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ABSTRACT
In a concurrent system with N processes, vector clocks of size N
are used for tracking dependencies between the events. Using vec-
tors of size N leads to scalability problems. Moreover, association
of components with processes makes vector clocks cumbersome
and inefficient for systems with a dynamic number of processes.
We present a class of logical clock algorithms, called chain clock,
for tracking dependencies between relevant events based on gen-
eralizing a process to any chain in the computation poset. Chain
clocks are generally able to track dependencies using fewer than N
components and also adapt automatically to systems with dynamic
number of processes. We compared the performance of Dynamic
Chain Clock (DCC) with vector clock for multithreaded programs
in Java. With 1% of total events being relevant events, DCC re-
quires 10 times fewer components than vector clock and the times-
tamp traces are smaller by a factor of 100. Although DCC requires
shared data structures, it is still 10 times faster than vector clock in
our experiments.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—shared memory; D.4.1
[Operating Systems]: Process Management—concurrency; I.1.1
[Symbolic and Algebraic Manipulations]: Algorithms—Analy-
sis of algorithms
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1. INTRODUCTION
A concurrent computation consists of a set of processes execut-

ing a sequence of events. Some of these events are unrelated and
can be carried out in parallel with each other. Other events must
happen in a certain sequence. This information about the ordering
between events is required by many applications such as debugging
and monitoring of distributed programs [7, 18] and fault tolerance
[20].

The order between the events in a concurrent computation is usu-
ally modeled through the Lamport’s happened-before relation [15],
denoted by →. The vector clock algorithm [10, 17] captures this
relation by assigning a timestamp to every event in the system. The
timestamp is a vector of integers with a component for every pro-
cess in the system. Let the vector timestamp for an event e be
denoted by e.V . Then, for any two events e and f , the following
holds: e → f ⇔ e.V < f .V . In other words, the timestamps are
able to capture the ordering information completely and accurately.
This guarantee provided by the vector clock is called the strong
clock condition [4] and forms the requirement desired by the appli-
cations from vector clocks.

In the vector clock algorithm, each process maintains a vector of
integers. On the send of a message, a process needs to piggyback a
vector timestamp on the message which requires copying the vector
timestamp. Similarly, on the receive of a message, a process needs
to find maximum of two vector timestamps. For a system with N
processes, these are O(N) operations making the algorithm unscal-
able. Moreover, vector clocks become inefficient and cumbersome
in systems where the number of processes can change with time.

In this paper, we present a class of timestamping algorithms
called chain clocks which alleviate some of the problems associated
with vector clocks for applications like predicate detection. In these
applications only the order between the relevant events needs to be
tracked and these relevant events constitute a small percentage of
the total number of events. In particular, we show that if the events
which increment the same component are totally ordered (or form a
chain), then the timestamps capture the ordering accurately. Vector
clock is just one instance of chain clocks where events on a process
constitute a chain. Charron-Bost [6] showed that for all N there ex-
ists a computation with N processes which requires a vector clock
of size at least N to capture the ordering accurately. As a result, we
are forced to have a vector of size N in general to track dependency
between the events. However, we present some chain clocks which
can decompose a computation into fewer than N chains in many
cases. The dynamic chain clock (DCC) introduced in this paper,
finds a chain decomposition of the poset such that the number of



chains in this decomposition is bounded by N. Another variant
of chain clock, antichain-based chain clock (ACC) gives a parti-
tion where the number of chains is bounded by

(k+1
2

)

– the optimal
number of chains in the online decomposition of a poset of width
k. For predicate detection and monitoring applications, where rel-
evant events are infrequent, both these clocks require much fewer
components than N and they can be easily incorporated in tools like
JMPaX [18].

Variable based chain clock (VCC) is an instance of chain clocks
which uses chains based on access events of relevant variables in
a shared memory system instead of processes in the system. For
predicate detection, the number of variables on which the predicate
depends is often smaller than N and in such a case, VCC requires
fewer components in the timestamp. All these chain clocks – VCC,
DCC, ACC – adapt automatically to process creation and termi-
nation as the components of the clock are not bound to specific
processes.

We compared the performance of DCC with vector clocks by us-
ing a multithreaded program which generated a random poset of
events. The results show that DCC provides tremendous savings as
compared to vector clocks. For a system with 1% of total events be-
ing relevant events, DCC requires 10 times fewer components than
the vector clock. As a consequence, the memory requirements of
the programs are reduced. For purposes of debugging and replay,
an application may need to produce a trace containing the vector
timestamps of all the events in the system. Using DCC, the esti-
mated trace sizes are about 100 times smaller as compared to the
ones generated by vector clocks. DCC also imposes a smaller time
overhead on the original computation as operations like compar-
ison and copying are performed on smaller vectors. This can be
seen in our experiments where an order of magnitude speedup was
observed. DCC can also be used in an off-line fashion to compress
the vector clock traces generated by a computation.

A drawback of DCC and ACC is that they require shared data
structures which make them more suitable for shared memory sys-
tems than distributed system. For the shared memory system, the
DCC performs uniformly better than vector clocks on time and
space requirements. Our experiments show that DCC is also a vi-
able option for a distributed system with a large number of pro-
cesses. In such cases, the time overhead of DCC was also lower
than that of vector clock in addition to savings in bandwidth and
trace size. Using a server to provide shared data structures needed
by DCC is not a limitation in applications like monitoring and pred-
icate detection which, in general, use an observation system sepa-
rate from the computation. A hybrid model, presented later in the
paper, can be used for multithreaded distributed applications which
can exploit shared memory for threads of one process while allow-
ing the processes to make their own decisions without the need of
a central server.

2. SYSTEM MODEL AND NOTATION
In this section, we present our model of a distributed system.

Although the chain clocks are more useful for shared memory sys-
tems, we first use a distributed system model for simplicity and
ease of understanding as most of the previous work on timestamp-
ing events uses this model.

The system consists of N sequential processes (or threads) de-
noted by p1, p2, . . . , pN . A computation in the happened before
model is defined as a tuple (E,→) where E is the set of events and
→ is a partial order on events in E. Each process executes a se-
quence of events. Each event is an internal, a send or a receive
event. For an event e ∈ E, e.p denotes the process on which e oc-
curred.

The order between events is given by the Lamport’s happened
before relation (→) [15]. It is the smallest transitive relation which
satisfies:
1. e → f if e.p = f .p and e immediately precedes f in the sequence
of events on process e.p.
2. e → f if e is a send event and f is the corresponding receive
event.

Two events e and f are said to be comparable if e → f or f →
e. If e and f are not comparable, they are said to be concurrent
and this relationship is denoted by e ‖ f . The events for which the
happened-before order needs to be determined are called relevant
events and the set of such events are denoted by R⊆ E. The history
of an event e consists of all the events f such that f → e and is
denoted by H (e). Let e.V be the vector timestamp associated with
an event e and let m.V be the timestamp associated with a message
m.

The set of events E with the order imposed by Lamport’s hap-
pened before relation defines a partially ordered set or poset. A
subset of elements C ⊆E is said to form a chain iff ∀e, f ∈C : e→ f
or f → e. Similarly, a subset of elements A ⊆ E is said to form an
antichain iff ∀e, f ∈ A : e ‖ f . The width of a poset is the maximum
size of an antichain in the poset.

For a vector V we denote its size by V.size. For 1≤ i≤V.size, the
ith component of vector V is given by V [i]. For performing oper-
ations such as max and comparison on two different sized vectors,
the smaller vector is padded with zeroes and then the operations are
performed in the usual way.

3. CHAIN CLOCKS
The computation poset is generally represented as a set of chains

corresponding to the processes, with edges between the chains cor-
responding to messages exchanged. The same poset can also be
represented in terms of a different set of chains with dependencies
among these chains. Chain clocks use this idea to generalize the
vector clock algorithm. In the vector clock algorithm, a component
of the vector is associated with a process in the system. Instead,
chain clocks decompose the poset into a set of chains, which are
potentially different from the process chains, and then associate a
component in the vector timestamp with every chain. We show that
using any set of chains, not necessarily the process chains, suffices
to satisfy the strong clock condition.

With this intuition, we devise different strategies for decompos-
ing the subposet R of relevant events into chains. In many cases,
especially when the percentage of relevant events is small, the sub-
poset R can be decomposed into fewer chains than the number of
processes in the system. As a result, smaller vectors are required
for timestamping events. For example, consider the computation
shown in Figure 1(a). We are interested in detecting the predicate
“there is no message in transit”. For this predicate, the set R is
the set of all send and receive events. The original computation is
based on 4 processes or chains. However, as shown in Figure 1(b),
the subposet R can be decomposed in terms of two chains.

The algorithm for chain clocks is given in Figure 2. The chain
clock algorithm is very similar to the vector clock algorithm and
differs mainly in the component of the clock chosen to increment.
The component choosing strategy is abstracted through a primitive
called GI (for GetIndex). Process pi maintains a local vector V
which may grow during the course of the algorithm. A component
of vector V is incremented when a relevant event occurs. The com-
ponent to be incremented for a relevant event e is decided by the
primitive GI and is denoted by e.c. Note that, if the index e.c does
not exist in the vector V , then V is padded with zeroes till the size
of V is e.c and then the e.c component is incremented. On the send
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Figure 1: (a) A computation with 4 processes (b) The relevant
subcomputation

of a message, a timestamp is piggybacked on it and on the receipt
of a message, the local vector is updated by taking max with the
timestamp of the message.

We define a property on the index returned by GI, called Chain-
Decomposition property:

For all distinct e, f ∈ R : e.c = f .c ⇒ e 6‖ f

Intuitively, it says that all the events which increment the same
component must form a chain. The following theorem shows that if
GI primitive satisfies the chain-decomposition property, the chain
clock satisfies the strong clock condition.

THEOREM 1. Given that the GI primitive satisfies the chain de-
composition property, the following holds

∀e, f ∈ R : e → f ⇔ e.V < f .V

PROOF. Consider e, f ∈ R.

(⇒) e → f ⇒ e.V < f .V
Consider the events along the path from e to f . For the events
along a process, the chain clock’s value never decreases and for the
receive events, the chain clock is updated by taking the component-
wise maximum of the local and the received vectors. Hence, e.V ≤
f .V . Moreover, the component f .c is incremented at f and hence,
e.V [ f .c] < f .V [ f .c]. Therefore, e.V < f .V .

(⇐) e 6→ f ⇒ e.V 6< f .V
If f → e, then f .V < e.V and hence e.V 6< f .V . Now consider
e ‖ f . By chain decomposition property, e.c 6= f .c. Let g be the last
event in the history of f such that g.c = e.c. This event is uniquely
defined as the set of events which increment a component form a
total order by the chain decomposition property.

pi::
var

V : vector of integer
initially (∀ j : V [ j] := 0)

On occurrence of event e:
if e is a receive of message m:

V := max(V,m.V );
if e ∈ R :

e.c := GI(V,e);

//The vector size may increase during this operation.
V [e.c]++;

if e is a send event of message m:
m.V := V ;

Figure 2: Chain clock algorithm

First assume that g exists. By the chain clock algorithm, it fol-
lows that g.V [e.c] = f .V [e.c]. Events g and e must be comparable
as both of them increment the component e.c. If e → g, then e → f
which leads to contradiction. If g → e, then e.V ≥ g.V and e incre-
ments the component e.c. Therefore, e.V [e.c]> g.V [e.c] = f .V [e.c].

Now suppose that g does not exist. If no event in the history of
f has incremented the component e.c, then f .V [e.c] = 0. Since e
increments the component e.c, e.V [e.c] > f .V [e.c].

In both the cases, we have e.V [e.c] > f .V [e.c] and hence, e.V 6<
f .V .

Similar to vector clocks, chain clocks also allow two events to
be compared in constant time if the chains containing the events
are known. The following lemma forms the basis for this constant
time comparison between timestamps.

LEMMA 1. The chain clock algorithm satisfies the following
property:

∀e, f ∈ R : e → f ⇔ (e.V [e.c] ≤ f .V [e.c])
∧(e.V [ f .c] < f .V [ f .c])

PROOF. Follows from the proof of Theorem 1

Vector clock is also a chain clock where the algorithm decom-
poses R into chains based on the processes. As a result, the size of
the vector clocks is N and the call GI(V,e) returns the index as e.p.
It clearly satisfies the chain decomposition property as the events
in a process are totally ordered.

4. DYNAMIC CHAIN CLOCK
Dynamic chain clock (DCC) is a chain clock which uses a dy-

namically growing vector. The GI primitive finds a component of
the clock such that any concurrent event does not increment the
same component. We first present a simple version of the GI prim-
itive for DCC in Figure 3. It uses a vector Z shared between the
processes in the system. In a distributed system, a shared data struc-
ture can be hosted on a server and the operations on the structure
can be performed through RPC. From an algorithmic perspective,
it is equivalent to using a shared data structure and we describe our
algorithms assuming shared data structures.

GI(V,e):://synchronized
var

Z: vector of integer
//vector with no components
initially (Z = φ)

if ∃i : Z[i] = V [i]:
let j be such that Z[ j] = V [ j];

else
//add a new component
Z.size++;
j := Z.size;

Z[ j]++;
return j;

Figure 3: An implementation of GI for chain clocks

Intuitively, the vector Z maintains the global state information in
terms of the number of events executed along every chain in the sys-
tem. It is initialized with an empty vector at the start of the program
and subsequently maintains the maximum value for every compo-
nent that has been added so far. When a call to GI(V,e) is made,
it first looks for a component which has the same value in V and



Z. If the search is successful, that component is incremented. Oth-
erwise, a new component is added to Z and incremented. Finally,
the updated component is returned to the calling process. Note that
if there are more than one up-to-date components, then any one of
them could be incremented. The Figure 1(b) shows one possible
timestamp assignment by DCC for the relevant events in computa-
tion in Figure 1(a).

For the ease of understanding, we have presented the algorithm
in the given form where the whole method is synchronized. How-
ever, for correctness of the algorithm we just require the read and
write (if any) to every component Z[i] and size variable Z.size be
atomic instead of reads and writes to the complete data structure
Z being atomic. The given algorithm can be modified to suit this
requirement easily. The following theorem shows that the imple-
mentation of GI satisfies the chain decomposition property. Here
we sketch the main idea and a more detailed proof can be found in
the technical report [1].

THEOREM 2. The implementation of GI in Figure 3 for the
chain clock algorithm satisfies the chain decomposition property.

PROOF. Consider a pair of minimal events e, f ∈ R which vi-
olate the chain decomposition property i.e., e ‖ f and e.c = f .c.
By minimal it is meant that chain decomposition property holds
between e and events in H ( f ) and also between f and events in
H (e). Since GI is synchronized, the calls to GI for different events
in the system appear in a total order. Value of Z just before the call
GI(V,e) is made is denoted by Ze and value of Z just after the call
GI(V,e) is completed is denoted by Z′

e. Similarly, e.V and e.V ′ de-
note the values of V just before and after the call GI(V,e) is made,
respectively. Without loss of generality, assume that e completes
the call to GI before f . Then e increments the component e.c and
the vector Z is updated so that Z′

e[e.c] = e.V ′[e.c]. When f calls GI,
it can update the component e.c only if f .V [e.c] = Z f [e.c]. Since
the value of a component is never decreased, Z f [e.c] ≥ Z′

e[e.c] and
hence f .V [e.c] ≥ e.V ′[e.c].

Let the events in the history of event f which increment the com-
ponent e.c be H. For all g ∈ H, g must be comparable to event e as
e and f are a minimal pair which violate the chain decomposition
property. If ∃g ∈ H : e → g, then e → f leading to contradiction.
If ∀g ∈ H : g → e, then f .V [e.c] < e.V ′[e.c] which again leads to
contradiction. Hence the GI primitive satisfies the chain decompo-
sition property for all the events in the computation.

Using a central server raises the issues of reliability and perfor-
mance for distributed systems. A central server is a cause of con-
cern for fault-tolerance reasons as the server becomes a single point
of failure. However, in our system the state of the server consists
only of Z vector which can be reconstructed by taking the maxi-
mum of the timestamps of the latest events on each process.

Some simple optimizations can be used to improve DCC’s per-
formance and mitigate the communication overhead. The key in-
sight behind these optimizations is that an application does not need
to know the timestamp until it communicates with some other pro-
cess in the system. A process after sending a timestamp request
to the server need not wait for the server’s reply and can continue
with its computation. Similarly, it can combine the GI requests for
multiple internal events into one message.

4.1 Bounding the number of chains for DCC
Although the algorithm in Figure 3 provides the chain decompo-

sition property, it may decompose the computation in more than N
chains. For example, consider the computation involving two pro-
cesses given in Figure 4 with all the events being relevant events.

d1
c1b1

p2
a2 b2

c2 d2

a1
p1

(1,2) (1,2,2)

(0,1) (0,1,1) (0,1,1,1) (0,1,1,1,1)

(1) (1,2,2,2)

Figure 4: A computation timestamped with simple DCC re-
quiring more than N components

Call V Z V ′ Z′

GI(V,a1) φ φ (1) (1)
GI(V,a2) φ (1) (0,1) (1,1)
GI(V,b1) (1,1) (1,1) (1,2) (1,2)
GI(V,b2) (0,1) (1,2) (0,1,1) (1,2,1)
GI(V,c1) (1,2,1) (1,2,1) (1,2,2) (1,2,2)
GI(V,c2) (0,1,1) (1,2,2) (0,1,1,1) (1,2,2,1)

Figure 5: A partial run of the computation given in Figure 4

Figure 5 gives a prefix of a run of the computation with the re-
sult of the calls to GI made in the order given. The values of the
variables just after starting execution of GI are shown under the
variable names themselves (V and Z) and the updated values after
the completion of the call are listed under their primed counterparts
(V ′ and Z′). Note the call GI(V,b1). Here, V has up-to-date infor-
mation about both first and second components but it chooses to
increment the second component. This is a bad choice to make be-
cause when b2 is executed, it is forced to start a new chain. A series
of such bad choices can result in a chain clock with an unbounded
number of components as in the example described above.

Figure 6 presents an improved version of the GI algorithm which
bounds the number of chains in the decomposition. This algorithm
maintains another shared data structure called F such that F[i] is
the last process to increment Z[i]. In GI(V,e), the algorithm checks
if there is a component i such that F[i] = e.p. If such a compo-
nent exists, it is incremented otherwise the algorithm looks for an
up-to-date component to increment. If no such component exists,
then a new component is added. If process p was the last to incre-
ment component i, then it must have the latest value of component
i and in this way, this revised algorithm just gives preference to one
component ahead of others in some cases. The proof of correct-
ness for this algorithm follows from that of the previous algorithm
assuming that accesses to F[i] and Z[i] are atomic.

The algorithm in Figure 6 maintains the following invariants:

(I1) Z.size = F.size
Sizes of Z and F are increased together.

(I2) ∀i : pF[i].V [i] = Z[i]
F[i] maintains the value of the process which last updated the
component i.

(I3) ∀i, j : F[i] 6= F[ j]
Before setting F[i] = p, F is scanned to check that there is
no j such that F[ j] = p.

Now consider the same run of the computation in Figure 4 times-
tamped using the new version of GI in Figure 7. The crucial dif-
ference is in the way two algorithms timestamp event b1. At b1, V
has up-to-date information about both the components but the new
version of GI chooses to increment the first component as it was the
component which was last incremented by p2. As a result, now b2
still has up-to-date information about second component and ad-
dition of a new component is avoided. Continuing this way, the



GI(V,e):: //synchronized
var

Z: vector of integer
F : vector of integer

initially (Z = φ, F = φ)

if ∃i : F[i] = e.p
let j be such that F[ j] = e.p;

else
if ∃i : Z[i] = V [i]

let j be such that Z[ j] = V [ j];
else

//add a new component
Z.size++;
F.size++;
j := Z.size;

Z[ j]++;
F[ j] := e.p;
return j;

Figure 6: Improved implementation of GI

Call V Z F V ′ Z′ F ′

GI(V,a1) φ φ φ (1) (1) (2)
GI(V,a2) φ (1) (1) (0,1) (1,1) (2,1)
GI(V,b1) (1,1) (1,1) (2,1) (2,1) (2,1) (2,1)
GI(V,b2) (0,1) (2,1) (2,1) (0,2) (2,2) (2,1)
GI(V,c1) (2,2) (2,2) (2,1) (3,2) (3,2) (2,1)
GI(V,c2) (0,2) (3,2) (2,1) (0,3) (3,3) (2,1)

Figure 7: A partial run of the computation with new GI given
in Figure 4

algorithm timestamps the computation using two components only.
In fact, this algorithm guarantees that the number of components in
the clock never exceeds N as shown by the next theorem.

THEOREM 3. The primitive GI in Figure 6 with the chain clock
algorithm satisfies: ∀e ∈ E, (e.V ).size ≤ N.

PROOF. From invariant (I3), F contains unique values. Since F
contains the process ids, F.size ≤ N throughout the computation.
By invariant (I1), this implies that Z.size ≤ N. Moreover, for any
event e, (e.V ).size ≤ Z.size and hence (e.V ).size ≤ N.

5. ANTICHAIN-BASED CHAIN CLOCK
The DCC algorithm does not provide any bound on the number

of chains in the decomposition in terms of the optimal chain de-
composition. Dilworth’s famous theorem states that a finite poset
of width k requires at least k chains for decomposition [?]. How-
ever, constructive proofs of this result require the entire poset to
be available for the partition. The best known online algorithm for
partitioning the poset is due to Kierstead [14] which partitions a
poset of width k into (5k − 1)/4 chains. The lower bound on this
problem due to Szemérdi (1982) as given in [23] states that there is
no online algorithm that partitions all posets of width k into fewer
than

(k+1
2

)

chains.
However, the problem of online partitioning of the computation

poset is a special version of this general problem where the ele-
ments are presented in a total order consistent with the poset order.
Felsner [9] has shown that even for the simpler problem, the lower
bound of

(k+1
2

)

holds. As an insight into the general result, we
show how any algorithm can be forced to use 3 chains for a poset
of width 2. Consider the poset given in Figure 9. Initially two

var
B1, . . . ,Bk: sets of queues

∀i : 1 ≤ i ≤ k, |Bi| = i
∀i : q ∈ Bi,q is empty

When presented with an element z:
for i = 1 to k

if ∃q ∈ Bi : q is empty or q.head < z
insert z at the head of q
if i > 1

swap the set of queues Bi−1 and Bi \{q}
return

Figure 8: Chain Partitioning algorithm

x u

y z

Figure 9: A poset of width 2 forcing an algorithm to use 3 chains
for decomposition

incomparable elements x and y are presented to the chain decom-
position algorithm. It is forced to assign x and y to different chains.
Now an element z greater than both x and y is presented. If algo-
rithm assigns z to a new chain, then it has already used 3 chains for
a poset of width 2. Otherwise, without loss of generality assume
that the algorithm assigns z to x’s chain. Then the algorithm is pre-
sented an element u which is greater than x and incomparable to y
and z. The algorithm is forced to assign u to a new chain and hence
the algorithm uses 3 chains for poset of width 2.

Furthermore, Felsner showed the lower bound to be strict and
presented an algorithm which requires at most

(k+1
2

)

chains to par-
tition a poset. However, the algorithm described maintains many
data structures and it can require a scan of the whole poset for pro-
cessing an element in the worst case. We present a simple algorithm
which partitions the poset into at most

(k+1
2

)

chains and requires at
most O(k2) work per element.

The algorithm for online partitioning of the poset into at most
(k+1

2

)

chains is given in Figure 8. The algorithm maintains
(k+1

2

)

chains as queues partitioned into k sets B1,B2...,Bk such that Bi
has i queues. Let z be the new element to be inserted. We find the
smallest i such that z is comparable with heads of one of the queues
in Bi or one of the queues in Bi is empty. Let this queue in Bi be
q. Then z is inserted at the head of q. If i is not 1, queues in Bi−1
and Bi \q are swapped. Every element of the poset is processed in
this fashion and in the end the non-empty set of queues gives us the
decomposition of the poset.

The following theorem gives the proof of correctness of the al-
gorithm.

THEOREM 4. The algorithm in Figure 8 partitions a poset of
width k into

(k+1
2

)

chains.

PROOF. We claim that the algorithm maintains the followings
invariant:
(I) For all i: Heads of all nonempty queues in Bi are incomparable
with each other.

Initially, all queues are empty and so the invariant holds. Suppose
that the invariant holds for the first m elements. Let z be the next



element presented to the algorithm. The algorithm first finds a suit-
able i such that z can be inserted in one of the queues in Bi.

Suppose the algorithm was able to find such an i. If i = 1, then z
is inserted into B1 and the invariant is trivially true. Assume i ≥ 2.
Then z is inserted into a queue q in Bi which is either empty or has a
head comparable with z. The remaining queues in Bi are swapped
with queues in Bi−1. After swapping, Bi has i− 1 queues from
Bi−1 and the queue q and Bi−1 has i− 1 queues from Bi \ q. The
heads of queues in Bi−1 are incomparable as the invariant I was
true for Bi before z was inserted. The heads of queues in Bi which
originally belonged to Bi−1 are incomparable to each other due to
the invariant I. The head of q, z, is also incomparable to the heads
of these queues as i was the smallest value such that the head of
one of the queues in Bi was comparable to z. Hence, the insertion
of the new element still maintains the invariant.

If the algorithm is not able to insert z into any of the queues, then
all queue heads and in particular, queue heads in Bk are incompara-
ble to z. Then z along with the queue heads in Bk forms an antichain
of size k +1. This leads to a contradiction as the width of the poset
is k. Hence, the algorithm is always able to insert an element into
one of the queues and the poset is partitioned into fewer than

(k+1
2

)

chains.

Note that our algorithm does not need the knowledge of k in ad-
vance. It starts with the assumption of k = 1, i.e., with B1. When a
new element cannot be inserted into B1, we have found an antichain
of size 2 and B2 can be created. Thus the online algorithm uses at
most

(k+1
2

)

chains in decomposing posets without knowing k in ad-
vance. This algorithm can be used to implement the GI primitive
in a way similar to DCC by associating a component of the chain
clock with every queue in the system to obtain ACC. Note that this
association has to be between the actual queues and the compo-
nents such that it does not change due to swapping of the queues
between different sets.

Although ACC gives an upper bound of O(k2) in terms of the
width of the poset k, it does not guarantee that the number of chains
is less than N. In the worst case, when the width of the poset is N,
ACC can give a decomposition consisting of

(N+1
2

)

chains. Note
that the problem of finding the chain decomposition in our case is a
slightly more special version of the problem considered by Felsner
as we also have the knowledge of one possible partition of the poset
into N chains. The lower bound for this problem is not known.

However, one can use an approach where ACC is used till the
number of chains is below a bound l and switches to the normal
vector clock algorithm thereafter. Some of the chains produced by
ACC can be reused for the vector clock algorithm and new chains
can be added for the remaining processes. If l is chosen to be small,
the upper bound for chain decomposition is close to N but the al-
gorithm requires more than

(k+1
2

)

chains for decomposing many
posets. On the other hand, a bigger value of l results in the algo-
rithm requiring many more chains than N in the worst case but less
than

(k+1
2

)

for a large number of posets. In particular, it can be
shown [1] that choosing l = O(

√
N) results in an algorithm which

does not require more than
(k+1

2

)

chains when
(k+1

2

)

< N and uses
2N −O(

√
N) chains in the worst case.

6. CHAIN CLOCKS FOR SHARED
MEMORY SYSTEM

In this section, we adapt the chain clock algorithm for shared
memory systems. We first present our system model for a shared
memory system.

p4

p3

p2

p1

(b)

f g h i

a b c d e
(1,0) (2,0) (3,1)

(0,1) (0,2) (3,3) (3,4)

(5,3)(4,3)

(a)

f
y=1

x=2

a
x=1 y=3

x=3
b

i

e
x=2
c h d

x=3y=3

y=2 g

Figure 10: (a) A computation with shared variables x and y (b)
Relevant subcomputation timestamped with VCC

6.1 System Model
The system consists of N sequential processes (or threads) de-

noted by p1, p2, . . . , pN . Each process executes a set of events.
Each event is an internal, read or a write event. Read and write
events are the read and write of the shared variables respectively
and generically they are referred to as access events. A computa-
tion is modeled by an irreflexive partial order on the set of events
of the underlying program’s execution. We use (E,≺) to denote a
computation with the set of events E and the partial order ≺. The
partial order ≺ is the smallest transitive relation that satisfies:
1. e ≺ f if e.p = f .p and e is executed before f .
2. e ≺ f if e and f are access events on the same variable and e was
executed before f .
With each shared variable x, a vector x.V is associated. The ac-
cess to a variable is assumed to be sequentially consistent. The rest
of the notation can be defined in a way similar to the distributed
system model using the relation ≺ instead of the → relation.

Here we have considered a shared memory model which consid-
ers only the “happened-before” relation between the processes as
opposed to other models for shared memory systems. This model,
with slight modifications, is the one which is generally used in run-
time verification tools like JMPaX [18]. The vector clock and DCC
algorithm described earlier for distributed systems work for this
system model as well.

6.2 Chain Clock Algorithm
The chain clock algorithm for the shared memory system is given

in Figure 11. In the next section, we give some more strategies
for choosing a component to increment in chain clock for shared
memory systems.

6.3 Variable-based Chain Clock
In this section, we present chain clocks based on variables, called

Variable-based Chain Clock (VCC). Since the access events for
a variable are assumed to be sequentially consistent, they form a
chain. As a result, the set of relevant events can be decomposed
in terms of chains based on the variables. Suppose the set of rel-
evant events, R, consists of access events for variables in the set
Y . Then, we can have a chain clock which associates a compo-
nent in the clock for every variable x ∈Y in the following way. Let
θ : Y → [1 . . . |Y |] be a bijective mapping from the set of variables
to the components in the vector. Then GI(V,e) for an event e which
accesses a variable x simply returns θ(x). It is easy to see that this
GI primitive satisfies the chain decomposition property.

VCC is very useful for predicate detection in shared memory
systems. Consider a predicate Φ whose value depends on a set of
variables Y . In a computation where Φ is being monitored, the set
of relevant events is a subset of the access events for variables in Y .
For many predicate detection problems, the size of set Y is much



smaller than the number of processes in the system and hence VCC
results in substantial savings over vector clocks. In fact, using VCC
we can generalize the local predicates to predicates over shared
variables. Then the predicate detection algorithms like conjunctive
predicate detection [13] which are based on local predicates work
for shared variables without any significant change. As an example,
consider the computation involving two shared variables x and y
given in Figure 10. We are interested in detecting the predicate
(x = 2)∧ (y = 2). Using VCC, we can timestamp the access events
of x and y using first component for x and second component for
y as shown in the figure. Now the conjunctive predicate detection
can be done assuming the access events of x and y as two processes
with the vector clock timestamps given by VCC.

In some cases, VCC requires fewer components than the num-
ber of variables that need to be tracked. For example, if two local
variables belonging to the same process need to be tracked, it suf-
fices to keep just one component for both of them. Here we are
exploiting the fact that any two events on a process are totally or-
dered. We can generalize this idea and use one component for a set
of variables whose access events are totally ordered. This happens
when the access to a set of variables is guarded by the same lock.
VCC does not require any shared memory data structure other than
that required for any chain clock algorithm in shared memory sys-
tems and so it is beneficial to use VCC over DCC for systems when
percentage of relevant events is high but the events access a small
set of variables.

A dynamic strategy based on the variables can also be devised.
The improved implementation of GI for DCC can be modified such
that F keeps track of the last variable to increment a component.
This results in a dynamic chain clock with the number of compo-
nents bounded by the number of variables to be tracked.

7. EXPERIMENTAL RESULTS
We performed experiments to compare the performance of DCC

and ACC with the vector clocks. We created a multithreaded appli-
cation in Java with the threads generating internal, send or receive
events. On generating an event, a thread with some probability
makes it a send or receive event and based on another probability
measure, makes it relevant. The messages are exchanged through
a set of shared queues and the communication pattern between the
threads was chosen randomly. The relevant events are timestamped
through DCC, ACC or vector clock. Three parameters were varied

pi::
var

V : vector of integer
initially (∀ j : V [ j] := 0)

On occurrence of event e :

if e is an access event of shared variable x:
V := max(V,x.V );

if e ∈ R :
e.c := GI(V,e);

//The vector size may increase during this operation.
V [e.c]++;

if e is an access event of shared variable x:
x.V := V ;

Figure 11: Chain Clock Algorithm for Shared Memory Sys-
tems
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during the tests: the number of threads (N), the number of events
per thread (M) and the percentage of relevant events (α). The per-
formance was measured in terms of three parameters: the number
of components used in the clock, the size of trace files and the ex-
ecution time. A trace file logs the timestamps assigned to relevant
events during the execution of the computation. In our experiments
we only estimate the size of the trace files and not actually write
any timestamps to the disk. The default parameters used were:
N = 100, M = 100 and α = 1%. One parameter was varied at a
time and the results for the experiments are presented in Figures
12-17.

Figure 12 gives the number of components used by DCC and
ACC as N is varied from 100 to 5000. The number of components
used by the vector clock algorithm is always equal to N. We com-
pared the number of components required by chain clocks to the
width of the relevant poset which is a measure of the performance
of the optimal algorithm. The results show that DCC requires about
10 times fewer components than vector clock algorithm and hence
can provide tremendous savings in terms of space and time. DCC
gives nearly optimal results even though we have N as the only
provable upper bound. For our experiments ACC did not perform
as well as DCC. The reason for this is that ACC can use new queues
even when the incoming event can be accommodated in existing
queues. For our experiments, this turned out to be detrimental but
for some applications ACC might perform better than DCC. How-
ever, we only used DCC for the rest of our experiments as it was
performing better than ACC and it is a simpler algorithm with the
worst case complexity bounded by that of the vector clocks.
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Figure 13 compares the time required by DCC and vector clock
when N is increased from 100 to 5000. Initially, the time taken
by the two algorithms is comparable but the gap widens as N in-
creases. For N = 5000, DCC was more than 10 times faster than
vector clock. This can be attributed to the lower cost of copying and
comparing smaller vectors in DCC as compared to vector clocks
and the profiling results confirmed this by showing copying and
computing the maximum of vectors as the two most time consum-
ing operations in the algorithm.

Although the time measurements are not truly reliable as they
are susceptible to many external factors and depend on the hard-
ware being used, these results strongly suggest that DCC incurs
smaller overhead than vector clock despite using shared data struc-
tures. The difference between the execution times of vector clocks
and DCC is reduced by the optimization of sending only updated
components [19]. However, this optimization imposes an overhead
of O(N2) memory per process in the case of vector clocks which
could be prohibitive for a system with large number of processes.
The system used for performing the reported experiments does not
incorporate these optimizations.

In Figure 14, we observe the effect of M on the number of com-
ponents used by DCC as we vary it from 100 to 25,000 keeping N
fixed at 100. The number of components used by DCC gradually
increases from 10 to 35. There are two reasons for this behavior.
Firstly, as M increases, there is more chance of generating a bigger
antichain and secondly, the algorithm is likely to diverge further
from the optimal chain decomposition with more events. However,
the increase is gradual and even with 25,000 events, we are able
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to timestamp events using 35 components which is a reduction of a
factor of about 3 over vector clocks. Due to smaller vectors used by
DCC, the estimated trace sizes were about 100 times smaller than
generated by vector clock as the average chain clock size during
the run of the algorithm is even smaller.

Finally, α is an important determinant of the performance of
DCC as shown by Figure 15. With α > 10%, DCC requires more
than 60 components and around this point, DCC starts to incur
more overhead as compared to vector clock due to contention for
the shared data structure. The benefit of smaller traces and lower
memory requirements still remains but the applications to really
benefit from DCC would have α < 10%. This is true for many
predicate detection algorithms where less than 1% of the events are
relevant events.

To test the viability of DCC for distributed systems, we per-
formed a simple experiment in which a server hosted the shared
data structures and the calls to GI were performed through message
exchange. The processes were threads running on the same ma-
chine communicating with each other using queues but the server
was located on a separate machine in the same LAN. Figure 16
shows the result of these experiments when N was varied. We ob-
serve that although the time taken by DCC increases in this case, it
is still much less than that used by vector clock. The performance
of DCC deteriorates as we increase the number of events in the sys-
tem and in those cases vector clock performs better than DCC as
shown in Figure 17. Again depending upon the external factors,
these results might vary but they show that for a moderately large
distributed system, DCC can compete with vector clock. However,



for small number of processes, it is still better to use vector clocks
if execution time is the main concern.

8. EXTENSIONS
In this section, we present some extensions and variations for

the DCC algorithm which are more suited for certain systems and
communication patterns.

8.1 Static Components
The DCC algorithm can be modified to associate some compo-

nents of the clock with static chains like processes. For example, to
associate component i of the clock with process p j, the component
i is marked as “static”. Now, process p j always increments com-
ponent i and the other processes do not consider component i while
updating their clocks. The shared data structures need to maintain
the list of “static” components, but they do not need to track the
static components themselves. Moreover, process p j does not have
to go through the shared data structures to increment the static com-
ponent. It may also require fewer components in some cases. For
instance, if most of the events generated by process p j are relevant,
then it might be better to associate one component with p j rather
than associating the events of p j with different chains.

8.2 Component Choosing Strategy
Different strategies can be adopted to choose the component to

be incremented in primitive GI(V,e) if the calling process does not
already have a component in F. The decision can be based on
the communication pattern or could simply be choosing the first
component which is up-to-date. Consider the case when processes
are divided in process groups such that the processes within the
group communicate more often with each other than with processes
from other group. In such a case, the events from processes within
the same group are more likely to form longer chains and so a good
strategy would be to give preference to a component which was last
incremented by some process in the same process group.

8.3 Hybrid Clocks for Distributed Computing
For a large distributed system where a centralized server is infea-

sible, a hybrid algorithm which distributes the work among several
servers and reduces the synchronization overhead is more suitable.
The processes in the system are divided into groups and a server is
designated to each group which is responsible for finding the com-
ponent to increment for events on processes in that group. Con-
sidering the chain clock as a matrix with a row for every server,
each server is made responsible for the components in its corre-
sponding row. At one extreme, when all the processes are in one
group this scheme reduces to the centralized scheme for DCC. On
the other extreme, when a group is just one process, it reduces to
the vector clock algorithm. The hybrid algorithm in general uses
more components than DCC as it discovers chains within the same
group. However, it still requires fewer components than vector
clock and distributes the load among several servers. It could be
very effective for multithreaded distributed programs as the threads
within one process can use shared memory to reduce the number of
components and different processes can proceed independently in
a manner similar to vector clocks.

9. RELATED WORK
Certain optimizations have been suggested for the vector clock

algorithm which can reduce the bandwidth requirement. For ex-
ample, in [19] by transferring only the components of a vector that

have changed since previous transfer, the overhead of vector trans-
fer can be reduced. However, it requires the channels to be FIFO
and imposes an O(N2) space overhead per process. This technique
can also be used with DCC or any other chain clock but the savings
might vary depending upon the type of the clock.

One approach to tackle the scalability issue with vector clocks
is to weaken the guarantees provided and use clocks with bounded
size. Two techniques based on this idea have been proposed in
the literature: plausible [21] clocks and k-dependency [5] vector
clocks. Plausible clocks approximate the causality relation by guar-
anteeing the weak clock condition and try to satisfy the strong clock
condition in most cases. The k-dependency vector clocks provide
causal dependencies that, when recursively exploited, reconstruct
the event’s vector timestamp. These ideas are not used by many real
applications as either complete ordering information is required or
Lamport clock is sufficient. In contrast, DCC tracks the ordering
information accurately with fewer than N components.

Ward [22] proposed an approach based on dimension of the poset
for timestamping events. In general, the dimension of a poset is
smaller than its width and hence this algorithm may require fewer
components than chain clocks. However, it is an off-line algorithm
and requires the complete poset before assigning the timestamps.
In comparison, DCC incurs a much smaller overhead on the on-
going computation and is more suitable for runtime verification
and monitoring. In addition, dimension based clocks lack some
properties satisfied by the width-based clocks like chain clocks. In
particular, using width-based clocks, two events can be compared
in constant time if the chain to which events belong is known. For
dimension-based clocks, we need to do a complete component-wise
comparison to obtain the order between events. Similarly, using
dimension-based clocks we cannot capture the ordering between
consistent cuts [11] which can be done with width-based clocks.

Vector clocks for systems satisfying certain extra properties have
also been developed [3, 12]. In contrast our method is completely
general. Some logical clocks like weak clocks [16] and interval
clocks [2] have been proposed to track the relevant events in the
system but these clocks still require N components as opposed to
DCC which can track relevant events with fewer than N compo-
nents.

10. CONCLUSION
This paper presents a class of timestamping algorithms called

chain clocks which track dependency more efficiently than vector
clocks. We make three principal contributions. First, we general-
ize the vector clocks to a whole class of timestamping algorithms
called chain clocks by generalizing a process to any chain in the
system. Secondly, we introduce the dynamic chain clock (DCC)
which provides tremendous benefits over vector clocks for shared
memory systems with a low percentage of relevant events. We ob-
tain speedup of an order of magnitude as compared to the vector
clocks and cut down trace sizes by a factor of 100. Thirdly, we
present the variable-based chain clock (VCC) which is another use-
ful mechanism for dependency tracking in shared memory systems
and is especially suited for predicate detection and monitoring ap-
plications.
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