
Byzantine Vector Consensus 
in Complete Graphs 

 
 

Nitin Vaidya  
University of Illinois at Urbana-Champaign 

 
Vijay Garg  

University of Texas at Austin"



Assumptions"

g  Complete graph of   n  processes"

g    f  Byzantine faults"

g  Each process has   d-dimensional vector input"



d = 2"
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Exact Vector Consensus"

"
g  Agreement:  Fault-free processes agree exactly!

g  Validity: "   Output vector in convex hull  
"              of inputs at fault-free processes"

g  Termination:  In finite time"
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Approximate Vector Consensus"

"
g  ε-Agreement:  output vector elements differ by ≤ ε!

g  Validity: "   Output vector in convex hull  
"              of inputs at fault-free processes"

g  Termination:  In finite time"
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Traditional Consensus Problem"

g  Special case of vector consensus :   d = 1"
 
"
g  Necessary & sufficient condition for complete graphs: 
"

" "n  ≥  3 f +1  
"
    in synchronous                  [Lamport,Shostak,Pease]"
    & asynchronous systems  [Abraham,Amit,Dolev]"
"
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Results"
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Necessary and Sufficient Conditions 
(Complete Graphs)"

g  Exact consensus in synchronous systems"
"
       " "n  ≥  max(3,d+1) f +1"
"

g  Approximate consensus in asynchronous systems"

        " "n  ≥  (d+2) f +1"
"



STOC 2013"

 
Similar results for asynchronous systems"
"

""
"

"Hammurabi Mendes  &  Maurice Herlihy"



Talk Outline"

Necessity Sufficiency 

Synchronous max(3,d+1) f +1 max(3,d+1) f +1 

Asynchronous (d+2) f +1 (d+2) f +1 



Synchronous Systems: 
n  ≥  max(3,d+1) f +1   necessary "

g  n  ≥  3f +1    necessary due to Lamport, Shostak, Pease"



Synchronous Systems: 
n  ≥  max(3,d+1) f +1   necessary "

g  n  ≥  3f +1    necessary due to Lamport, Shostak, Pease"

g  Proof of  n  ≥  (d+1) f +1  by contradiction …"
"

" "suppose that"
" " " "f = 1"
" " " "n ≤ (d+1)"



n ≤ d+1 = 3     when d = 2"

g  Three fault-free processes, with inputs shown below"
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Process A’s Viewpoint"

g  If B faulty :  output on green segment (for validity)"
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Process A’s Viewpoint"

g  If B faulty :  output on green segment (for validity)"
g  If C faulty :  output on red segment"
"
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Process A’s Viewpoint"

g  If B faulty :  output on green segment (for validity)"
g  If C faulty :  output on red segment"

è Output must be on both segments = initial state"
"
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d = 2"

g  Validity forces each process to choose  
output = own input"

è No agreement"

è n = (d+1) insufficient when f = 1"
"
è By simulation, (d+1)f insufficient"
"

" " ""
" " " "    Proof generalizes to all d "



Talk Outline"

Necessity Sufficiency 

Synchronous max(3,d+1) f +1 max(3,d+1) f +1 

Asynchronous (d+2) f +1 (d+2) f +1 



Synchronous System 
n  ≥ max(3,d+1) f +1 

"

1. Reliably broadcast input vector to all processes 
" " " "[Lamport,Shostak,Pease]"

2. Receive multiset Y containing n vectors"
"
"
3. Output = a deterministically chosen point in  
"

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm



d = 2,   f = 1,  n = 4"

g  Y contains 4 points, one from faulty process"

22"



n-f = 3"

g  Y contains 4 points, one from faulty process"

g  Output in intersection of hulls of (n-f)-sets in Y"



Proof of Validity"

g  Claim 1 :  Intersection is non-empty"

g  Claim 2 :  All points in intersection are  
"         in convex hull of fault-free inputs"

Output in  

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm



Tverberg’s Theorem"

≥ (d+1)f+1 points can be partitioned into (f+1) sets such 
that their convex hulls intersect"
"
"
d = 2"
f = 2"
n = 8"

25"



Tverberg’s Theorem"

≥ (d+1)f+1 points can be partitioned into (f+1) sets such 
that their convex hulls intersect"
"
"
d = 2"
f = 2"
n = 8"
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Claim 1: Intersection is Non-Empty"

"

"
"
g  Each T contains one set in Tverberg partition of Y"

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm



Claim 1: Intersection is Non-Empty"

"

"
"
g  Each T contains one set in Tverberg partition of Y"

è Intersection contains all Tverberg points of Y"
"

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm
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"
g  Each T contains one set in Tverberg partition of Y"

è Intersection contains all Tverberg points of Y"
"
è Non-empty by Tverberg theorem when ≥ (d+1)f+1"
"

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm
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Intersection in Convex Hull of Fault-Free Inputs"

"

g  At least one T contains inputs of only fault-free processes"

è Claim 2"

intersection \d
i=1 Qi must have all its coordinates 0. That

is, only the all-0 vector belongs to \d
i=1 Qi. Now consider

Qd+1, which is the convex hull of the inputs at the first d
processes. Due to the choice of the inputs at the first d
processes, the origin (i.e., the all-0 vector) does not belong
to Qd+1. From the earlier observation on \d

i=1 Qi, it follows
that \d+1

i=1 Qi = ;. Therefore, the Exact BVC problem for
f = 1 cannot be solved with n = d + 1. Thus, n = d + 1 is
not su�cient. It should be easy to see that n  d+1 is also
not su�cient. Thus, n � d + 2 is a necessary condition for
f = 1.
Now consider the case of f > 1. Using the commonly

used simulation approach [13], we can prove that (d + 1)f
processes are not su�cient. In this approach, f simulated
processes are implemented by a single process. If a correct
algorithm were to exist for tolerating f faults among (d+1)f
processes, then we can obtain a correct algorithm to tolerate
a single failure among d + 1 processes, contradicting our
result above. Thus, n � (d+1)f +1 is necessary for f � 1.
(For f = 0, the necessary condition holds trivially.)

2.2 Sufficient Condition for Exact BVC
We now present an algorithm for Exact BVC in a syn-

chronous system, and prove its correctness in a complete
graph with n � max(3f + 1, (d + 1)f + 1). The algorithm
uses function �(Y ) defined below, where Y is a multiset of
points. H(T ) denotes the convex hull of a multiset T .

�(Y ) = \T✓Y, |T |=|Y |�f Hull(T ). (1)

The intersection above is over the convex hulls of all subsets
of Y of size |Y |� f .

Exact BVC algorithm for n � max(3f+1, (d+1)f+1) :

1. Each process uses a scalar Byzantine broadcast algo-
rithm (such as [13, 6]) to broadcast each element of
its input vector to all the other processes (each ele-
ment is a scalar). The Byzantine broadcast algorithm
allows a designated sender to broadcast a scalar value
to the other processes, while satisfying the following
properties when n � 3f +1: (i) all the non-faulty pro-
cesses decide on an identical scalar value, and (ii) if
the sender is non-faulty, then the value decided by the
non-faulty processes is the sender’s proposed (scalar)
value. Thus, non-faulty processes can agree on the d
elements of the input vector at each of the n processes.

At the end of the this step, each non-faulty process
would have received an identical multiset S containing
n vectors, such that the vector corresponding to each
non-faulty process is identical to the input vector at
that process.

2. Each process chooses as its decision vector a point in
�(S); all non-faulty processes choose the point identi-
cally using a deterministic function. We will soon show
that �(S) is non-empty.

When n is larger than the lower bound, complexity of
the above algorithm may be improved by first performing
consensus among max(3f +1, (d+1)f +1) of the processes,
with the remaining processes choosing majority vote on the

decision vectors received from any 2f + 1 of these processes
as their own decision.
We now prove that the above Exact BVC algorithm is

correct. Later, we show how the decision vector can be found
in Step 2 using linear programming. The proof of correctness
of the above algorithm uses the following celebrated theorem
by Tverberg [19]:

Theorem 2. (Tverberg’s Theorem [19]) For any integer
f � 1, and for every multiset Y containing at least (d +
1)f+1 points in R

d, there exists a partition Y1, · · · , Yf+1 of

Y into f +1 non-empty multisets such that \f+1
l=1 H(Yl) 6= ;.

The points in multiset Y above are not necessarily distinct
[19]; thus, the same point may occur multiple times in Y .
The partition in Theorem 2 is called a Tverberg partition,
and the points in \f+1

l=1 H(Yl) in Theorem 2 are called Tver-
berg points. Figure 1 illustrates a Tverberg partition of a set
of 7 vertices in 2-dimensions. The 7 vertices are at the cor-
ners of a heptagon. Thus, n = 7 here, and d = 2. Let f = 2.
Then, n = (d+1)f +1, and Tverberg’s Theorem (Theorem
2) implies the presence of a Tverberg partition consisting of
f + 1 = 3 subsets. Figure 1 shows the convex hulls of the
three subsets in the Tverberg partition: one convex hull is
a triangle, and the other two convex hulls are each a line
segment. In this example, the three convex hulls intersect
in exactly one point. Thus, there is just one Tverberg point.
In general, there can be multiple Tverberg points.

Figure 1: Illustration of a Tverberg partition (in-

spired by an illustration authored by David Eppstein

[8]).

The lemma below is used to prove the correctness of the
above algorithm, as well as the algorithm presented later in
Section 3.

Lemma 1. For any multiset Y containing at least (d +
1)f + 1 points in R

d, �(Y ) 6= ;.
Proof. Consider a Tverberg partition of Y into f+1 non-

empty subsets Y1, · · · , Yf+1, such that the set of Tverberg
points \f+1

l=1 H(Yl) 6= ;. Since |Y | � (d+1)f+1, by Theorem
2, such a partition exists. By (1) we have

�(Y ) = \T✓Y, |T |=|Y |�f H(T ). (2)

Consider any T in (2). Since |T | = |Y | � f and there are
f + 1 subsets in the Tverberg partition of Y , T excludes
elements from at most f of these subsets. Thus, T contains
at least one subset from the partition. Therefore, for each

T , \f+1
l=1 H(Yl) ✓ H(T ). Hence, from (2), it follows that

\f+1
l=1 H(Yl) ✓ �(Y ). Also, because \f+1

l=1 H(Yl) 6= ;, it now
follows that �(Y ) 6= ;.

We can now prove the correctness of our Exact BVC al-
gorithm.

Theorem 3. n � max(3f + 1, (d + 1)f + 1) is su�cient
for achieving Exact BVC in a synchronous system.

Proof. We prove that the above Exact BVC algorithm is
correct when n � max(3f+1, (d+1)f+1). The termination
condition holds because the Byzantine broadcast algorithm
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Asynchronous System 
n  ≥ (d+2) f +1"

g  Algorithm executes in asynchronous rounds"

g  Process i computes vi[t]  in its round t"

g  Initialization:     vi[0] = input vector"

"
"

"…  2 steps per round"

"



Step 1 in Round t"

g  Reliably broadcast state vi[t-1]"

g  Primitive from [Abraham, Amit, Dolev] ensures that"

"each pair of fault-free processes receives 
"(n-f) identical messages"

"
""
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Step 2 in Round t"
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" 39"



Validity"

g  |Bi|  ≥  n-f"

"
"
g  Validity proof similar to synchronous"

40"
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Recall from Step 2"
"
g  For each (n-f)-subset Y of Bi   … choose a point in Γ(Y)"
g  New state   vi[t] = average over these points"
"
Because i and j receive identical n-f messages in step 1, 
they choose at least one identical point above"
"
"

ε-Agreement "

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From
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• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.
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• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
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βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
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∑
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βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From
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• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑
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αk = 1(25)
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βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1
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, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
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Define (19)
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Equivalently,

ρl[t] = max
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‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:
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αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
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In the following, let us abbreviate g(i, j) simply as g.
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vi[t] and vi[t] as 
convex combination 
of fault-free states, 

with non-zero weight 
for an identical process 



Summary"

g  Necessary and sufficient n for vector consensus 
"

g  Synchronous & asynchronous systems"
"
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Matrix Form"

"
v[t]   =   M[t]  v[t-1]      where M[t] is row stochastic with

" " "   a coefficient of ergodicity < 1"
" " ""

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

vi[t] and vi[t] as 
convex combination 
of fault-free states, 

with non-zero weight 
for an identical process 



Matrix Form"

"
v[t]   =   M[t]  v[t-1]      where M[t] is row stochastic with

" " "   a coefficient of ergodicity < 1"
"
è Consensus because ΠM[t] has a limit with identical rows"
"

" " ""

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

• d = dimension of the input vector as well as decision
vector at each process.

• xi = d-dimensional input vector at process pi. The
vector is equivalently viewed as a point in the Euclidean
space Rd.

• H(Y ) denotes the convex hull of the points in multiset
Y .

• m : The proof of Theorem 5 assumes, without loss of
generality, that for m ≥ n − f , processes p1, · · · , pm
are non-faulty, and the remaining n −m processes are
faulty.

• Γ(.) is defined in (1).

• Φ(.) is defined in (8).

• vi[t] is the state of process pi at the end of its t-th round
of the asynchronous BVC algorithm, t > 0. Thus, vi[t−
1] is the state of process pi at the start of its t-th round,
t > 0. vi[0] for process pi equals its input xi.

• vil[t] is the l-th element of vi[t], where 1 ≤ l ≤ d.

• Bi[t] defined in Section 3.2, is a set of tuples of the
form (pj,wj , t), obtained by process pi in Step 1 of the
approximate consensus algorithm.

• Weight in a convex combination is defined in Definition
1

• γ = 1

n( n
n−f)

, as defined in (11). Note that 0 < γ < 1

for finite n > 1.

• Ωl[t] = max1≤k≤m vkl[t]

• µl[t] = min1≤k≤m vkl[t]

• ρl[t] = Ωl[t]− µl[t]

• |Y | denotes the size of a multiset Y .

• ‖ a ‖ is the absolute value of a real number a.

B. CLARIFICATION FOR THE PROOFOF
THEOREM 1

In the proof of Theorem 1, when considering the case of
f = 1, we claimed the following:

Since none of the non-faulty processes know which pro-
cess, if any, is faulty, as elaborated in Appendix B, the
decision vector must be in the convex hull of each mul-
tiset containing the input vectors of n − 1 of the pro-
cesses (there are n such multisets). Thus, this intersec-
tion must be non-empty, for all possible input vectors
at the n processes.

Now we provide an explanation for the above claim.
Suppose that the input at process pi is xi, 1 ≤ i ≤ n. All

the processes are non-faulty, but the processes do not know
this fact. The decision vector chosen by the processes must
satisfy the agreement and validity conditions both.

• With f = 1, any one process may potentially be faulty.
In particular, process pi (1 ≤ i ≤ n) may possibly be
faulty. Therefore, the input xi of process pi cannot be
trusted by other processes. Then to ensure validity, the
decision vector chosen by any other process pj (j %= i)
must be in the convex hull of the inputs at the processes
in P − {pi} (i.e., all processes except pi). Thus, the
decision vector of process pj (j %= i) must be in the
convex hull of the points in multiset Xi below.

Xi = {xk : k %= i, 1 ≤ k ≤ n}.

• To ensure agreement, the decision vector chosen by all
the processes must be identical. Therefore, the decision
vector must be in the intersection of the convex hulls of
all the multisets Xi (1 ≤ i ≤ n) defined above. Thus,
we conclude that the decision vector must be in the in-
tersection below, where H(Xi) denotes the convex hull
of the points in multiset Xi, and Qi denotes H(Xi).

∩n
i=1 H(Xi) = ∩n

i=1 Qi (16)

If the intersection in (16) is empty, then there is no decision
vector that satisfies validity and agreement conditions both.
Therefore, the intersection must be non-empty.

As shown in the proof of Theorem 1, if n is not large
enough, then the intersection in (16) may be empty.

C. PROOF OF CLAIM IN PART III
vil[t] denotes the l-th element of the vector state vi[t] of

process pi, 1 ≤ l ≤ d. Processes p1, · · · , pm are non-faulty,
and processes pm+1, · · · , pn are faulty, where m ≥ n − f .
Recall that, for 1 ≤ l ≤ d,

Ωl[t] = max
1≤k≤m

vkl[t] (17)

µl[t] = min
1≤k≤m

vkl[t] (18)

Define (19)

ρl[t] = Ωl[t] − µl[t] (20)

Equivalently,

ρl[t] = max
1≤i,j≤m

‖ vil[t]− vjl[t] ‖ (21)

where ‖ . ‖ operator yields the absolute value of the scalar
parameter.

Consider any two non-faulty processes pi, pj (thus, 1 ≤
i, j ≤ m). Consider 1 ≤ l ≤ d. Then

µl[t− 1] ≤ vil[t− 1] ≤ Ωl[t− 1] (22)

µl[t− 1] ≤ vjl[t− 1] ≤ Ωl[t− 1] (23)

Observations 1 and 3 in Part III of the proof of Theorem
5, and the definition of γ, imply the existence of constants
αk’s and βk’s such that:

vi[t] =
m
∑

k=1

αk vk[t− 1] where (24)

αk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

αk = 1(25)

αg(i,j) ≥ γ (26)

vj [t] =
m
∑

k=1

βk vk[t− 1] where (27)

βk ≥ 0 for 1 ≤ k ≤ m, and
m
∑

k=1

βk = 1 (28)

βg(i,j) ≥ γ (29)

In the following, let us abbreviate g(i, j) simply as g.
Thus, αg(i,j) is same as αg , and βg(i,j) is same as βg . From

vi[t] and vi[t] as 
convex combination 
of fault-free states, 

with non-zero weight 
for an identical process 

Hajnal 1957 
Wolfowitz 1963 



Matrix Form"

g  Popular tool in decentralized control literature on  
fault-free iterative consensus   [Tsitsiklis,Jadbabaei]"

g  Allows derivation of stronger results"
i Incomplete graphs"
i Time-varying graphs"
"
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Exact Consensus"

"
g  Agreement:  Fault-free processes agree exactly!

g  Validity: "   Agreed value in convex hull  
"              of inputs at fault-free processes"

g  Termination:  In finite time"

0 0 0 1      è   Must agree on 0 



Exact Consensus"

"
g  Agreement:  Fault-free processes agree exactly!

g  Validity: "   Agreed value in convex hull  
"              of inputs at fault-free processes"

g  Termination:  In finite time"

0 0 1 1      è   May agree on .4 



Exact Consensus"

"
"
Impossible with asynchrony    [FLP]"
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Approximate Consensus"

"
g  Agreement:  Fault-free processes agree approximately!

g  Validity:  …"

g  Termination:   …"
"



Approximate Consensus"

"
g  Agreement:  Fault-free processes agree approximately!

g  Validity:  …"

g  Termination:   …"
"

0 0 1 1         è   May agree on ≈ .4 



Necessary & Sufficient Condition  
(Complete Graphs)"

g  n ≥ 3f+1"

"
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Necessary & Sufficient Condition  
(Complete Graphs)"

g  n ≥ 3f+1"

for"
"
g  Exact consensus with synchrony"
g  Approximate consensus with asynchrony"

"
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Necessary & Sufficient Condition  
(Complete Graphs)"

g  n ≥ 3f+1"

for"
"
g  Exact consensus with synchrony"
g  Approximate consensus with asynchrony"

with scalar inputs"
"
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