If z[i] is set
incorrectly to 0, then constraint (E2) would also be vio-
lated. As a result, while checking for (E2), z[i] would be
set appropriately. For checking (E2), every node j sends
a message to node code[ j] to verify that z[code[ j]] ≥ j.
If (E2) is found to be violated upon receiving a message
from node j, then z[code[ j]] is set to j.

4.4 Constraint (R5)

The constraint (R5) can be checked and corrected locally.

4.5 Complete Algorithm

Depending upon the set of constraints (R or C ) that a
process obeys, we have two versions of the algorithm.
They differ in the guarantees about the resulting tree and
their time complexities.

4.5.1 Maintaining R

As we proved in Theorem 1, the set of constraints R is
sufficient to maintain a spanning tree. The complete al-
gorithm for process i to maintain the constraint set R is
given in the Figure 6. We will refer to this algorithm as
SSR. In the algorithm, instead of denoting variables like
code[i], we have used Pi.code to emphasize that the vari-
ables are local to the processes and are not shared. The
algorithm checks the constraints one by one and on the
violation of a constraint, it takes corrective action. For
checking constraints which involve obtaining the value
of another process’s variable, we have used a primitive
get. This involves the sender sending a request for the
required variable and the receiver then replying with the
appropriate value. So a get operation would involve two
messages being exchanged. Most of the algorithm fol-
lows directly from the checks required for a constraint.
The important thing to note here is that the set of con-
straints R leads us to an efficient algorithm. The formal
proof of correctness of the algorithm is given in full ver-
sion of this paper [GA04].

The following theorems gives the time and message
complexity of this algorithm and it is the main result of
this paper.

Theorem 3 The algorithm SSR requires amortized O(1)
time per node and amortized O(1) messages per node in
one asynchronous cycle.

Proof: In the algorithm SSR, each node sends a constant
number of messages - one per get and one on every other
send. This results in a total of O(n) messages being sent
in the system. The number of messages received by a
process i depends upon the number of times i appears in
the code. Assuming a random code, every node would
have to process O(1) messages on average. Since each
node takes constant number of steps without blocking for
any message, so every process requires O(1) time on av-
erage to complete one asynchronous cycle.

Self-stabilizing algorithms report the stabilization time
in terms of the number of asynchronous rounds required
for the algorithm to stabilize. For our algorithm, due to
the presence of asynchronous receives for the messages
of type “Check z”, this is not a good measure. For this
purpose, we use the following model:
Every process starts execution at the same time. Sub-
sequently, every computational step, message send and
message receive takes one unit of time. In addition, ev-
ery message takes one unit of time to travel from source
to destination. The time units taken for the execution of
the algorithm measure the time complexity of the algo-
rithm.
A discussion on the relevance of this model and a com-
parison with the asynchronous round model is given the
full version of this paper [GA04].

Theorem 4 The algorithm SSR stabilizes in O(d) time
in the model given above, where d is the upper bound on
the number of times a node appears in the code.

The proof of this theorem is also given in the full version
of this paper[GA04].

The problem of choosing the first n− 2 numbers of
code at random can be considered as the problem of ran-
domly assigning n−2 balls to n bins. The following the-
orem is a standard result in probability theory [MR95]:

Theorem 5 If n balls are thrown randomly in n bins,
then with the probability at least 1− n−c, every bin has
O((logn)/ loglogn) balls. Here c is any arbitrary con-
stant.

For a randomly chosen code, this theorem provides an
upper bound for d and hence an upper bound on the sta-
bilization time, with very high probability.
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4.5.2 Maintaining C

Maintaining C requires ensuring R3(ii) in addition to R .
We introduce the variable g and enforce the constraints
(D1)-(D3) listed in section 4.2. As discussed in the Sec-
tion 4.2, one error in the data structures f and g can be
corrected using the algorithm given in Figure 5. Includ-
ing this module in the algorithm SSR gives us an O(1) al-
gorithm (Figure 7) which is capable of correcting many
errors in the data structures. Unfortunately, this algo-
rithm is not able to handle more than one correlated er-
rors in f and g. When an error cannot be corrected by
the O(1) correction algorithm, the second check for the
consistency of f and g fails for some node. This node
sends out a message to every other node informing them
to start the main correction algorithm.

Upon starting the main correction algorithm, every
node sends out its z value to node Pn. Node Pn collects re-
sponses from every node and then establishes a mapping
between the nodes which have z = 0 and the f values
that have not been allocated. By allocated f values, we
mean the f values which can be obtained as z + 1, for
some z 6= 0. The nodes which have z 6= 0 are assigned
f = z + 1. These results are communicated back to the
nodes. In this case, the node Pn would have to do O(n)
work. After finishing the O(n) correction algorithm, the
nodes switch back to the normal correction algorithm.
We will refer to this complete algorithm as SSC.

Clearly, there is a trade-off involved in choosing be-
tween the two algorithms. The algorithm for maintaining
R is more efficient but gives weaker guarantees over the
resulting spanning tree than the algorithm for maintain-
ing C .

4.6 Changing the Root Node

The algorithms SSR and SSC can be easily modified
to allow the root node to change dynamically i.e. any
node (not necessarily n) can become the root of the tree
and the root can be changed during the operation of
the algorithm. This can be achieved by changing the
constraints (R2) and (R3)(i) in the following way:

(R2) (∀i : 1 ≤ i ≤ n−1 ⇒ 1 ≤ code[i] ≤ n)
∧(code[n] = 0)

(R3)(i) ∀i : i 6= code[n−1]⇒ 1 ≤ f [i] < n

The modified constraints are also easy to check and
maintain. The algorithms which allow dynamic root can

Pi::
var

code, parent, f ,z: integer;

Periodically do
// Check (R2)
if (i = n−1)∧ (code 6= n)

code = n
if (i = n)∧ (code 6= 0)

code = 0
if (i 6= n)∧ ((code ≤ 0)∨ (code > n))

code = random number between 1 and n

// Check (R3)(i)
if (i 6= n)∧ (( f ≤ 0)∨ ( f ≥ n))

f = random number between 1 and n−1
// First check for (R4)
if ((z < 0)∨ (z > n))

z = 0
if (z 6= 0)

get code from node Pz

if Pz.code 6= i
z = 0

if (code 6= 0)
send (“Check z”, i) to node code

// Check (R5)
if ((z 6= 0)∧ ( f 6= z+1))

f = z+1
if ((z = 0)∧ ( f ≤ z))

f = random number between 1 and n−1

// Check (R1)
get code from node Pf

if (Pf .code 6= parent)
parent = Pf .code

// Second check for (R4)
Upon receiving (“Check z”, j)

if z < j
z = j

Figure 6: Algorithm SSR for maintaining the constraint
set R
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Pi::
var

code, parent, f ,z: integer;

Periodically do
// Check (R2), (R3)(i), (R4) - Same as in Figure 6

// Check (R5)
if ((z 6= 0)∧ ( f 6= z+1))

f = z+1

// Check (R3)(ii)
get g1 = Pf .g from Pf and f1 = Pg. f from Pg

get f from Pg1 and g from Pf1
if((g1 6= i)∧ (Pg1 . f 6= f ))

send (“Update g”,i) to node Pf

if(( f1 6= i)∧ (Pf1 .g 6= g))
send (“Update f ”,i) to node Pg

// Second Check f and g
get g1 = Pf .g from Pf and f1 = Pg. f from Pg

if ((g1 6= i)∨ ( f1 6= i))
send (“Start Main”) to all nodes

// Check (R1) - Same as in Figure 6

// Asynchronous message handling
Upon receiving (“Check z”, j)

if (z < j)
z = j

Upon receiving (“Update g”, j)
g = j

Upon receiving (“Update f ”, j)
f = j

Upon receiving (“Start Main”)
start main correction algorithm

Figure 7: Algorithm SSC for maintaining the constraint
set C

then be obtained by changing the algorithms SSR and
SSC to accommodate checking for these new constraints
instead of the old ones. In the next section we present an
application which utilizes this feature.

5 Applications

The algorithm for maintaining constraint set R ensures
that if the code is changed, then the spanning tree would
stabilize to reflect that change. This property of the al-
gorithm could be used by an application to purposefully
change the spanning tree from time to time. As discussed
earlier, every code of length n− 1 represents a unique
tree. If we were maintaining a tree isomorphic to the
code tree (by maintaining the set of constraints C ), then
a node wishing to change the tree could have changed its
local code value. It can be proved that this would have
resulted in the spanning tree being changed. But if we
are just maintaining the set of constraints R , then chang-
ing the code value at a node may not always result in a
change in the tree. To get around this problem, whenever
a node i wishes to change the tree, it would change the
value of code[ f [i]]. This changes parent[i] = code[ f [i]]
and hence the spanning tree changes. Note that this
change may result in some more changes in the span-
ning tree as the parent of some other nodes may also get
modified. Since the algorithm for maintaining the set R
of constraints is efficient, this results in an efficient way
of changing the tree. We present two applications which
need to change their tree.

• Security Application: Consider a scenario in
which a set of nodes are contacting each other by
using a tree for routing messages. For the system’s
security, this tree must not be revealed to the ad-
versary. In case a security breach is suspected or
after a regular interval of time, the tree must be
changed and any node should be able to initiate this
change without requiring active participation from
other nodes. Our algorithm provides one such way.
When a node i wishes to change the structure of
the tree, it could just change the value of code[ f [i]]
and initiate the correction algorithm. The ability to
change the root node is critical here;otherwise, the
adversary could always attack the fixed root node.

• Load Balancing: Consider a scenario where a set
of nodes are communicating through a spanning tree
for an application like convergecast. In this case, a
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node has to do work proportional to size of its sub-
tree which consumes resources like power, CPU etc.
Since we are dealing with a completely connected
topology, all the nodes are equally well connected
and it is possible for a node to take up the job of an-
other node. When a node wishes to reduce its load,
it could its ask one of its child c to change the value
of code[ f [c]] and hence change its load.

6 Discussion

So far we had assumed the underlying graph to be com-
pletely connected. Let us now consider general graphs.
Due to the nature of modern computer networks, the ma-
jor overhead involved in communication using message
passing is incurred at the OS level. So even if a process
sends a message to another process that is more than one
hop away, the message overhead can be assumed to be in-
curred completely at the sender and receiver. In this way
any network topology with routing can be considered as
a complete graph.

Our algorithm can also be modified for applications
which require the parent of a node to be its 1-hop neigh-
bor. We just add a new constraint which requires a node
to check if the parent assigned to it is a 1-hop neighbor.
By adding this, the detection still remains O(1) but cor-
rection becomes inefficient.

7 Conclusion and Future Work

In this paper we presented a new technique for main-
taining spanning trees using labeled tree encoding. Our
method requires O(1) messages per node on average in
one asynchronous cycle and provides fast stabilization.
It also offers a method for changing the root of the tree
dynamically. We also provide examples of using the self-
stabilizing algorithm for some applications not related
to fault tolerance. This work also demonstrates the use
of the concept of core and non-core states for designing
self-stabilizing algorithms. It would be interesting to ex-
tend this work for general topology. Another research
direction could be to develop similar algorithm which re-
quires nodes to have unique labels but not neccessarily in
the range 1 to n.
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