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Assumptions

m Complete graph of n processes

® | Byzantine faults

m Each process has d-dimensional vector input






Exact Vector Consensus

m Agreement: Fault-free processes agree exactly

m Validity: Output vector in convex hull
of inputs at fault-free processes

B Termination: In finite time






Approximate Vector Consensus

m c-Agreement: output vector elements differ by < €

m Validity: Output vector in convex hull
of inputs at fault-free processes

B Termination: In finite time
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Traditional Consensus Problem

®m Special case of vector consensus : d =1

m Necessary & sufficient condition for complete graphs:
n = 3f+1

in synchronous [Lamport,Shostak,Pease]
& asynchronous systems [Abraham,Amit,Dolev]



Results



Necessary and Sufficient Conditions
(Complete Graphs)

m Exact consensus in synchronous systems

n = max(3,d+1) f +1

B Approximate consensus in asynchronous systems

n = (d+2) f +1



STOC 2013

Similar results for asynchronous systems

Hammurabi Mendes & Maurice Herliny




Talk Outline

Necessity

Sufficiency

Synchronous

max(3,d+1) f +1

max(3,d+1) f +1

Asynchronous

(d+2) f +1

(d+2) f +1




Synchronous Systems:
n = max(3,d+1) f+1 necessary

B n = 3f+1 necessary due to Lamport, Shostak, Pease



Synchronous Systems:
n = max(3,d+1) f+1 necessary

B n = 3f+1 necessary due to Lamport, Shostak, Pease

m Proofof n = (d+1) f +1 by contradiction ...

suppose that
f=1
n < (d+1)



n<d+1=3 whend=2

® Three fault-free processes, with inputs shown below
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Process A (1 j

>
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Process B 0 0 Process C




Process A’s Viewpoint

m [f B faulty : output on green segment (for validity)
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Process A’s Viewpoint

m [f B faulty : output on green segment (for validity)
m |f C faulty : output on red segment

A

0
Process A (1) \
>

0 1
Process B (O] (O) Process C
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Process A’s Viewpoint

m [f B faulty : output on green segment (for validity)
m |f C faulty : output on red segment

=» Output must be on both segments = initial state

A

0
Process A | \
>

0
Process B (O] (éj Process C
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d=2

m Validity forces each process to choose
output = own input

=> No agreement

= n = (d+1) insufficient when f = 1

=> By simulation, (d+1)f insufficient

Proof generalizes to all d



Talk Outline

Necessity

Sufficiency

Synchronous

max(3,d+1) f +1

max(3,d+1) f +1

Asynchronous

(d+2) f +1

(d+2) f +1




Synchronous System
n =max(3,d+1) f +1

1. Reliably broadcast input vector to all processes

2. Receive multiset Y containing n vectors

3. Output = a deterministically chosen point in

F(Y) — ﬂTgy, T |=|Y|—f HU_H(T)



®m Y contains 4 points, one from faulty process
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n-f=3
®m Y contains 4 points, one from faulty process

® Qutput in intersection of hulls of (n-f)-sets in Y




Proof of Validity

Output Ig F(Y) — ﬂTgy’ T |=|Y|—f HU_H(T)

m Claim 1 : Intersection is non-empty

m Claim 2 : All points in intersection are
in convex hull of fault-free inputs



Tverberg’s Theorem

> (d+1)f+1 points can be partitioned into (f+1) sets such
that their convex hulls intersect

s —+ a
T
o N
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Tverberg’s Theorem

> (d+1)f+1 points can be partitioned into (f+1) sets such
that their convex hulls intersect

Tverberg points

:ﬁho_
o N
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Claim 1: Intersection is Non-Empty

F(Y) — ngy, |T|=|Y|—f HU.H(T)

m Each T contains one set in Tverberg partition of Y



Claim 1: Intersection is Non-Empty

F(Y) — ngy, |T|=|Y|—f HU.H(T)

m Each T contains one set in Tverberg partition of Y

=» Intersection contains all Tverberg points of Y



Claim 1: Intersection is Non-Empty

F(Y) — ﬂTgy, |T|=|Y|—f HU.H(T)

m Each T contains one set in Tverberg partition of Y
=» Intersection contains all Tverberg points of Y

=» Non-empty by Tverberg theorem when = (d+1)f+1



Claim 2:
Intersection in Convex Hull of Fault-Free Inputs
F(Y) = (rcy, |T|=|Y|-f Hull(T)

m At least one T contains inputs of only fault-free processes

=» Claim 2



Talk Outline

Necessity

Sufficiency

Synchronous

max(3,d+1) f +1

max(3,d+1) f +1

Asynchronous

(d+2) f +1

(d+2) f +1




Asynchronous System
n =(d+2)f+1is Necessary

B Suppose f=1, n=d+2

® One process very slow
... remaining d+1 must terminate on their own

m d+1 processes choose output = own input
(as in synchronous case)
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Talk Outline

Necessity

Sufficiency

Synchronous

max(3,d+1) f +1

max(3,d+1) f +1

Asynchronous

(d+2) f +1

(d+2) f +1




Asynchronous System
n = (d+2) f +1

m Algorithm executes in asynchronous rounds
m Process i computes v;[t] in its round t

m [nitialization:  v,[0] = input vector



Asynchronous System
n = (d+2)f+1

m Algorithm executes in asynchronous rounds
®m Process i computes v;[t] in its round t

m |nitialization:  v[0] = input vector

. 2 steps per round



Step 1 in Round t

m Reliably broadcast state v[t-1]

® Primitive from [Abraham, Amit, Dolev] ensures that

each pair of fault-free processes receives
(n-f) identical messages
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Step 2 in Round t

® Process i receives multiset B, of vectors in step 1

Bl = n-f
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Step 2 in Round t

® Process i receives multiset B, of vectors in step 1

Bl = n-f

®m For each (n-f)-subset Y of B, ... choose a pointin ['(Y)
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Step 2 in Round t

® Process i receives multiset B, of vectors in step 1

Bl = n-f

®m For each (n-f)-subset Y of B, ... choose a pointin ['(Y)

m New state v[t] = average over these points
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Validity

= Bl = n-f

n>(d+2)f+1 = n-f>(d+1)f+1 =>» Tverberg applies

m Validity proof similar to synchronous
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e-Agreement
Recall from Step 2

m For each (n-f)-subset Y of B, ... choose a pointin '(Y)
m New state v[t] = average over these points



e-Agreement
Recall from Step 2

m For each (n-f)-subset Y of B, ... choose a pointin '(Y)
m New state v[t] = average over these points

Because i and j receive identical n-f messages in step 1,
they choose at least one identical point above



e-Agreement
Recall from Step 2

m For each (n-f)-subset Y of B, ... choose a pointin '(Y)
m New state v[t] = average over these points

Because i and j receive identical n-f messages in step 1,
they choose at least one identical point above

R o vi[t] and vi[t] as
vilt] > cwvilt—1] convex combination

of fault-free states,
v[t] = Z Br vi[t — 1] with non-zero weight
for an identical process



e-Agreement

o . vi[t] and v [t] as
vilt] > @k Vilt =1 convex combination

of fault-free states,
vi[t] = Z Br vi[t — 1] with non-zero weight
for an identical process

Rest of the argument standard in convergence proofs



e-Agreement

o . vi[t] and v [t] as
vilt] > @k Vilt =1 convex combination

of fault-free states,
vi[t] = Z Br vi[t — 1] with non-zero weight
for an identical process

Rest of the argument standard in convergence proofs

=>» Range of each vector element shrinks by
a factor <1 in each round

= e-Agreement after sufficient number of rounds



Summary

m Necessary and sufficient n for vector consensus

® Synchronous & asynchronous systems



Matrix Form

. s vi[t] and v|[t] as
vilt] > cwvilt—1] convex combination

of fault-free states,
v[t] = Z Bre vi[t — 1] with non-zero weight
for an identical process

v[t] = MI[t] v[t-1]  where M[t] is row stochastic with
a coefficient of ergodicity < 1



Matrix Form

. s vi[t] and v|[t] as
vilt] > cwvilt—1] convex combination

of fault-free states,
v[t] = Z Bre vi[t — 1] with non-zero weight
for an identical process

v[t] = MI[t] v[t-1]  where M[t] is row stochastic with
a coefficient of ergodicity < 1

= Consensus because INM[t] has a limit with identical rows
Hajnal 1957
Wolfowitz 1963



Matrix Form

® Popular tool in decentralized control literature on
fault-free iterative consensus | Isitsiklis,Jadbabaell

m Allows derivation of stronger results
® Incomplete graphs
® Time-varying graphs
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Thanks!
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Exact Consensus

m Agreement: Fault-free processes agree exactly

m Validity: Agreed value in convex hull
of inputs at fault-free processes

B Termination: In finite time

0 0 0 1 = MustagreeonO0



Exact Consensus

m Agreement: Fault-free processes agree exactly

m Validity: Agreed value in convex hull
of inputs at fault-free processes

B Termination: In finite time

0 1 0 1 = Mayagreeon 4



Exact Consensus

Impossible with asynchrony [FLP]
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Approximate Consensus

m Agreement: Fault-free processes agree approximately
m Validity: ...

B Termination:



Approximate Consensus

m Agreement: Fault-free processes agree approximately
m Validity: ...

B Termination:

0 1 0 1 = Mayagreeon= .4



Necessary & Sufficient Condition
(Complete Graphs)

m n > 3f+1
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Necessary & Sufficient Condition
(Complete Graphs)

® n = 3f+1
for

m Exact consensus with synchrony
® Approximate consensus with asynchrony
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Necessary & Sufficient Condition
(Complete Graphs)

® n = 3f+1
for

m Exact consensus with synchrony
® Approximate consensus with asynchrony

with scalar inputs




Outputs ‘ ‘ ‘ ' Approximate vector
consensus

Exact vector
consensus




