Contact Author: Ashis Tarafdar (ashis@cs.utexas.edu)
Tracks: Long Presentation (if not selected in the Long Presentation Track, please consider the abstract

for the Brief Announcement Track)
Student Paper: Yes. Ashis Tarafdar is a full-time student



Predicate Control in Distributed Systems

Ashis Tarafdar * Vijay K. Garg
ashis@cs.utexas.edu garg@Qece.utexas.edu
Dept. of Computer Sciences Dept. of Computer and Electrical Engineering

University of Texas at Austin, Austin, TX 78712

Abstract

A number of important problems in asynchronous distributed systems can be formulated as special
cases of the notion of controlling a distributed system to maintain global properties. We formalize this
notion by defining the predicate control problem in terms of boolean global predicates and a model of
distributed control. The problem arises in both off-line and on-line scenarios. We prove that general
off-line predicate control is NP-Hard. However, we present an efficient solution for the class of disjunctive
predicates. We show that on-line predicate control, on the other hand, is impossible to achieve even for
disjunctive predicates. However, by placing restrictions on the underlying system, we are able to present
an effective on-line control strategy.

1 Introduction

An intrinsic problem in asynchronous distributed systems is that while no one process can have a global
view, we still require the system as a whole to maintain global properties. This conflict has led to the
design of distributed algorithms which specify the manner in which processes cooperate to maintain a
global property. We call problems which require distributed control of a global property distributed control
problems. Generally, each type of global property has been studied as a separate distributed control
problem. Some classic examples are: distributed mutual exclusion [17], distributed resource allocation [3],
load balancing [2], and distributed consensus [6]. The safety aspects of each of these problems and many
others could be expressed as some global property which must be maintained.

Our approach, predicate control, is to define a control mechanism for a distributed system, given a
general global property. The global properties corresponding to the example problems stated above are
complex. Hence, we might expect that such a generalized approach be limited in its ability to efficiently
solve them. However, it is insightful to discover the limitations of the predicate control approach and to
determine if there is a class of simple distributed control problems for which such an approach may provide
an efficient solution.

Such a generalization attempt is not without precedent. Another important problem in distributed
systems is distributed detection of global properties. It has been studied in specialized forms such as
termination detection [4] and deadlock detection [10]. However, studies in predicate detection [7] have gen-
eralized the problem to the detection of arbitrary predicates, provided an understanding of its limitations,
and defined classes of predicates for which an efficient general solution is possible.

We are aware of two previous studies of the general distributed control problem. One study [13]
allows global properties within the class of conditional elementary restrictions [13]. Unlike our model of
a distributed system, their model uses an off-line specification of pair-wise mutually exclusive states and
does not use causality. [18] and [21] study the on-line maintenance of a class of global properties based

*supported in part by the MCD Fellowship
tsupported in part by the NSF Grants ECS-9414780, CCR-9520540, TRW faculty assistantship award, a General Motors
Fellowship, and an IBM grant



on ensuring that a sum or sum-of-product expression on local variables does not exceed a threshold. In
contrast to these approaches, our focus will be on general global properties and the class of disjunctive
predicates. We also study both the on-line and off-line variants of the control problem.

Our model of a distributed system assumes asynchronous processes communicating with messages.
Control of a global property is achieved by superimposing a distinct distributed control system on the
underlying distributed system. The control system is entirely transparent to the underlying system. It
consists of controllers, one for each process, which communicate using independent control messages and
which are capable of monitoring and controlling the underlying process. In particular, they can predict
the next state of a process and can block the process indefinitely. The underlying process perceives the
blocking action as a slowing down in its processor speed. Since the underlying system may have its
own blocking, the controller’s blocking action may cause deadlocks where none existed before. It is the
controller’s responsibility to ensure that this does not happen.

In asynchronous distributed systems, we distinguish between a computation and an ezecution. This
distinction does not exist for sequential systems. Running a distributed system results in many possible
computations, each of which corresponds to multiple possible executions. A computation specifies a partial-
ordering of local states which can be determined by the sequence of local states on each process and the
ordering of message receives. An execution is a sequence of global states of the system determined by
processor speeds and message delays. Our problem will be to control the system to suppress bad executions
which do not satisfy the required global property.

Since, in the control system we have described, the controllers can only predict the next state of their
processes, we say that they are provided with the underlying computation on-line. They are expected
to restrict the possible executions allowable within that computation to only those which satisfy the
stated global property. We call this scenario the on-line predicate control problem. If we assume that
each controller is provided with the entire underlying computation a priori, then a better control strategy
should be possible. We call this scenario the off-line predicate control problem. Even though the underlying
computation is predetermined in the off-line problem, there is still flexibility in the possible executions that
the system may go through. The off-line control strategy must restrict these possible executions.

It may seem unreasonable to assume a predetermined underlying computation in off-line predicate
control. However, there are some cases where a system may be run once and a trace of its underlying
computation (process states and message orderings) may be made. It may then be necessary to run it again
maintaining the same computation. Three areas where this naturally occurs are distributed debugging,
distributed recovery and distributed simulations.

e In distributed debugging [12], we may discover a bug in a particular computation of the distributed
system and might wish to replay the same computation to localize the bug. Since the bug may occur
in certain executions of the computation while not in others, we may wish to specify some global
property which restricts our attention to suspicious executions.

e In distributed recovery [5], processes may fail and may have to recover in a manner consistent with
the message orderings and sequence of events that they have logged in the past. In this case the
predetermined computation of the recovering system is specified in the message logs. While replaying
the logs, it might be desired to specify some global property among the recovering processes to prevent
bad executions which possibly caused the failures in the first place.

e In distributed simulations [9], the message ordering and sequence of events is fixed in simulation time.
So, every run of the simulation would follow the same computation but would have multiple possible
executions. In optimistic distributed simulation schemes, owing to a bad scheduling of events, the
system may have to backtrack and restart. To prevent the same bad scheduling of events, we may
specify some global property for the restarted system to maintain.



For the control problem, we could express the global property as a boolean expression of local atomic
predicates each corresponding to some local property on a process. We call this boolean expression a global
predicate. We will also be interested in a class of global predicates called disjunctive predicates consisting
of a disjunction of local predicates.

The predicate control problem is to construct a control system that does not cause deadlocks and ensures
that every possible execution of the controlled distributed system always satisfies a global predicate. A
solution to the problem must either construct a control system or inform us that the global predicate can
never be satisfied in the underlying distributed computation (for example, if the initial state itself does not
satisfy the specified predicate).

We first study the possibility of solving the predicate control problem in its full generality. We show that
the decision problem corresponding to the off-line case is equivalent to finding whether a satisfying global
execution exists in a distributed computation. We prove that this problem is NP-complete by transforming
Satisfiability to it. Therefore, the off-line predicate control problem is NP-hard in its full generality.

Next, we try to restrict the problem. We choose the class of disjunctive predicates because they form
a simple, yet interesting, class of problems. The corresponding class of conjunctive predicates could be
simply controlled by each controller maintaining the local predicate for its process independently. Since a
disjunctive predicate specifies that at least one of the local predicates remains true at any global state, the
controllers must coordinate in order to satisfy it. Although disjunctive predicates seem to be restrictive,
there is a category of real world problems that falls within their scope. These are problems which specify
that a certain bad combination never occurs at the same time. A good example of such a situation is
two-process mutual exclusion where we specify that either one process or the other process is not in the
critical section at any time. Another example is the classic dining philosopher’s problem where deadlocks
may be prevented by specifying that at least one of the philosophers must be thinking at any time.

We solve the off-line predicate control problem for disjunctive predicates by constructing a central-
ized algorithm which takes the given information about the predetermined underlying computation and
produces a control strategy. The controllers follow this control strategy to ensure that the predicate is
maintained in every global state and no deadlock occurs. The algorithm also determines if no control
scheme exists for a given underlying computation. If there are n processes and a local predicate has a
maximum of p changes in value during the computation, then the time complexity of our algorithm is
O(n?p) and the message complexity is O(np). As a measure of the concurrency allowed by our control
strategy, there are O(np) one-way, two process synchronizations.

Next, we show that it is impossible to solve the problem of on-line predicate control for disjunctive
predicates (and hence, for general predicates). This is a result of the controllers ignorance of the future of
the underlying computation beyond the next state. When a controller makes a decision, an adversary can
always ensure that for the decision it makes the system would deadlock, whereas for the other choice there
would be a valid computation. However, we impose certain restrictions to prevent deadlocks and provide
a solution. We show that the on-line predicate control problem for disjunctive predicates is equivalent to
the (n — 1)-mutual exclusion problem. This is a special case of the general k-mutual exclusion problem
which has been studied in [1, 8, 14, 16, 20]. We show that in the special case of k = n — 1, it is possible to
do better than applying the general k-mutual exclusion algorithms.

In Section 2, we define our model and problems. In Section 3, we show that off-line predicate control
is NP-hard. In Section 4, we address off-line predicate control for disjunctive predicates and in Section 5,
we do the same for the on-line case. In Section 6, we discuss our conclusions.

2 Model and Problem Specification

2.1 Model of a Distributed System The distributed system consists of n sequential processes P, Ps,
.., P, which can send messages to one another over reliable channels. The system is loosely-coupled and

asynchronous. Message ordering is arbitrary.

2.2 Model of a Distributed Computation Each process, ¢, executes a sequence of states and events



starting with a special start state, L;, and ending with a special final state, T,;. An event takes the process
from one state to another. An event may be a local event, a message send event, or a message receive
event. A state corresponds to the values of all variables in the process.

For two states s and ¢ in the same process, s<;,,,t denotes that s immediately precedes t in the sequential
execution of the process. < (precedes) denotes the transitive closure of <;,,. We say s ~ t (s remotely
precedes t) if the message sent in the event after s is received in the event before ¢. Given these relations,
the causally precedes (happened before) relation [11], —, is defined as the transitive closure of the union
of <;,, and ~». Note that — is an irreflexive partial-order over states in all processes. So, given any two
states s and ¢, either s—¢ or t—s or neither causally precedes the other, denoted by s||t (s is concurrent
with ¢).

Let S; be the sequence of local states in process P, and let S = |, S; then a distributed computation
can be modeled as a tuple (Sy,...,5,,~). We call it a deposet (decomposed partially-ordered set) [7]
provided that (5, —) is an irreflexive partial order and it satisfies three reasonable constraints:

D1: No messages are received before the initial state.
D2: No messages are sent after the final state.
D3: A single event does not both send and receive a message.

2.3 Global states and Consistency In a distributed computation modeled as a deposet, (S, ..., S,,~),
we define a global state to be a subset of S containing exactly one state from each sequence S;. Let G be
the set of all global states in the deposet. We define an ordering relation < on G as: For two global states
G,H € G:G < HifftVi:G[i] < H[i] where G[i] € S; and H[i] € S; are the states from P, in global states
G and H respectively. It is an established fact that (G, <) is a lattice [15].

A global state, G, is said to be consistent if Va,y € GG : z|ly. A consistent global state captures the
notion of a global state that could possibly occur in the distributed computation. If G¢ is the set of all
consistent global states in the deposet, then (G¢, <) is also a lattice. It is easy to show using D1 and D2
that the initial global state L = (Ly,..., L,) and the final global state T = (Ty,..., T,) are consistent.
2.4 Global Execution An actual execution of a distributed system would take it from the initial
consistent global state L to the final consistent global state T through a sequence of consistent global
states (a path in the lattice (G%, <)). We model the global execution as a global sequence — a sequence ¢
of consistent global states ordered by < such that restricting the sequence to any one process F; produces
the sequence S; of states in P, or the sequence S; with some states consecutively repeated (called a stutter
of S;). Note that this does not enforce an interleaving of events since in a global sequence multiple local
events can take place simultaneously.

2.5 Model of a Control System The control system is a distinct distributed system superimposed on
the underlying distributed system. The processes of the control system are a set of controllers, Cy, ..., C,,
which communicate using control messages over channels that are independent from the underlying system
channels. Each controller monitors and controls the underlying process. In particular, a controller is capable
of determining the next state of its process and is capable of blocking the process indefinitely. However, a
controller is not capable of altering the local computation in any other way. The underlying process would
not be able to distinguish between its controller’s blocking action and a reduction of its execution speed.
The actions of the controllers are specified by a distributed control strategy.

2.6 Model of a Controlled Distributed Computation On running a distributed control strategy for a
control system, the resultant controlled distributed computation is in no way different from a computation
of any other distributed system. We can, therefore, model a controlled distributed computation as a
deposet. This deposet would include extra control states and control messages.

If we restrict the deposet to states of the underlying distributed system, then we have a valid deposet
of the underlying distributed system except for extra causality between its states induced by the extra
control messages. If we remove this extra causality, we would have the deposet that would have occurred
if the control system had not existed (since the control system is transparent to the underlying system).



Instead of modeling the controlled computation as a deposet including control states and messages, it is
convenient to think of it as an extension to a deposet of an underlying computation with added control
causality between its states.

Given a distributed computation modeled by a deposet (S, ..., S,,~) with a causal precedence (5, —),
we define an extended deposet (Sy, ..., Sy, «»,'\C») to consist of an extra control relation - (for x,\%% we say
x is forced before y) between states. Each A tuple is induced by a control message in the control system
and relates the first underlying state before its send and the next underlying state after its receive. We
then define an extended causal precedence (9, E>) to be the transitive closure of the unions of <;,,, ~+ and
.. The extended deposet would model a valid computation only if (S, E>) is an irreflexive, partial-order.
However, it is possible to define a £ relation which causes cycles with — and results in a < that is not
irreflexive. We say that such a < relation interferes with —-.

Since, an extended deposet is formed by restricting an actual deposet of the controlled distributed
system, and since, given an extended deposet, it is easy to construct an actual deposet (by adding necessary
control states and control messages), from here on we do not distinguish between an extended deposet and
an actual deposet.

Definition Given a deposet, (Si,...,S5,,~), with irreflexive partial-order (5, —) and a control relation
<. which does not interfere with —, the resultant extended deposet (9, .. .,Sm'\»,'\cﬁ) with irreflexive
partial-order (S, E>) is called the controlled deposet of .S with S

It is easy to show that the set of global sequences in the controlled deposet is a subset of the set of
global sequences in the original deposet. This is exactly the function expected of a control system.

2.7 Global Predicates Given a deposet, (Si,...,S,,~), let X; be the set of variables associated with
P; so that each state s € 5; defines a value for each variable 2 € X;. Let X = |, X;. A global predicate,
B, is a boolean-valued function of the variables in X. We use B(G) to denote the value of predicate B in
the global state G. If B(G) = true, we say that G satisfies B. Further, if for a global sequence, ¢, every
global state G in g satisfies global predicate B, then we say that g satisfies B. If for a deposet S, every
possible global sequence satisfies global predicate B, then we say that S satisfies B. If for a deposet S,
at least one global sequence satisfies global predicate B, then we say that B is feasible for S. If B is not
feasible for S, we say it is infeasible for S. If for a distributed control strategy, A, every possible deposet
satisfies global predicate B, then A satisfies B. If B can be expressed as [} VI3V ...[, where [; is a local
predicate of P; (a boolean-valued function of the variables in X;) then B is a disjunctive predicate.

2.8 Problem Specifications

The Off-line Predicate Control Problem
Given a global predicate, B, and a deposet S for the underlying system, construct a distributed control
strategy that satisfies B, unless B is infeasible for S.

The On-line Predicate Control Problem
Given a global predicate, B, and a deposet S for the underlying system (provided on-line), construct a
distributed control strateqy that satisfies B, unless B is infeasible for §.

On-line predicate control is obviously a harder problem than off-line predicate control.

3 Off-line Predicate Control is NP-hard

We show that the off-line predicate control problem is NP-hard by showing that a simpler decision problem
is NP-complete. The problem is defined as follows:

Satisfying Global Sequence Detection (SGSD):
Given: a deposet, (Si,...,S5,,~), and a set of variables X partitioned into n subsets Xi,..., X,, and a



global predicate B defined on X
Determine: if B is feasible for S (i.e. if there exists a global sequence in S that satisfies B.)

Theorem 1 SGSD is NP-complete

Proof Outline: The problem is in NP because given a candidate global sequence, it takes polynomial
time to check that it is a valid global sequence and that it satisfies B. To show that it is NP-hard, we map
the satisfiability problem to it. If & is the boolean expression in the satisfiability problem, then for each
variable in b we assign a separate process with two states, one true and one false. We define B = bV «
where z is an extra boolean variable. We define another process for & which starts true, goes through a
false state, and ends true again. We then apply SGSD to find a satisfying global sequence. If it finds one,
then the global state with 2 = false will have a satisfying assignment for the variables of b. Conversely, if
b is satisfiable, then there must be a satisfying global sequence. O

Note that the proof demonstrates that SGSD is NP-complete even without any synchronizations. The
predicate control problem requires finding a satisfying distributed control strategy, if one exists. This is a
search problem the corresponding decision problem of which is to find out if a satisfying distributed control
strategy exists.

Satisfying Control Strategy Detection (SCSD):

Given: a deposet, (Si,...,S5,,~), and a set of variables X partitioned into n subsets Xi,..., X,, and a
global predicate B defined on X

Determine: if there exists a distributed control strategy that satisfies B for a control system whose
underlying computation is the deposet S

We now show that SCSD and SGSD are equivalent. Since the given data for both problems is identical,
we don’t have to explicitly map an instance of one problem to the other.

Theorem 2 SCSD and SGSD are equivalent.

Proof Outline: If there is a satisfying control strategy, then we merely have to simulate a run on it
to find a satisfying global sequence. If there is a satisfying global sequence, then we construct an overly
restrictive control strategy that allows only that global sequence and no other. O

Therefore, SCSD is NP-complete as well and the predicate control problem, being the corresponding
search problem, is NP-hard.

4 Off-line Predicate Control for Disjunctive Predicates

We now restrict our attention to disjunctive predicates. We state our problem as:

The Off-line Predicate Control Problem for Disjunctive Predicates
Given a global predicate, B = 1, vV ...V l,, and a deposet, (S1,...,5,,~), for the underlying system,
construct a distributed control strategy that satisfies B, unless B is infeasible for S.

Further, we make the following assumption:
Al: Vi L(Ly) A L(T)
In practice, this assumption is reasonable for a truly distributed system because processes know nothing
about one another before and after their computations. Hence, they must start and end in safe states.
Our approach will be to construct a satisfying controlled deposet of S with .. From the controlled
deposet, it is easy to construct a control strategy to implement it by using a control message (with a

blocked receive) for every tuple in S
We define an interval, I, as a sequence of consecutive states in a process with a beginning state
(designated as [I.lo) and an ending state (designated as [.hi). [;(I;) denotes that [; is ¢rue throughout

I; and [; is called a true-interval. Similarly, {;(I;) denotes that the local predicate [; is false throughout



Algorithm:
Input: I[1..n] an array of queues of false-intervals in deposet S (I[] is a queue of false-intervals of P; with respect
to I; in < order). We use I; to stand for head(I[i]).

Output: ¢ a queue of tuples of local states, initially § and finally corresponds to the tuples in the . relation.
Variables: g[l..n] = L a global state

k=1,k 1,12,y integers

A set of integer tuples
Lo if SomeQueue Empty(I) exit(C); (* no control required *)
L1 while =SomeQueue Empty(I) { (* exit when chain reaches a T; *)
1.2 A = {{z, y) | Is.lo A L,.hi A g[z] < I;.lo}; (* find a true interval which
L3 if (A = 0) exit( “No Controller Exists” ); can be maintained while
L4 else (k', 1) := any(A); a false interval is crossed *)
L5 enqueue(C, (glk'], Ix.lo)); (* add a A tuple *)
L6 for (1 € {0,...,n}, 1£1){
L7 while (next(z) — I;.ht) {
L8 g[f] = next(i); (* advance g
L9 if (g[f] = I;.ht) dequeue(I[i]); consistently with — *)

}
L.10 gll] := I.h3; (* cross one false interval *)
L11 dequeue(I[l]);
L12 k= k' (* remember the true interval *)
}

L.13 k' = any( {z|lempty(I[z])} );
L14 enqueue(C, (glk'], Ix.lo)); (* add last A tuple *)
L15 dequeue(C); (* eliminate dummy initializer *)
L16 exit(C);
Definitions: o

random element of . T ?f ][Z] 18 empty
any(Z) = ¢ ¢ 7 next(i) = Iilo if g[i] < I;.lo

Hof-empty se L.hi if g[i] = L.lo

Figure 1: Algorithm for Off-line Predicate Control of Disjunctive Predicates

false-interval I;. A set of intervals, Iy, ..., I,, is said to overlap, represented by overlap(ly,...,1I,), if and
only if: Vi, j € {1,...,n}: (I;.lo—1;.ht). This definition ensures that for an overlapping set of intervals,
no process can leave its interval until all other processes have entered their intervals. Therefore, if we
have an overlapping set of false-intervals, then every global sequence must contain a global state where all
processes are false. This is stated in the following result [7]:

Lemma 1 In a deposet, (Si,...,S,,~), with causal precedence (S,—), if the following condition is sat-
isfied then then there is no global sequence in S which satisfies B =1V ...V [,.

A, ..o L L) A AL(L) A overlap(y, ..., 1)

Our algorithm outputs a valid £ unless an overlapping set of false-intervals is detected. The approach
followed by our algorithm is to always maintain one process in its true interval until it knows that some
other process has started its true interval. This causes a chain of true intervals connected by the £, relation
which ensures that some process is always true. However, we must ensure that the £ used in the chain
does not interfere with the existing —. Our algorithm ensures this by maintaining a global state g which

advances consistently in the logical time defined by —. Every A tuple starts at g and points to the future
in logical time. The algorithm is listed in Figure 1.



Theorem 3 The procedure in Figure 1 terminates.

Proof Outline: We show that every reference to head(I[j]) (abbreviated to I;) and dequeue(I[j]) operates
on a non-empty queue. We also show that the references to any and next are well-defined. The inner
while loop terminates because every two iterations dequeue one false-interval from [[i]. The outer while
loop terminates because each iteration must dequeue at least one false-interval from [. O

Theorem 4 The algorithm in Figure 1 correctly solves the Off-line Predicate Detection Problem for Dis-
junctive Predicates.

Proof Outline: We first show that when the algorithm outputs “No Controller Exists”, S is infeasible
for B. We prove the following property of global state g: either the set of false-intervals that end after it
are overlapping, or at least one of those false-intervals y may be crossed while some other process z, which
is true at g (g[z] < I,.lo), is kept true. This demonstrates the correctness of the abnormal exit in L3.

Next, we show that < does not interfere with — as follows. For the global states defined by ¢ and
nezt, no local state in next can precede a state in g in the logical time defined by —. Since each A tuple
starts at a state in g and points towards a state in next (I;.lois next(k)), < cannot interfere with —.

Lastly we show that every global sequence possible in the controlled deposet of S with < must satisfy
B. Any global state must cut the chain of true intervals connected by A tuples (since the chain extends
from L1, to T, for some ¢ and j). Either it cuts the chain at a A tuple violating the causality it imposes,
or it cuts the chain in a true interval and so satisfies B. O

Complexity Analysis and Evaluation: The time complexity of the algorithm is O(n?p) where p is
the maximum number of false-intervals in a process. The naive implementation of the algorithm would
be O(n’p) because the outer while loop iterates O(np) times and calculating the set in L2 can take O(n?)
time to check every pair of processes. However, an optimized implementation would avoid redundant
comparisons in L2 by computing the set A dynamically. Since, in this approach, each new false-intervals
would have to be compared with n — 1 existing false-intervals, the complexity is O(n?p). The size of
S s O(np) because one tuple is outputed in each iteration of the outer while loop. Therefore, the
message complexity of control messages used is O(np). A good control strategy should also allow as
much concurrency as possible. The ideal control strategy would only suppress the non-satisfying global
sequences while allowing all satisfying ones. While this metric is hard to define, it is clear, for example,
that a control strategy involving one-way, two-process synchronizations allows more concurrency than one
involving multiple global synchronizations. Since each control message corresponds to a one-way, two-
process synchronization (the receives are blocking), we have O(np) such synchronizations.

5 On-line Predicate Control for Disjunctive Predicates

We address the following problem in this section:

The On-line Predicate Control Problem for Disjunctive Predicates

Given a global predicate, B =1,V ...V l,, and a deposet, (S, ..., 5,,~), with causal precedence (S,—),

for the underlying system (provided on-line), construct a distributed control strategy that satisfies B, unless

B is infeasible for S.

First we show that it is, in general, impossible to solve this on-line predicate control problem.
Theorem 5 The On-Line Predicate Control Problem for Disjunctive Predicates is impossible to solve.

Proof Outline: For simplicity, we prove by contradiction for the case n = 2. The proof can be extended
to a general n. Our counterexample consists of two processes P, and P, which each start at a true state,
pass through a false state, and end in a true state. The on-line controllers only know about their next



Distributed Control Strategy for Controller, C;:

Input:

l; a boolean function that takes a state as input
On-line Input:

s current state of the underlying computation

s’ next state of the underlying computation
Variables:

scapegoat = init(i) boolean

pending = false boolean

1,k integer
Control Actions:

e scapegoat A =l (s'): o received(req(y)):
send(req(7), any(C)); if 1;(s) then
receive(ack); scapegoat = true;
scapegoat := false; send(ack, Cj);

else

o pending A li(s): pending = true;
pending = false; k =
scapegoat = true;
send(ack, Cy);

Definitions:
init(1) true for one ¢ and false for others
C set of all controllers

any(Z)  randomly chosen element of non-empty set Z

Figure 2: Distributed Control Strategy for On-line Predicate Control with Disjunctive Predicates

states and so we are free to have either process send the other a message after the second state to be
received before the third state. The controllers cannot know about this message when they start. Since
the position is symmetric, let process P, advance to its false second state while P, stays in its true first
state. We then make P, send a message to P, after its second state and before P,’s third state. We now
have a deadlock where none would have existed if P, had been advanced instead. O

Note that even if we generalize on-line predicate control to allow each controller a finite lookahead of
the underlying computation, we could design a similar counterexample to demonstrate impossibility. Since
it is impossible to solve the problem as it stands, we make the following assumptions:

A2: Vi:P; does not block in states where [; is false .

A3: Vi:[(T)
These assumptions essentially allows us to assume that a false state will eventually turn true without
blocking. Since our control strategy will only wait for a process while it is in the false state, this prevents
a circular wait from occurring, and thus prevents deadlocks. In the two-process mutual exclusion example,
these assumptions would correspond to the usual assumption that a process does not block while it is
inside a critical section and ends in a non-critical section.

Our control strategy is similar to that used in the off-line case. One process remains true until it is
sure that some other process is true. At any time, the process bearing such a responsibility is called the
scapegoat. In our algorithm, listed in Figure 2, when the scapegoat reaches a false interval, it simply
sends a request to some other process asking it to become the scapegoat and waits for an acknowledgment.

It is easy to prove the correctness of this strategy, namely that:

Theorem 6 The distributed control strategy listed in Figure 2 does not deadlock.

Theorem 7 The distributed control strategy listed in Figure 2 satisfies B.



The k-mutual exclusion problem [1, 8, 14, 16, 20] is a generalization of the traditional mutual exclusion
problem where at most k& processes can be in the critical section at the same time. For & = n — 1, this
specifies that at all times, at least one process must not be in the critical section. If we define the false-
intervals to be critical sections, our problem becomes equivalent to (n — 1)-mutual exclusion. Our simple
distributed control strategy, therefore, also solves the (n — 1)-mutual exclusion problem.

Evaluation and Comparison to Existing Solutions We follow the general guidelines in [19] for
evaluating mutual-exclusion algorithms. Since only the critical sections of the scapegoat cause any overhead
and the remaining critical section entries do not, we measure the overhead over n critical section entries.
Let T be the average message propagation delay and F,,., be the maximum critical section execution time.
Response time is the time delay between a request for entering the critical section and the corresponding
entry. Per n critical section entries, 2 messages are required and response time is bounded between 27
and 27 4+ F,,,., depending on when the request arrives. We have the option of reducing the response time
at the expense of message overhead. We can devise a scheme where the scapegoat broadcasts a request to
all controllers, and so has a better chance of finding at least one of them not in the critical section.

Our control strategy is seen to be simpler and more efficient than existing solutions to the k-mutual
exclusion problem [1, 8, 14, 16, 20]. when specialized to the & = n — 1 case. Although a complete
comparison is beyond the scope of this presentation, the intuitive reason for this is that the k-mutual
exclusion algorithms usually use k tokens or wait for k replies and thus work well when k is small. Our
algorithm uses a single anti-token which acts as a liability rather than a privilege. This indicates that for
large k, a different class of algorithms may be more appropriate for the k-mutual exclusion problem.

6 Conclusions

We have defined the predicate control problem, a generalization of distributed control problems, and have
defined two different scenarios for the problem — the on-line and off-line scenarios. Although we have shown
that it is NP-hard to solve the general off-line problem, we demonstrate that the restricted problem for the
class of disjunctive predicates may be solved efficiently. For the on-line scenario, we have demonstrated
the impossibility of finding a solution even for the limited class of disjunctive predicates. However, if we
impose restrictions on the underlying computation, a solution is possible. The on-line predicate control
problem for disjunctive predicates is equivalent to the (n — 1)-mutual exclusion problem, a special case of
the k-mutual exclusion problem. However, we have shown that it is possible to provide a simpler and more
efficient solution to the (n — 1)-mutual exclusion problem than can be obtained by specializing existing
solutions to the k-mutual exclusion problem.

There are a number of interesting directions for future research into the predicate control problem. We
have shown that efficient solutions exist for off-line and on-line control of disjunctive predicates. However,
a number of existing distributed control problems such as general mutual exclusion do not fall into this
class and yet have been solved. It would be interesting to study other classes of predicates to see if a
general control strategy may be devised for them. A possible approach would be to try to extend the
solutions for disjunctive predicates to conjuncts of disjunctive predicates.

Another interesting problem would be to study the (n — 1)-mutual exclusion problem more thoroughly
since we have demonstrated that it is a special and useful case of the k-mutual exclusion problem. Further,
it may lead to insights into solutions for the k-mutual exclusion problem for large k.

References

[1] S. Bulgannawar and N. H. Vaidya. A distributed k-mutual exclusion algorithm. In Proceedings of the
15th International Conference on Distributed Computing Systems, pages 153 — 160. IEEE, 1995.

[2] T. Casavant and J. Kuhl. A taxonomy of scheduling in general purpose distributed computer systems.
IEEFE Transactions on Software FEngineering, 14(2):141-154, February 1988.

10



[3] K. M. Chandy and J. Misra. The drinking philosophers problem. ACM Transactions on Programming
Languages and Systems, 6(4):632 — 646, October 1984.

[4] E. W. Dijkstra and C. S. Scholten. Termination detection for diffusing computations. Information
Processing Letters, 11(1):1 — 4, August 1980.

[5] E. N. Elnozahy, D. B. Johnson, and Y. M. Wang. A survey of rollback-recovery protocols in message-
passing systems. Technical Report CMU-CS-96-181, Dept. of Computer Science, Carnegie Mellon
University, 1996.

[6] M. J. Fischer, N. A. Lynch, and M. S. Paterson. Impossibility of distributed consensus with one faulty
process. Journal of the ACM, 32(2):374 — 382, April 1985.

[7] V. K. Garg. Principles of Distributed Systems. Kluwer Academic Publishers, 1996.

[8] S.-T. Huang, J.-R. Jiang, and Y.-C. Kuo. k-coteries for fault-tolerant k entries to a critical section. In
Proceedings of the 13th International Conference on Distributed Computing Systems, pages 74 — 81.
IEEE, 1993.

[9] D. R. Jefferson. Virtual time. ACM Transactions on Programming Languages and Systems, 7(3):404
— 425, July 1985.

[10] E. Knapp. Deadlock detection in distributed databases. ACM Computing Surveys, 19(4):303 — 328,
December 1987.

[11] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Communications of the

ACM, 21(7):558 — 565, July 1978.

[12] T. J. LeBlanc and J. M. Mellor-Crummey. Debugging parallel programs with instant replay. IEEFE
Transactions on Computers, C-36(4):471 — 482, April 1987.

[13] A. Maggiolo-Schettini, H. Wedde, and J. Winkowski. Modeling a solution for a control problem in
distributed systems by restrictions. Theoretical Computer Science, 13(1):61 — 83, January 1981.

[14] K. Makki, P. Banta, K. Been, N. Pissinou, and E. Park. A token based distributed k mutual exclusion
algorithm. In Proceedings of the Symposium on Parallel and Distributed Processing, pages 408 — 411.
IEEE, December 1992.

[15] F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed Algo-
rithms: Proc. of the International Workshop on Parallel and Distributed Algorithms, pages 215 — 226.
Elsevier Science Publishers B. V. (North Holland), 1989.

[16] K. Raymond. A distributed algorithm for multiple entries to a critical section. Information Processing
Letters, 30:189 — 193, February 1989.

[17] M. Raynal. Algorithms for Mutual Fxclusion. MIT Press, 1986.
[18] M. Raynal. Distributed Algorithms and Protocols. John Wiley and Sons Ltd., 1988.

[19] M. Singhal. A taxonomy of distributed mutual exclusion. Journal of Parallel and Distributed Com-
puting, 18:94 — 101, 1993.

[20] P. K. Srimani and R. L. Reddy. Another distributed algorithm for multiple entries to a critical section.
Information Processing Letters, 41:51 — 57, January 1992.

[21] A. L. Tomlinson and V. K. Garg. Maintaining global assertions on distributed sytems. In Computer
Systems and Education, pages 257 — 272. Tata McGraw-Hill Publishing Company Limited, 1994.

11



A Appendix: Proofs

Theorem 8 SGSD is NP-complete

Proof: We first show that the problem is in NP. Given a sequence of global states, g, we have to check
that it is a valid global sequence and that every global state in it satisfies B. In order to check that it is a
valid global sequence, we check that each of the global states g, in ¢ is consistent, that for all consecutive
pairs of global states, gx < gxy1, and that restricting g to a single process ¢ would produce either S; or a
stutter of it.

e We can check that g, is consistent in polynomial time (by using vector clocks and examining all
pairs of states from g¢x). There are only a polynomial number of global states in the global sequence
because each global state in the sequence must contain at least one new local state.

e We can check that g, < gry1 in polynomial time by checking that Vi : gx[i] < gry1[7] (using vector
clocks). Again, there are a polynomial number of global states in g.

e For each of the processes, we can restrict g to ¢ and check that the restriction is either S; or a stutter
of it in polynomial time by starting at the beginning of the restriction and striking off elements of .9;
every time the state changes.

e For each global state g, in ¢ we need to check that it satisfies B. This can be done in polynomial
time since there are only a polynomial number of such states and B can be evaluated in polynomial
time.

We now show NP-completeness by reducing the satisfiability problem of a boolean expression to SGSD.

Let b be the given boolean expression and let it use m boolean variables z,...,z,,. We define a
deposet, {S1,..., S, Smi1, 0}, such that for each P; such that i € {1,...,m}, X; = {z;} and S; consists
of exactly two states, 1; = s! in which z; is true and T; = s{ in which z; is false . We introduce an

extra variable x,,,; such that for process P11, X;ny1 = {@my1} and S,,41 is a sequence of three states
Loy = sfé_l_l in which x,,,1 is true , 5£1+1 in which «,,,, is false and the T, = sf,f_l_l in which 2,44
is true again. Note that there are no messages in the deposet. Now we define B = bV 2,41 so that it is
obviously true in L and in T.

Given a global sequence for which every global state satisfies B, by the definition of a global sequence,
there must be some global state containing the local state, 3£1+1 where @,,,1 is false . Since this global
state must satisfy B, we can find a truth assignment from the states of P, ..., F,, which satisfies b.

Given a truth assignment which satisfies b, we construct a global state h containing 5£1+17 and for each
S; such that ¢ € {1,...,m}, it contains s! if the variable z; is true in the given truth assignment or st
otherwise. The sequence L, h, T is a global sequence because each state is consistent (because there are no
synchronizations) and restricting it to each process P, results in either S; or a stutter of it. The predicate
B evaluates to true in L and T because z,,,1 is true and B evaluates to true in h because of the given
truth assignment.

This shows that we can find a truth assignment to b iff we can find a global sequence in .S which satisfies
B. O

Theorem 9 SCSD and SGSD are equivalent.

Proof: If we solve SCSD and find a satisfying control strategy, then we simulate a global execution of the
system with the control strategy and find a satisfying global sequence.

If we solve SGSD and find a satisfying global sequence g, then we can define a satisfying control strategy
as follows.



First, we construct a controlled deposet, S., for which the only global sequence is g. Let g be the
sequence ¢i, ..., gn. For every distinct pair of global states g, and ¢, (k < and k,l € {1,...,m}) consider
every pair of local states g,[¢] and ¢;[j] of distinct processes P; and P;. If gx[i] # ¢:[7] and gx[j] # ¢:[j] and
gi[i]£¢i1[j] then we impose gx[i}-g,[f]. Tt is clear that ~~ doesn’t interfere with — and that every global
state in ¢ is consistent for 5. Every global state not in g is inconsistent for S because it must consist
of at least two local states which uniquely belong to distinct global states of g. These local states must
be connected by ANA by our construction unless they are already connected by —. Thus, the only global
sequence allowed by 5. is g.

We can now construct a control strategy enforcing S. as the only computation as follows. For every
s'\C»t, where s is a state of I, and ¢ is a state of P;, ensure that controller C; sends a control message
containing information (s,t) to P; immediately after s. Immediately before ¢, controller C; blocks P; until
the message (s,t) is received. It is easy to see that this ensures that S, is the only possible computation.
Therefore, the only valid global sequence obtained from this control strategy is g. Hence, this is a satisfying
control strategy.

Thus, SCSD and SGSD are equivalent decision problems. O

In order to prove Theorem 3 and Theorem 4, we prove the following lemma which expresses some
useful invariants of the outer while loop in the algorithm listed in Figure 1.

Lemma 2
Immediately before L2 the following invariant holds:

C1l: —SomeQueueEmpty(l) A

C2: Vi:g[i] = L.lo A

C3: Vi: (g[t] < Li.lo)=(g[t] = L; V (interval between g[i] and I;.lo is a true interval) ) A
C4: Jz,y: (I;.lokl,.hi N g[z] < I,.lo) V —(3 a satisfying global sequence) A

C5: Vi:gt]=1; Vv g[i] < Li.lo v 35:(g[t]=gli] A glj] < I;.lo) A

C6: Vi, j: next(i)Aglj]

Proof:

C1 is invariant directly from the while loop condition. This establishes that V¢ : I; is always a well-
defined interval at L2. We use this property implicitly in the remainder of this proof.

We now prove C2 A C3 A C4 A C5 A C6 by induction on the number of occurrences of L2 in the
execution of the algorithm.

Base: At the first occurrence of L2:
C2: obvious {definition of L}
C3: obvious

C4: if =(3 a satisfying global sequence), we are done.
so assume 7 a satisfying global sequence
so Ja,y : (I,.loAlL,.hi) {Lemma 1}
so let (I,.lof1,.hi)
glz]= L, < I..lo {A1, definition of false-interval}
so Jz,y : (I;.loA~1,.hi A g[z] < I,.lo)

C5: obvious

C6: obvious {D1, definition of L; }



Induction: Let IH refer to the inductive hypothesis. We use primed variables (e.g. ¢’, I’) to indicate their
values in the current occurrence of L2 and unprimed variables (e.g. ¢, ) to indicate their values in the

previous occurrence. Lines numbers in the algorithm refer to their occurrences in the previous iteration
(corresponding to IH).

C2:

C3:

C4:

g'[l] < 1].lo {L10, L11, order of I[{]is <}
Vi£l:g't] <Il.lo

{if loop L7 iterates then by {L8, L9, defn. of next} else by {IH C2}}
soVi:g'li] < 1.lo

let i €{1,...,n}
if ¢'[¢] A I!.lo then we are done.
P1  so assume ¢'[7] < I].lo

consider two cases:
Case 1: ¢'[i] = g]i]

Il =1 {Case 1, L7, L8, 1.9}
so we are done. {IH C3}

Case 2: ¢'[i] # g]i]
consider two cases:

Case 2.1: 1 =1

¢'[{] is hi of interval immediately before I!
{Case 2.1, L10, L11}

so interval between ¢'[i] and I].lo is a true interval
{definition of intervals, I]i] ordered in <}

Case 2.2: 1 £

¢'[{] is hi of interval immediately before I!
{final iteration of L7-9, by P1: ¢'[i] # I].lo}
so interval between ¢'[i] and I].lo is a true interval
{definition of intervals, I]i] ordered in <}

if =(3 a satisfying global sequence), we are done.
so assume 7 a satisfying global sequence
so Jz,y 1 (I,.lofr1; .hi) {Lemma 1}
P2 solet (I.loA 1) .hi)
if ¢’[x] < I..lo then we are done
so assume ¢'[x] £ I..lo
P3  sog'lz]=1I,.lo {C2 above}
Vi£1:(¢g'[t] = g[¢]) Vv {if loop L7 doesn’t iterate}
(¢'li]=g'[])
{L7, L8, L9 ensure that at the end of the loop, next'(i)—1I,.hi.
by definition of next(i): ¢'[i] < neat’(i).
so ¢'[1]—1;.hi.
by L10: ¢'[l] = I,.hi.
0 ¢T1-9'l.)
P4 soVi:(i=1) Vv (¢[]=g[l) Vv (¢'[i] = g[i])
so we have 3 cases for a:

Case 1: z =1



P5  g[l] < I.lo {L10, L11}

P6  g'[z] = ¢'l] {Case 1}
P7  Il.lo= g'[z] {P3}

so Il.lo < 1].lo {P5, P6, P7}
P8 so [j.loA 1, .hi {P2}

so dz,y: (I, lof 1) .hi N g'[z] < I,.lo) {P5, P8}
Case 2: ¢'[z]—¢'[l]

P9 ¢[l] < I'.lo {L10, L11}
P10 ¢'[z]—¢'[l] {Case 2}
P11 [Il.lo = ¢'[z] {P3}

so I .lo—1].lo {P9, P10, P11}
P12 so I].loA 1, .hi {P2}

so dz,y: (I, lof 1) .hi N g'[z] < I,.0o) {P9, P12}
Case 3: ¢'[z] = g[x]

P13 glz] # L. {P3, Case 3, A1, definition of interval}
I, =1 {Case 3, L7, L8, 1.9}
P14 so g[z] = I..lo {P3, Case 3}
35 : glz]—9lj] A glj] < 1;.lo {IH C5, P13, P14}
P15 solet glz]—g[j] A glj] < 1;.lo
we have 3 cases for j: {P4}
Case 3.1 j =1
P16 ¢[l] < I'.lo {L10, L11}
P17 ¢'[7]1= ¢'[!] {Case 3.1}
P18  g[j] < ¢'lj] {Case 3.1, L2, 14, L10, L11}
P19 g[z]—=g[j] {P15}
P20 ¢'[z] = g[x] {Case 3}
P21 [Il.lo= ¢'[z] {P3}
so I.lo—1].lo {P16 - P21}
P22 so Ij.loA ) .lo {P2}

so dz,y: (I, lof 1) .hi A g'[z] < I,.lo) {P16, P22}
Case 3.2 ¢'[j]—¢'[l]

P23 ¢[l] < I'.lo {L10, L11}
P24 ¢'[7]—=9'll] {Case 3.2}
P25 ¢lj] =< ¢'[J] {Case 3.2, L7, L8, L9, definition of next}
P2 gle]sgl] (P15}
P27 ¢'[z] = g[x] {Case 3}
P28 I;.lo_ '[«] {P3}
so I.lo—1].lo {P23 - P28}
P29 so I}.loA 1, .lo {P2}

so dz,y: (I, lof 1) .hi A g'[z] < I,.lo) {P23, P29}
Case 3.3 g'[j] = gJ]

I =1; {Case 3.3, L7, L8, 1.9}
P30 so ¢'[j] < I}.lo {P15, Case 3.3}
P31 g¢ljl=¢'[J ] {Case 3.3}
P32 g[a]— [ ] {P15}
P33 g'[2] = g[a] {Case 3}



P34 [Il.lo= ¢'[z] {P3}
so I,.lo—=1I].lo {P30 - P34}
P35 so Ij.loAl.lo {P2}
so dz,y: (I,.lof 1) .hi N g'[z] < I,.lo) {P30, P35}
C5: let i €{1,...,n}
we have three cases for i: {P4}
Case 1: 1 =1
g'[l] < 1].lo {L10, L11}
so ¢'[1] < Il.lo {Case 1}
Case 2: ¢'[i]—¢'[{]
g'[l] < 1].lo {L10, L11}
so ¢'[1]—=¢'[{] N ¢'[l] < 1].lo {Case 2}
Case 3: ¢'[i] = g]i]
L =1 {Case 3, L7, L8, 1.9}
so g'li] = Li v ¢'lil < I}.lo v 3j: (¢'li]=glj] A glj] < I;.l0)
{IH C5, Case 3}
if ¢'li] = L, Vv ¢'[¢] < I].lo, we are done.
P36 solet ¢'[t]—=g[j] N g[j] < 1;.lo
we have three cases for j: {P4}
Case 3.1 j =1
[l < ' {L2, L4, L10, L11}
P37 so ¢'[i]—=¢'[l] {Case 3.1, P36}
g'[l] < 1].lo {L10, L11}
so ¢'[1]—=¢'[{] N ¢'[l] < 1].lo {P37}
Case 3.2 ¢'[j]—¢'[l]
if ¢’[7] = g[j] then same as Case 3.3.
o let ¢'[j] # g1j]
so g[7] < ¢'[4] {Case 3.2, L7, L8, 1.9}
P38 so ¢'[i]—¢'[l] {P36, Case 3.2}
g'[l] < 1].lo {L10, L11}
so ¢'[1)—=¢'[1] N ¢'[1] < I].lo {P38}
Case 3.3 ¢'[j] = g[J]
Iy =1 {Case 3.3, L7, L8, 1.9}
s0, ¢'[i]=g'l7] N g'l7] < I}.lo {Case 3.3, P36}
Cé: let 7,5 € {1,...,n}

{P4}

we have 3 cases for j:
Case 1: j =1

next’ (i)/ ’[l]

{if (¢ =1) then by {definition of next} else by {L7, L8, L9, L10}}

so next'

g'[!

©
(1) A4g'lj]
]

Case 2: ¢'[j]—

{Case 1}



neat' (1)72¢'[l]
{if (¢ =1) then by {definition of next} else by {L7, L8, L9, L10}}
so next' (1)/49'[J] {Case 2}
Case 3: ¢'[j]=glj
P39  next(i) < next' (i) {definition of next, IH C2, Case 3, L7 - 1.9}
neat(i)lj] {1H Co)
so next' (1)/4g'[J] {Case 3, P39}

a

Theorem 10 The procedure in Figure 1 terminates.

Proof: We must show that each term used is well defined in the execution and that each loop terminates.
The terms which may be undefined are:

o [;for j € {l,z,y,k, 1} used throughout the program. I; is an abbreviation of head(/[j]), which is not
defined if I[j] is empty.

at L2 use of I,,I,: Lemma 2:C1 states that no queue in [ is empty at the start of L2. So the
usage is valid.

at L5 use of Ij;: because of Lemma 2:C1 and since there are no dequeue’s between the start
of L2 and the start of L5.

at L7 use of [;: because of Lemma 2:C1 and since there is no dequeue of I[l] between the start
of L2 and an occurrence in L7.

at L10 use of I;: same as above.

at L14 use of I: The check in LO makes sure that the outer while-loop iterates at least once.
Consider the final iteration of the loop. At L4, a &’ is chosen and I[k'] cannot be dequeued at
L9 because L2 and L7 ensure that the loop L7-9 never iterates for P;. Since k' # [, it can’t be
dequeued at L11. Queue I[k] was not changed in the last iteration. At the start it couldn’t have
been empty because of Lemma 2:C1. So it is non-empty at the end. Since there is dequeue
from then until L.14, the usage is valid.

in the definition of next: this is valid because the definition first checks if I[i] is empty.

e any(A) at line L4. A must not be empty and this is ensured in L3.

e next(?) at lines L7 and L8. At the start of L2, by Lemma 2:C2 Vi : next(z) is valid. Lemma 2:C2
is also an invariant at the start of L8 in the inner while-loop (though not at the start of L9). Hence
the usage of next(7) is valid.

o dequeue’s The dequeue in L15 is always preceded by at least one enqueue and is the only dequeue of
C'. The dequeue at L11 is valid because of Lemma 2:C1. The dequeue at L9 is valid because the
definition of next, D2, and the termination check in the inner while-loop prevents a dequeue when

I[7] is empty.

We now show that the loops must terminate.

e The

inner while-loop terminates because the queue [[i] is finite and keeps reducing every two it-

erations. In the worst case, by the definition of next, the loop must terminate when [[i] becomes

empty.



e The for loop has a finite index range.

e The outer while loop terminates because [ is finite and reduces by at least one interval (L11) in every
iteration.

Theorem 11 The algorithm in Figure 1 correctly solves the Off-line Predicate Detection Problem for
Disjunctive Predicates.

Proof: There are three parts:

Part 1: If the algorithm exits with “No Controller Frists” then there is no controller which satisfies B.
Proof: Lemma 2:C4 is true at the start of L2. This ensures that at L3 A is empty only if there is no
global sequence which satisfies B. Since any controller which satisfies B can be executed to produce a
global sequence which satisfies B, there can be no controller which satisfies B.

Part 2: The output, C, is a valid < relation that does not interfere with —.

Proof: It is easy to see that C defines a relation on states of deposet S. We must show that < causes no
cycles with —. We consider two cases - cycles containing exactly one A tuple and cycles containing two

c
or more ~+ tuples.

o Claim: There are no cycles containing exactly one L. in the transitive closure of'\C» and —.
We prove this by contradiction. Let there be such a cycle with a tuple added in either line L5 or in
line .14 as g[k’]'\C»Ik.lo. We consider these two cases together.

P40 g[S, lo {given}

P41 I.lo = next(k) {There must be a previous iteration of the outer while
loop because: in the case of g[k’]glk.lo being added
in L5, it can’t be the first iteration because that tuple
would be dequeued in line .15 and in the case of its being
added in L14, the check in line LO would make sure that the
loop iterates at least once. In the previous iteration, L2,
L4 indicate that the &’ for that iteration (the & in our
current iteration) is such that ¢g[k’] < I}.lo. This would
remain unaffected by the loop in lines L7 - L9 because of the
conditions in L2 and L4. So after line 1.12, this changes to
glk] < I.lo. By the definition of nezt, I.lo = next(k).}

next(k)/Aglk'] { Lemma 2:C6 is true before L.2. It remains true until

L5. We can show in a similar manner as the inductive step
of the proof of C6 that it remains true until L.14.}

P42 so I.loAg[K'] {P41}

P40 and P42 contradict the existence of a cycle in the transitive closure of — and < with a single

ANA tuple, g[k’]'\C»Ik do.

o Claim: There are no cycles containing two or more <% in the transitive closure of'\C» and —.
Again, we prove this result by contradiction. Let there be such a cycle. Let the superscript m on a
variable (e.g. g™, k'™) represent its value after m iterations of the outer while loop. So gm[k’m]'\C»I,Tm.lo
represents the ANA tuple in the cycle added after m iterations of the outer while loop. Let gi[k’i]glé,.lo
be the last - tuple in the cycle to be added in the algorithm and let ¢/ [k’j]'\cﬁlgj.lo be the next ~
tuple in the cycle.



P43 so I},.lo—g/[k"]

P44 ¢i[k"] < g'[k"] {since i > j and g advances w.r.t. < with each iteration}
I},.lo = next' (k') {following the same reasoning as in the previous Claim}

P45 so, next’ (k')—g¢'[k"] {P43, P44}

P46 neat' (k')A g'[k"] {following the same reasoning as in the previous Claim}

P45 and P46 are contradictory.

Part3: For every consistent global state, g, in the new controlled deposet with the new S partial order
B(g) is true .

Proof: We use the same notation used in the second Case in Part 2. Let there be m iterations of the
outer while loop in the algorithm. Therefore we have m tuples of '\C», m — 1 of which are added in L5 in
the loop and the last is added in L14 after the loop terminates. Each of these correspond to:

P47 [k} o forie{l,...,m}
gk ] < I,lo forie{l,....,m—1} {L2, L4 (note: (i = m) excluded)}
P48 so ¢i[k"] = Ly V (interval between ¢°[k"] and I},..lo is a true interval) forie{l,...,m—1}
{Lemma 1:C3}
We simplify the notation as:
P49 (b, t,,) = (¢'[K"], I}....1o) fori e{l,...,m—1}
where p; = k"

We define:
P50 (bptﬂ tpu) = (J-pw Iélla)
and:

P51 (by,..tp,.) = (9" [K™], Tp,)
P52 so (by,,t,,) strictly includes a true interval for i€ {0,...,m}
{for i € {1,...,m — 1}: P48, using A1if b, = L,
for i = 0: we can show from the algorithm that I};.lo is the
start of the first false interval
for ¢ = m: L13 shows that ¢ has crossed the last false interval}
Ilo= 1T lo forie{l,...,m—1}
{L2,1.4 ensure that I[k’] is not affected in the loop L7-L9 and
L12 makes k' into k for the next iteration}
P53 so bpl+1'\cf>tpl forie {0,...,m—1}
{ P47, P49, P50, P51}

Now, we prove by contradiction. Assume ' is a consistent global state in the controlled deposet for which

Vi o =l (GA))

Claim: Vi € {0,...,m} : t,, < G[pi]

We prove this claim by induction:

Base: tpy = G[po] {P50, A1, P52, definition of L, }
Induction:
t,, < Gpi] {inductive hypothesis}
50 byoyr —Gpi] {P53}
s0 Gpit1] 2 bp.ys {otherwise, G[piH]gG[pi] violating consistency of G}
80 by, < G[pit1]
50ty = Glpivi] {P52}
O{Claim}



In particular:

ty,, = Glpn]

50 Gpm] = T, {P51, definition of T, }
This contradicts A1l

a

Theorem 12 The On-Line Predicate Control Problem for Disjunctive Predicates is impossible to solve.

Proof: We prove impossibility by contradiction. We assume that there is a solution and demonstrate its
invalidity using a counterexample. Our counterexample is for the case n = 2 for simplicity. It is easy to
extend it to the general case of n processes. The counterexample consists of a deposet S and a disjunctive
predicate B that is feasible for 5. We show that any control strategy that is defined on-line could be forced
to deadlock.

Let S) = si,, 85,805 and let Sy = sb,, 80,80, Let B = [, VI, be the disjunctive predicate. The
superscripts of the states indicate whether they are true or false with respect to the corresponding local
predicate.

The distributed strategy starts with control in the global state (si,,s%;) and is aware of the next
events and states but is ignorant of what comes after the second states. Since the situation is perfectly
symmetrical, it has a choice of any of two possible next global states in the global sequence corresponding
to which process advances. Without loss of generality, let P, advance so that the next global state is
(8{27821). (Note that (8{27852) would cause B to be violated.) After this decision is made, we play the
adversary and impose s}, ~+ si,. This would mean that P, has to wait at s{, for a message to be received
from P, after state sf,. The system cannot advance to (8{27 852) because this would violate B. Hence, the
system is deadlocked.

Our counterexample is not valid until we show that B was indeed feasible for S . This is demonstrated
by the global sequence, (s%,, 5% ), (41, 550), (519, s4s), (8ls, 5bs), which satisfies B.

O

Theorem 13 The distributed control strategy listed in Figure 2 does not deadlock.

Proof: The only wait involved is when the scapegoat is waiting for an ack. This is guaranteed to arrive
because every process in a false state will eventually reach a true state (by A2 and A3). Therefore, there
can be no deadlock. O

Theorem 14 The distributed control strategy listed in Figure 2 satisfies B.

Proof: It is easy to prove by structural induction that in every possible global state the number of
scapegoats in the system is strictly greater than the number of acknowledgment messages in the system.
This indicates that there is at least one scapegoat in every possible global state. The strategy also ensures
that the scapegoat is true . This ensures that every possible global state satisfies B. O



