
Normality: A Consistency Conditionfor Concurrent ObjectsVijay K. GARG� Michel RAYNALECE Department IRISAThe University of Texas Campus de BeaulieuAustin, TX 78712 (USA) 35042 Rennes C�edex (France)garg@ece.utexas.edu raynal@irisa.frAbstractLinearizability is a consistency condition for concurrent objects (objects shared by con-current processes) that exploits the semantics of abstract data types. It provides the illusionthat each operation applied by concurrent processes takes e�ect instantaneously at somepoint between the beginning and the end of its execution. When compared with otherconsistency conditions (such as sequential consistency) Linearizability satis�es the Localityproperty (i.e, a system is linearizable if each object taken individually is linearizable) and theNon-Blocking property (i.e., termination of an invoked operation does not depend on otherpending invocations). Those are noteworthy properties as they allow concurrent systems tobe designed and constructed in a modular fashion.This paper introduces a consistency condition called Normality that is less constrainingthan Linearizability (in the sense it does not refer to a global real-time order) and stillsatis�es Locality and Non-Blocking. As it does not refer to a global real-time, Normality iswell-suited to objects supported by asynchronous distributed systems and can consequentlybe seen as an adaptation of Linearizability for these systems.Categories and Subject Descriptors: B.3.2 [Memory Structures]: Design Styles-sharedmemory; C.1.2 [Processor Architectures]: Multiple Data Stream Architectures; D.1.3[Programming Techniques]: Concurrent programming; D.2.1 [Software engineering]:Requirements; D.4.2 [Operating Systems]: Storage management-distributed memories;F.1.2 [Computation by Abstract Devices]: Modes of computation-parallelism and con-currencyGeneral Term: Design, TheoryKey Words: Concurrent Objects, Consistency Condition, Linearizability, Locality Prop-erty, Non-Blocking Property.1 IntroductionA set of sequential processes communicating through shared typed objects constitutes a con-current system. Each shared object (or concurrent object) has a type that provides processeswith a set of operations with which they can manipulate objects of this type. Each objecttype is de�ned by a sequential speci�cation that describes the e�ect of each operation on anobject of this type when executed alone. As in a concurrent system an object can be accessed�supported in part by the NSF Grants ECS-9414780, CCR-9520540, and a General Motors Fellowship.1



concurrently by several processes, it is necessary to de�ne consistency conditions for concurrentobjects. Sequential consistency [5] and register atomicity [6] are two such consistency conditions.Serializability is a consistency condition well-known in transactional systems [1].In [3] Herlihy and Wing have introduced a consistency condition called Linearizability. Thisconsistency condition generalizes the classical Atomicity consistency condition (designed forregister objects) to objects whose set of operations is richer than the simple read and writeoperations. Intuitively, an execution of a concurrent system is linearizable (i.e., satis�es theLinearizability consistency condition) if it could appear to an external observer as a sequencecomposed of the operations invoked by processes that respects objects speci�cations and real-time precedence ordering on operations. So, Linearizability provides the illusion that eachoperation on shared objects issued by concurrent processes takes e�ect instantaneously at somepoint between the beginning and the end of its execution. This consistency condition has a greatpractical interest: it satis�es the Locality property (i.e., a concurrent system is linearizable ifeach of its objects taken individually is linearizable) and it satis�es the Non-Blocking property(i.e., termination of an invoked operation does not depend on other pending invocations). Thismeans objects can be implemented and veri�ed independently, so it allows modular design,interoperability and individual object-based scheduling policies.This paper presents a consistency condition called Normality which is less constraining thanLinearizability (in the sense it requires less constraints to be satis�ed) while retaining Localityand Non-Blocking properties. Normality can be seen as a weakening of Linearizability that doesnot refer to real-time, so it is well-suited to asynchronous distributed systems where the conceptof global real-time is impractical and awkward [2]. The paper consists of �ve sections. Section 2presents the systemmodel. Section 3 is a short introduction to the Linearizability theory. Section4 introduces Normality and proves it has the Locality and Non-Blocking properties. FinallySection 5 compares Linearizability and Normality in a more general model where operations canspan several objects. Section 6 concludes the paper.2 System ModelThe system model is basically the same as the one introduced in [3] from where the followingde�nitions are taken.Objects and Processes.A concurrent system consists of a �nite set of sequential processes (named p1; p2; :::; pn) thatcommunicate through shared objects (or concurrent objects). Each object has a name and a type.The type de�nes a set of possible values and a set of primitives operations that provide the onlymeans to manipulate objects of this type. Execution of an operation takes some time; this ismodeled by two events, namely an invocation event and a response event. A process sequentiallyapplies operations to objects; this is modeled as a sequence of alternating invocation (inv) andmatching response (resp) events. Let op(arg,res) be an operation on object X issued at pi; argand res denote op's input and output parameters, respectively. Invocation and response eventsinv(op(arg)) on X at pi and resp(op(res)) from X at pi will be abbreviated as inv(op) andresp(op) when parameters, object name and process identity are not necessary.Histories.Execution of a concurrent system is modeled by a historyH which is a �nite sequence of operationinvocation and response events. Let ;H be the total order relation de�ned by H on inv andresp events, i.e., if ev1 and ev2 are two events and if ev1 precedes ev2 in H, then ev1 ;H ev2.2



A subhistory of H is a subsequence of the events of H. A history is complete if for each inv(op)event that belongs to H, the matching resp(op) event belongs also to H.A history H is sequential if (1) its �rst event is an invocation and (2) each invocation1(response) event is immediately followed (preceded) by the matching response (invocation). Ahistory that is not sequential is concurrent. In a concurrent history some operations overlap intime; if operations e and f are such that :(resp(e) ;H inv(f)) and :(resp(f) ;H inv(e)), eand f are said to be concurrent.A process subhistory Hjpi (H at pi) of a history H is the subsequence of all events in Hwhose process names are pi. An object subhistory is de�ned in a similar way for an object X ; itdenoted HjX (H at X). Two histories H and H0 are equivalent if for every process pi we haveHjpi = H0jpi.A history H is well-formed if each process subhistory Hjpi is sequential. In the followingwe consider only well-formed histories. Such histories model sequential processes accessingconcurrent objects. As some operations on a same object X can be concurrent, it is importantto note that object subhistories of well-formed histories are not necessarily sequential.Object Speci�cation.We consider that each object operation is speci�ed by using a pre- and a post-condition. Thespeci�cation of an object X is de�ned as the set of all the sequential histories SX of events thatinclude X and in which the pre- and the post-condition of each operation is satis�ed.Legality.A sequential history H is legal if the pre- and the post-condition of each operation of H aresatis�ed.3 LinearizabilityAs indicated in the introduction, Linearizability is a consistency condition for concurrent objectsthat has been introduced by Herlihy and Wing [3] to exploit the semantics of abstract datatypes. It provides the illusion that each operation applied by concurrent processes takes e�ectinstantaneously at some point between its invocation and its response. When restricted toobjects providing only read and write operations (register objects), it is equivalent to atomicityas de�ned by Misra in [6]. So, Linearizability generalizes Misra's approach to objects witha richer set of operations. The two important requirements of Linearizability are: (1) eachoperation should appear to take e�ect instantaneously, and (2) the order of non concurrentoperations should be preserved.More formally let us consider a history H and the \real-time" precedence ordering on oper-ations denoted <H and de�ned in the following way (e and f are two operations):e <H f if resp(e) ;H inv(f)So, operations concurrent in H are not related by <H . If H is sequential then <H is a total order.Linearizability (De�nition) A history H is linearizable if there exists an equivalent sequentialhistory S that is legal and preserves <H (i.e., if e <H f then resp(e) ;S inv(f)).In a history H, an object X is linearizable if its concurrent history HjX is linearizable (i.e.,1Except possibly the last one if the history is not complete.3



belongs to its speci�cation). Herlihy and Wing have proved the following important theorem(see [3], pages 470-471): A history H is linearizable i�, for each object X, HjX is linearizable.A property P of a concurrent system is local if the system as a whole satis�es P whenever eachindividual object satis�es P. So, Linearizability is a local property. Locality is very important. Itenhances modularity and concurrency: objects can be implemented and veri�ed independently.As noted in [3], sequential consistency [5] and serializability [1] are not local properties; so,protocols implementing these consistency conditions must rely on global conventions to ensure allconcurrency control mechanisms are mutually compatible. Such a compatibility is not necessarywhen all objects are linearizable.It is also show in [3] that Linearizability satis�es the Non-Blocking property, i.e., a pendinginvocation of a totally de�ned operation is never required to wait for another pending invocationto complete.4 NormalityLet us consider a history H and the following happens before relation de�ned on operations ofH. Let e and f be two operations of H. Let object(op) and proc(op) be the set of objects andthe process associated with the operation op respectively. e !H f (e happens before f in H)2if one of the three following conditions holds:Process Order: (proc(e) = proc(f)) ^ (resp(e) ;H inv(f)) (i.e., e and f are invoked bythe same process with e �rst).Object Order3: (object(e)\ object(f) 6= ;) ^ (resp(e) ;H inv(f)).Transitivity: 9g such that (e !H g) ^ g !H f).Note that !H � <H . Consequently, (1) operations on the same object that are concurrent arenot related by !H; (2) e !H f implies resp(e) ;H inv(f) in H but the converse does notnecessarily hold: if e and f are issued by two distinct processes and are on distinct objects wecan have resp(e) ;H inv(f) and :(e !H f).While Linearizability requires real-time order (as de�ned by ;H) be respected, Normalityis weaker in the sense it requires only that the order !H be respected. More formally we have:Normality (De�nition) A history H is normal if there exists an equivalent sequential historyS that is legal and preserves !H (i.e., if e !H f then resp(e) ;S inv(f)).The following Lemma shows that a history H is normal if and only if it is linearizable. Localityand Non-Blocking properties of normal histories will follow from this Lemma. Given any historyH, let �N (H) represent the set of equivalent legal sequential histories that preserve the order!H. Similarly, let �L(H) denote the set of equivalent legal sequential histories that preservethe order <H .Lemma. For any history H: ( �L(H) 6= ; ) , ( �N(H) 6= ; ).Proof:2Lamport's happens before relation for message-passing distributed systems [4] is a special case of the Nor-mality happens before relation. In a distributed system the only shared objects are channels between processes.3Here, as object(op) contains exactly one object, (object(e) \ object(f) 6= ;) is equivalent to (object(e) =object(f)). This will no longer be true in the more general model introduced in Section 5 where object(op) cancontain several objects. 4



) : Since !H is contained in <H it follows that �L(H) � �N (H). This clearly implies that ifa history H is linearizable (i.e., �L(H) is non-empty), then it is also normal (i.e., �N (H)is also non-empty).( : Let S 2 �N(H). Thus, S is a legal sequential history equivalent to H which preserves!H(i.e., process order and object order). We construct another legal sequential history S 0from S that preserves <H (i.e., real-time order de�ned by H) and that is equivalent to H.If S also preserves <H (real-time order), then S 0 = S and we are done. Otherwise, thereexist operations in S that violate real-time order <H . Let e and f be two such operationsin S such that (Note that, as S is sequential, <S is a total order):(P1) Operations e and f violate the real-time order. That is:f <H e ^ e <S f(P2) e and f is a pair of closest operations that satis�es P1 in S; more explicitly, all theoperations g in S between e and f do not violate the real-time order (<H) with eithere or f (so, such g are concurrent with e and f):(e <S g ^ g <S f) ) (:(g <H e) ^ :(f <H g))We show existence of S0 2 �N(H) such that f <S0 e. The proof is by induction on thenumber of operations between e and f in S. Formally, induction is onk = jfg j e <S g ^ g <S fgjBase case (k = 0): Since S preserves process order and f <H e, it follows that e and fare on di�erent processes. Similarly, since S preserves object order and f <H e, it followsthat e and f are on di�erent objects. This implies that e and f can be commuted withoutviolating legality.Induction case (k > 0): In S, starting at e, let h be the �rst operation after e and beforef which is not on object(e) or be the last operation before f and after e which is not onobject(f). Without loss of generality assume that h satis�es the former condition (Thereasoning when h satis�es the later condition is analogous).Let e0; e1; e2; :::; em(m � 0) be the sequence of operations from e to h with e0 = e. We showthat h can be moved before e without violating legality. Since all ei's for any 0 � i � mare on object(e), which is di�erent from object(h), it is su�cient to show that for any i wehave proc(ei) 6= proc(h). Suppose proc(ei) = proc(h). This implies that(I1) resp(ei) ;H inv(h)because processes are well-formed. From (P2), by substituting ei for g we get :(ei <H e),i.e., :(resp(ei) ;H inv(e)), i.e.,(I2) inv(e) ;H resp(ei) .Combining inequalities I1 and I2, we get(I3) inv(e) ;H inv(h).However, from (P1) resp(f);H inv(e) which combined with inequality (I3) gives resp(f);H inv(h), i.e., f <H h. This contradicts (P2). Thus, proc(ei) 6= proc(h) for any i. Henceh can be moved before e, reducing the number of operations between e and f .5



This proves the Lemma.In the system model considered, primitive operations on objects are on one object at a time, i.e.,operations are unary. This is used in the proof of the Lemma as, for each operation e, we con-sider object(e) is composed of exactly one object. So, albeit Normality is less constraining thanLinearizability (!H � <H), as a direct consequence of the Lemma we get the following theorem.Theorem 1 If all operations on objects are unary, then Linearizability and Normality are equiv-alent consistency conditions (i.e., a history H is linearizable i� it is normal).The next two theorems follow from the previous theorem 1, the de�nition of HjX and the the-orem of [3] (namely, a history H is linearizable i�, for each object X , HjX is linearizable).Theorem 2 (Locality) A history H is normal if and only if, for each object X, HjX is normal.Theorem 3 (Non-Blocking) A normal history H satis�es the Non-Blocking property.5 A More General System ModelThe system model introduced in Section 2 assumes each operation is on exactly one object. Weconsider here a more general model where primitive operations can be on several objects4; so,object(e) denotes now the set of objects associated with e. As an example consider a systemwith two register objects A and B provided with the traditional read, write operations plus thebinary primitive operation sum (when invoked by a process p with A and B as input parameters,sum returns the sum of the values of A and B).De�nitions for a history H, relations;H, <H and!H and for Linearizability and Normalityremain unchanged. The following example shows that the previous Lemma does not hold in thismore general model (i.e., a history H can be normal but not linearizable). Let H = ev1 ev2 ::: ev6with (A and B are initialized to 0):ev1 = inv(write(1)) on A at p1ev2 = inv(sum()) on A;B at p2ev3 = resp(write()) from A at p1ev4 = inv(write(2)) on B at p3ev5 = resp(write()) from B at p3ev6 = resp(sum(2)) from A;B at p2This history H is not linearizable as ev3 ;H ev4 (resp(write()) from A at p1 occurred beforeinv(write(2)) on B at p3) and sum returns a value indicating that the operation write(B; 2) hashappened but the operation write(A; 1) has not. However H is normal as there is a sequentialhistory S, equivalent to H, that is legal and respects !H:S = write(B; 2) at p3; sum((A;B); 2) at p2; write(A; 1) at p1It follows that:4Such operations are called multi-methods in object-oriented terminology. As unary operations, they can bespeci�ed by pre- and post-conditions. 6



� In a systemmodel where object operations are unary: Linearizability and Normality (albeitits formulation is less constraining) (1) are equivalent consistency conditions (satisfyingboth Locality and Non-Blocking properties) and (2) are stronger than sequential consis-tency [5] (i.e., a history H can be linearizable/normal but not sequentially consistent).� In a system model where primitive object operations can span several objects: Lineariz-ability and Normality are no more equivalent. Linearizability is a consistency conditionstronger than Normality which itself is a consistency condition stronger than sequentialconsistency.6 ConclusionNormality is particularly attractive in asynchronous distributed systems as, in this context, onlyprocess order and object order can be observed. In these systems there is no global time frameand objects (managed by specialized servers) are accessed through RPC-like protocols. Actually,in a model where each operation is on one object, we have: Normality = (Linearizability � globaltime). Seen that way, this paper showed that the Locality and Non-Blocking properties can beattained in distributed systems as soon as we consider Normality as the consistency condition forshared objects. The paper has also shown that Linearizability and Normality are not equivalentin models where primitive operations can span several objects.The following problem remains open and deserves further study: \Among all consistencyconditions for shared objects (with unary operations) equivalent to Linearizability is Normalitythe \optimal" one (i.e., the one that requires the least constraints to be satis�ed by a history)?".AcknowledgementsWe thank Craig Chase for some fruitful discussions on the topic.References[1] P. Bernstein, V. Hadzilacos and N. Goodman. Concurrency Control and Recovery in DatabaseSystems. Addison-Wesley, Reading, MA, 370 pages, 1987.[2] V.K. Garg and A. Tomlinson. Causality versus Time: How to Specify and Verify DistributedPrograms. In Proc. 6th IEEE Symposium on Parallel and Distributed Processing, Dallas, TX, pp.249-256, 1994.[3] M. Herlihy and J. Wing. Linearizability: a Correctness Condition for Concurrent Objects. ACMTrans. on Prog. Lang. and Systems, 12(3):463-492, 1990.[4] L. Lamport. Time, Clocks and the Ordering of Events in a Distributed System. Communications ofthe ACM, 21(7):558-565, 1978.[5] L. Lamport. How to Make a Multiprocessor Computer that Correctly Executes Multiprocess Pro-grams. IEEE Trans. on Computers, C28(9):690-691, 1979.[6] J. Misra. Axioms for Memory Access in Asynchronous Hardware Systems. ACM Trans. on Prog.Lang. and Systems, 8(1):142-153, 1986. 7


