Normality: A Consistency Condition
for Concurrent Objects

Vijay K. GARG* Michel RAYNAL
ECE Department IRISA
The University of Texas Campus de Beaulieu
Austin, TX 78712 (USA) 35042 Rennes Cédex (France)
garg@Qece.utexas.edu raynal@irisa.fr
Abstract

Linearizability is a consistency condition for concurrent objects (objects shared by con-
current processes) that exploits the semantics of abstract data types. It provides the illusion
that each operation applied by concurrent processes takes effect instantaneously at some
point between the beginning and the end of its execution. When compared with other
consistency conditions (such as sequential consistency) Linearizability satisfies the Locality
property (i.e, a system is linearizable if each object taken individually is linearizable) and the
Non-Blocking property (i.e., termination of an invoked operation does not depend on other
pending invocations). Those are noteworthy properties as they allow concurrent systems to
be designed and constructed in a modular fashion.

This paper introduces a consistency condition called Normality that is less constraining
than Linearizability (in the sense it does not refer to a global real-time order) and still
satisfies Locality and Non-Blocking. As it does not refer to a global real-time, Normality is
well-suited to objects supported by asynchronous distributed systems and can consequently
be seen as an adaptation of Linearizability for these systems.

Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-shared
memory; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures; D.1.3
[Programming Techniques]: Concurrent programming; D.2.1 [Software engineering]:
Requirements; D.4.2 [Operating Systems]: Storage management-disiributed memories;
F.1.2 [Computation by Abstract Devices]|: Modes of computation-parallelism and con-
currency

General Term: Design, Theory

Key Words: Concurrent Objects, Consistency Condition, Linearizability, Locality Prop-
erty, Non-Blocking Property.

1 Introduction

A set of sequential processes communicating through shared typed objects constitutes a con-
current system. Each shared object (or concurrent object) has a type that provides processes
with a set of operations with which they can manipulate objects of this type. Each object
type is defined by a sequential specification that describes the effect of each operation on an
object of this type when executed alone. As in a concurrent system an object can be accessed

*supported in part by the NSF Grants ECS-9414780, CCR-9520540, and a General Motors Fellowship.

concurrently by several processes, it is necessary to define consistency conditions for concurrent
objects. Sequential consistency [5] and register atomicity [6] are two such consistency conditions.
Serializability is a consistency condition well-known in transactional systems [1].

In [3] Herlihy and Wing have introduced a consistency condition called Linearizability. This
consistency condition generalizes the classical Atomicity consistency condition (designed for
register objects) to objects whose set of operations is richer than the simple read and write
operations. Intuitively, an execution of a concurrent system is linearizable (i.e., satisfies the
Linearizability consistency condition) if it could appear to an external observer as a sequence
composed of the operations invoked by processes that respects objects specifications and real-
time precedence ordering on operations. So, Linearizability provides the illusion that each
operation on shared objects issued by concurrent processes takes effect instantaneously at some
point between the beginning and the end of its execution. This consistency condition has a great
practical interest: it satisfies the Locality property (i.e., a concurrent system is linearizable if
each of its objects taken individually is linearizable) and it satisfies the Non-Blocking property
(i.e., termination of an invoked operation does not depend on other pending invocations). This
means objects can be implemented and verified independently, so it allows modular design,
interoperability and individual object-based scheduling policies.

This paper presents a consistency condition called Normality which is less constraining than
Linearizability (in the sense it requires less constraints to be satisfied) while retaining Locality
and Non-Blocking properties. Normality can be seen as a weakening of Linearizability that does
not refer to real-time, so it is well-suited to asynchronous distributed systems where the concept
of global real-time is impractical and awkward [2]. The paper consists of five sections. Section 2
presents the system model. Section 3 is a short introduction to the Linearizability theory. Section
4 introduces Normality and proves it has the Locality and Non-Blocking properties. Finally
Section 5 compares Linearizability and Normality in a more general model where operations can
span several objects. Section 6 concludes the paper.

2 System Model

The system model is basically the same as the one introduced in [3] from where the following
definitions are taken.

Objects and Processes.

A concurrent system consists of a finite set of sequential processes (named py,pa, ..., p,) that
communicate through shared objects (or concurrent objects). Each object has a name and a type.
The type defines a set of possible values and a set of primitives operations that provide the only
means to manipulate objects of this type. Execution of an operation takes some time; this is
modeled by two events, namely an invocation event and a response event. A process sequentially
applies operations to objects; this is modeled as a sequence of alternating invocation (inv) and
matching response (resp) events. Let op(arg,res) be an operation on object X issued at p;; arg
and res denote op’s input and output parameters, respectively. Invocation and response events
inv(op(arg)) on X at p; and resp(op(res)) from X at p; will be abbreviated as inv(op) and
resp(op) when parameters, object name and process identity are not necessary.

Histories.

Execution of a concurrent system is modeled by a history H which is a finite sequence of operation
invocation and response events. Let ~+y be the total order relation defined by H on inv and
resp events, i.e., if evy and evy are two events and if ev; precedes evy in H, then evy ~»y evs.

A subhistory of H is a subsequence of the events of 7. A history is complete if for each inv(op)
event that belongs to H, the matching resp(op) event belongs also to .

A history H is sequential if (1) its first event is an invocation and (2) each invocation®
(response) event is immediately followed (preceded) by the matching response (invocation). A
history that is not sequential is concurrent. In a concurrent history some operations overlap in
time; if operations e and f are such that =(resp(e) ~y inv(f)) and —(resp(f) ~y inv(e)), e
and f are said to be concurrent.

A process subhistory H|p; (H at p;) of a history # is the subsequence of all events in H
whose process names are p;. An object subhistory is defined in a similar way for an object X; it
denoted H|X (H at X). Two histories H and H' are equivalent if for every process p; we have
Hlpi = H'|p:.

A history H is well-formed if each process subhistory H|p; is sequential. In the following
we consider only well-formed histories. Such histories model sequential processes accessing
concurrent objects. As some operations on a same object X can be concurrent, it is important
to note that object subhistories of well-formed histories are not necessarily sequential.

Object Specification.

We consider that each object operation is specified by using a pre- and a post-condition. The
specification of an object X is defined as the set of all the sequential histories Sx of events that
include X and in which the pre- and the post-condition of each operation is satisfied.

Legality.
A sequential history H is legal if the pre- and the post-condition of each operation of H are
satisfied.

3 Linearizability

As indicated in the introduction, Linearizability is a consistency condition for concurrent objects
that has been introduced by Herlihy and Wing [3] to exploit the semantics of abstract data
types. It provides the illusion that each operation applied by concurrent processes takes effect
instantaneously at some point between its invocation and its response. When restricted to
objects providing only read and write operations (register objects), it is equivalent to atomicity
as defined by Misra in [6]. So, Linearizability generalizes Misra’s approach to objects with
a richer set of operations. The two important requirements of Linearizability are: (1) each
operation should appear to take effect instantaneously, and (2) the order of non concurrent
operations should be preserved.

More formally let us consider a history H and the “real-time” precedence ordering on oper-
ations denoted <, and defined in the following way (e and f are two operations):

e <, [if resp(e) ~y inv(f)

So, operations concurrent in # are not related by <,,. If # is sequential then <, is a total order.

Linearizability (Definition) A history H is linearizable if there exists an equivalent sequential
history S that is legal and preserves <, (i.e., if e <, f then resp(e) ~s inv(f)).

In a history #, an object X is linearizable if its concurrent history 7|X is linearizable (i.e.,

'Except possibly the last one if the history is not complete.

belongs to its specification). Herlihy and Wing have proved the following important theorem
(see [3], pages 470-471): A history H is linearizable iff, for each object X, H|X is linearizable.

A property P of a concurrent system is local if the system as a whole satisfies P whenever each
individual object satisfies P. So, Linearizability is a local property. Locality is very important. It
enhances modularity and concurrency: objects can be implemented and verified independently.
As noted in [3], sequential consistency [5] and serializability [1] are not local properties; so,
protocols implementing these consistency conditions must rely on global conventions to ensure all
concurrency control mechanisms are mutually compatible. Such a compatibility is not necessary
when all objects are linearizable.

It is also show in [3] that Linearizability satisfies the Non-Blocking property, i.e., a pending
invocation of a totally defined operation is never required to wait for another pending invocation
to complete.

4 Normality

Let us consider a history H and the following happens before relation defined on operations of
H. Let e and f be two operations of H. Let object(op) and proc(op) be the set of objects and
the process associated with the operation op respectively. e —3 f (e happens before f in H)?
if one of the three following conditions holds:

Process Order: (proc(e) = proc(f)) N (resp(e) ~ tnv(f)) (i.e., e and f are invoked by
the same process with e first).

Object Order®: (object(e) Nobject(f) #0) A (resp(e) ~y inv(f)).
Transitivity: d¢g such that (e =y g) A g —u f).

Note that —y C <,,. Consequently, (1) operations on the same object that are concurrent are
not related by —; (2) e —¢ f implies resp(e) ~y inv(f) in H but the converse does not
necessarily hold: if e and f are issued by two distinct processes and are on distinct objects we
can have resp(e) ~y inv(f) and =(e =y f).

While Linearizability requires real-time order (as defined by ~+%) be respected, Normality
is weaker in the sense it requires only that the order — be respected. More formally we have:

Normality (Definition) A history H is normal if there exists an equivalent sequential history
S that is legal and preserves —y (i.e., if € =9 f then resp(e) ~s inv(f)).

The following Lemma shows that a history H is normal if and only if it is linearizable. Locality
and Non-Blocking properties of normal histories will follow from this Lemma. Given any history
H, let Xy (H) represent the set of equivalent legal sequential histories that preserve the order
—9¢. Similarly, let ¥, (H) denote the set of equivalent legal sequential histories that preserve
the order <, .

Lemma. For any history #: (Xp(H)#0) & (XEn(H) #0).

Proof:

2Lamport’s happens be fore relation for message-passing distributed systems [4] is a special case of the Nor-
mality happens be fore relation. In a distributed system the only shared objects are channels between processes.

®Here, as object(op) contains exactly one object, (object(e) N object(f) # @) is equivalent to (object(e) =
object(f)). This will no longer be true in the more general model introduced in Section 5 where object(op) can
contain several objects.

= : Since — is contained in <,, it follows that X (H) C Xn(H). This clearly implies that if
a history H is linearizable (i.e., X1 (#) is non-empty), then it is also normal (i.e., X (H)
is also non-empty).

< Let § € ¥n(H). Thus, S is a legal sequential history equivalent to H which preserves —
(i.e., process order and object order). We construct another legal sequential history &’
from & that preserves <,, (i.e., real-time order defined by 7) and that is equivalent to H.
If S also preserves <., (real-time order), then &' = § and we are done. Otherwise, there
exist operations in § that violate real-time order <, . Let e and f be two such operations
in § such that (Note that, as S is sequential, < is a total order):

(P1) Operations e and f violate the real-time order. That is:
f<,e N e<sf

(P2) e and f is a pair of closest operations that satisfies P1 in §; more explicitly, all the
operations g in & between e and f do not violate the real-time order (<,) with either
e or f (so, such g are concurrent with e and f):

(e<sg Ng<sf) = (lg<ye) AN=(f < 09)

We show existence of &' € Yy (H) such that f <, e. The proof is by induction on the
number of operations between e and f in §. Formally, induction is on

k:|{g | e<s9 A g<sf}|

Base case (k = 0): Since S preserves process order and f <, e, it follows that e and f
are on different processes. Similarly, since S preserves object order and f <, e, it follows
that e and f are on different objects. This implies that e and f can be commuted without
violating legality.

Induction case (k > 0): In &8, starting at e, let h be the first operation after e and before
f which is not on object(e) or be the last operation before f and after e which is not on
object(f). Without loss of generality assume that h satisfies the former condition (The
reasoning when h satisfies the later condition is analogous).

Let eg, €1, €2, ..., €, (m > 0) be the sequence of operations from e to h with eg = e. We show
that h can be moved before e without violating legality. Since all e;’s for any 0 < ¢ < m
are on object(e), which is different from object(h), it is sufficient to show that for any 7 we
have proc(e;) # proc(h). Suppose proc(e;) = proc(h). This implies that

(I11) resp(e;) ~y inv(h)

because processes are well-formed. From (P2), by substituting e; for ¢ we get —(e; <,, €),
i.e., (resp(e;) ~y inv(e)), i.e.,

(12) inv(e) ~y resp(e;) .

Combining inequalities 11 and 12, we get

(13) inv(e) ~y tnv(h).

However, from (P1) resp(f) ~ inv(e) which combined with inequality (I3) gives resp(f)

~y tnv(h), i.e., f <, h. This contradicts (P2). Thus, proc(e;) # proc(h) for any ¢. Hence
h can be moved before e, reducing the number of operations between e and f.

This proves the Lemma.
|

In the system model considered, primitive operations on objects are on one object at a time, i.e.,
operations are unary. This is used in the proof of the Lemma as, for each operation e, we con-
sider object(e) is composed of exactly one object. So, albeit Normality is less constraining than
Linearizability (= C <,,), as a direct consequence of the Lemma we get the following theorem.

Theorem 1 If all operations on objects are unary, then Linearizability and Normality are equiv-
alent consistency conditions (i.e., a history H is linearizable iff it is normal).

The next two theorems follow from the previous theorem 1, the definition of #|X and the the-
orem of [3] (namely, a history H is linearizable iff, for each object X, #|X is linearizable).

Theorem 2 (Locality) A history H is normal if and only if, for each object X, H|X is normal.
Theorem 3 (Non-Blocking) A normal history i satisfies the Non-Blocking property.

5 A More General System Model

The system model introduced in Section 2 assumes each operation is on exactly one object. We
consider here a more general model where primitive operations can be on several objects?; so,
object(e) denotes now the set of objects associated with e. As an example consider a system
with two register objects 4 and B provided with the traditional read, write operations plus the
binary primitive operation sum (when invoked by a process p with A and B as input parameters,
sum returns the sum of the values of A and B).

Definitions for a history H, relations ~+4, <,, and —y and for Linearizability and Normality
remain unchanged. The following example shows that the previous Lemma does not hold in this
more general model (i.e., a history 7 can be normal but not linearizable). Let H = ev; ev; ... evg
with (A and B are initialized to 0):

evy = inv(write(l)) on A at p
inv(sum()) on A/ B at py

€V

evs = resp(write()) from A at p
evy = inv(write(2)) on B at ps
evs = resp(write()) from B at ps
evg = resp(sum(2)) from A,/ B at p,

This history H is not linearizable as evs ~»y evy (resp(write()) from A at p; occurred before
inv(write(2)) on B at p3) and sum returns a value indicating that the operation write(B,2) has
happened but the operation write(A, 1) has not. However # is normal as there is a sequential
history &, equivalent to H, that is legal and respects —:

S = write(B,2) at p3; sum((A4, B),2) at py; write(A,1) at p;

It follows that:

*Such operations are called multi-methods in object-oriented terminology. As unary operations, they can be
specified by pre- and post-conditions.

e In asystem model where object operations are unary: Linearizability and Normality (albeit
its formulation is less constraining) (1) are equivalent consistency conditions (satisfying
both Locality and Non-Blocking properties) and (2) are stronger than sequential consis-
tency [5] (i.e., a history H can be linearizable/normal but not sequentially consistent).

e In a system model where primitive object operations can span several objects: Lineariz-
ability and Normality are no more equivalent. Linearizability is a consistency condition
stronger than Normality which itself is a consistency condition stronger than sequential
consistency.

6 Conclusion

Normality is particularly attractive in asynchronous distributed systems as, in this context, only
process order and object order can be observed. In these systems there is no global time frame
and objects (managed by specialized servers) are accessed through RPC-like protocols. Actually,
in a model where each operation is on one object, we have: Normality = (Linearizability — global
time). Seen that way, this paper showed that the Locality and Non-Blocking properties can be
attained in distributed systems as soon as we consider Normality as the consistency condition for
shared objects. The paper has also shown that Linearizability and Normality are not equivalent
in models where primitive operations can span several objects.

The following problem remains open and deserves further study: “Among all consistency
conditions for shared objects (with unary operations) equivalent to Linearizability is Normality
the “optimal” one (i.e., the one that requires the least constraints to be satisfied by a history)?”.

Acknowledgements

We thank Craig Chase for some fruitful discussions on the topic.

References

[1] P. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in Database

Systems. Addison-Wesley, Reading, MA | 370 pages, 1987.

[2] V.K. Garg and A. Tomlinson. Causality versus Time: How to Specify and Verify Distributed
Programs. In Proc. 6th IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, pp.249-
256, 1994.

[3] M. Herlihy and J. Wing. Linearizability: a Correctness Condition for Concurrent Objects. ACM
Trans. on Prog. Lang. and Systems, 12(3):463-492, 1990.

[4] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communications of
the ACM, 21(7):558-565, 1978.

[6] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro-
grams. IEEE Trans. on Computers, C28(9):690-691, 1979.

[6] J. Misra. Axioms for Memory Access in Asynchronous Hardware Systems. ACM Trans. on Prog.
Lang. and Systems, 8(1):142-153, 1986.

