
A Parallel Algorithm for Global States
Enumeration in Concurrent Systems

Yen-Jung Chang
Department of Electrical and Computer Engineering

University of Texas at Austin, USA
cyenjung@utexas.edu

Vijay K. Garg
Department of Electrical and Computer Engineering

University of Texas at Austin, USA
garg@ece.utexas.edu

Abstract
Verifying the correctness of the executions of a concurrent program
is difficult because of its nondeterministic behavior. One of the
verification methods is predicate detection, which predicts whether
the user specified condition (predicate) could become true in any
global states of the program. The method is predictive because
it generates inferred execution paths from the observed execution
path and then checks the predicate on the global states of inferred
paths. One important part of predicate detection is global states
enumeration, which generates the global states on inferred paths.
Cooper and Marzullo gave the first enumeration algorithm based
on a breadth first strategy (BFS). Later, many algorithms have been
proposed to improve space and time complexity. None of them,
however, takes parallelism into consideration. In this paper, we
present the first parallel and online algorithm, named ParaMount,
for global state enumeration. Our experimental results show that
ParaMount speeds up the existing sequential algorithms by a factor
of 6 with 8 threads. We have implemented an online predicate
detector using ParaMount. For predicate detection, our detector
based on ParaMount is 10 to 50 times faster than RV runtime (a
verification tool that uses Cooper and Marzullo’s BFS enumeration
algorithm).

Categories and Subject Descriptors D.2.4 [Software/Program
Verification]: Validation

General Terms Algorithms, Verification

Keywords Global states; predicate detection; parallel algorithm

1. Introduction
One of the fundamental problems in concurrent and distributed sys-
tems is to determine whether a given condition may become true in
one of the global states of the program. The condition could corre-
spond to a bug or the negation of an invariant. The problem is chal-
lenging because the nondeterministic thread or process scheduling
of the system may induce a different execution path in each run of
the program; even for the same user input. Moreover, each execu-
tion path covers a different set of global states, and the number of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
PPoPP’15, February 7–11, 2015, San Francisco, CA, USA.
Copyright c© 2015 ACM 978-1-4503-3205-7/15/02. . . $15.00.
http://dx.doi.org/10.1145/2688500.2688520

global states may be exponential in the number of threads or pro-
cesses in the system.

Predicate detection is a method that detects whether the user
specified condition (predicate) could become true in any of the
global states in an execution path of the program with a different
thread schedule. The approach is predictive because it does not ac-
tually re-run the program in order to explore different execution
paths. Instead, it generates inferred execution paths from the ob-
served execution path. Then, it checks if the predicate can become
true in any of the global states on the observed or inferred paths.
The notion of predicate detection is first introduced by Cooper and
Marzullo [6] for distributed debugging. Later, jPredictor [5] applies
the notion for concurrent programs. In both works, the enumeration
algorithm is general-purpose, i.e., it has no assumption on the pred-
icate to be detected. Hence, the algorithm has to ensure that every
global state is enumerated at least once.

We use the concurrent program in Figure 1 to explain the notion
of predicate detection in concurrent systems. Note that the notion
can also be applied in distributed systems. In the snippet of code,
the synchronization between threads is accomplished via a Java
monitor: thread 1 executes event e1, sets flag x, and then notifies
thread 2 to execute e2. When the program is executed, the observed
execution path is captured and converted to a partially ordered set
(poset) of events. Assume that Figure 2(a) is the captured poset, in
which the causal dependency between e1 and e2 is established by
the Java monitor, because Java memory model guarantees that the
updates in e1 can be seen when e2 is executed by thread 2. Note
that causal dependency is a logical order between events rather than
real-time order.

Informally, a global state in the poset is consistent if there
exists an execution path to reach the state. In Figure 2(a), the
dashed lines show all consistent global states of the poset. In the
graphical representation, a global state contains the events on its
left. For example, the global state G4 contains events e1, x.notify(),
and e3. To reach G4, the events are executed in this sequence:
e1 → x.notify() → e3. Some global states may be reached by

// x initially is 0
THREAD 1

e1.execute();
synchronized(x) {

x = 1;
x.notify();

}
e3.execute();

THREAD 2

synchronized(x) {
while (x != 1)

x.wait();
}
e2.execute();

Figure 1. A concurrent program which contains two threads that
use a Java monitor to synchronize with each other.

t1

t2

e1

e2

e3x.notify

x.wait
G1 G2 G3 G5 G6 G8 G4 G7

(a)

G1

G2

G3

G4 G5

G6 G7
G8

(b)

Figure 2. (a) The captured logical order between events, which
form a poset. The dashed lines are consistent global states of the
program. (b) The relationship of the consistent global states.

1. predicate(GlobalState G) {
2. for (int i = 1; i <= n; ++i) { // n is #threads
3. for (int j = i; j <= n; ++j) {
4. if (G[i] and G[j] are concurrent and conflict) {
5. // a data race is found.
6. }
7. }
8. }
9. }

Figure 3. A predicate to look for a pair of maximal events, which
are conflict and concurrent, in the global state G.

multiple sequences of events. For instance, G6 can be reached
by two sequences: 1) e1 → x.notify() → e3 → x.wait(), or 2)
e1→ x.notify()→ x.wait()→ e3. The relationship of the consistent
global states of the poset is shown in Figure 2(b). We can see that
if the event sequences 1 and 2 reach global states G4 and G5,
respectively, then they can reach G6 by executing events x.wait()
and e3, respectively. So, we say that G6 is reachable from both G4
and G5.

When a program executes an event, the program reaches the
next global state. Therefore, the execution path of the program
can also be represented by a sequence of global states. Assume
that G1 → G2 → G3 → G5 → G6 → G8 is the observed
execution path. Then the notion of predicate detection is to generate
the global states G4 and G7 and hence the two inferred execution
paths, G1 → G2 → G3 → G4 → G6 → G8 and G1 → G2 →
G3 → G5 → G7 → G8, can be predictively verified without
re-executing the program.

A predicate is defined to determine if the user specified condi-
tion could become true in a global state. We use the condition of
data races to explain how a predicate is defined. A data race occurs
when conflicting operations (e.g., a pair of read-write or write-write
operations) are concurrently executed on the same memory address
by different threads. If two executed events of different threads have
no causal dependency in a global state, they can be executed con-
currently. For instance, in the global state G8, the maximal events
of thread t1 and t2 (i.e., e3 and e2, respectively) do not have causal
dependency and can be executed concurrently. Figure 3 shows the
predicate for detecting data races. The nested for loop at lines 2 and
3 gets all pairs of maximal events of the global state G; the symbols
G[i] and G[j] at line 4 are the maximal events of thread ti and tj .
Assume that the events e2 and e3 are the write operations to the
same memory address, then a potential data race error is found in
the global state G8.

In summary, predicate detection contains three parts. First, an
observer captures the poset of events from the observed execution
path of the program. Second, an enumeration algorithm takes as
input the poset and generates all consistent global states of that
poset, including the ones on inferred paths. Third, a predicate

determines whether the user specified condition could become true
in one of the consistent global states. In this paper, we study the
parallelism of the enumeration algorithm, which is the second part.

The enumeration algorithm for global states can be applied in
both concurrent and distributed systems. In this paper, the term
threads would mean threads in concurrent systems or processes in
distributed systems. Moreover, global states would mean consistent
global states unless specified otherwise.

For certain classes of predicates, the computation time of enu-
meration algorithm can be reduced to polynomial time because
only a partial set of global states needs to be enumerated [13, 16,
20, 24]. If no assumption is made on the predicate, enumerating all
global states in the poset is unavoidable. Cooper and Marzullo [6]
gave the first general-purpose enumeration algorithm, which guar-
antees to enumerate every global state at least once. The algorithm
is based on a breadth first strategy (BFS) and requires exponential
memory space and O(n3 × i(P)) time, where n is the number of
threads in the poset P and i(P) is the number of global states in P .
Later, many general-purpose algorithms are proposed to optimize
time and space complexity [2, 11, 12, 14, 17, 29, 30]. These algo-
rithms, however, are single threaded and can only be used in an of-
fline fashion for terminating programs. In this paper, we present the
first parallel-and-online algorithm, named ParaMount, for global
states enumeration. The source code of ParaMount is available on
the website: http://pdsl.ece.utexas.edu/yenjung/.

ParaMount partitions the set of global states of a poset into mul-
tiple intervals (subsets) of global states; every global state belongs
to exactly one interval. For each interval, ParaMount can use exist-
ing sequential enumeration algorithms as its subroutine without in-
creasing the asymptotic work complexity. In this paper, we use the
BFS [6] or the lexical [11, 12] enumeration algorithm for the sub-
routine. From the experimental results, ParaMount is 6 to 11 times
faster than the original sequential algorithms when using 8 threads.
The reason that ParaMount sometimes shows superlinear speedup
is that partitioning the set of global states transforms the original
problem into multiple sub-problems that are much easier to solve.
Moreover, partitioning also reduces the memory space consumed
by intermediate data which eliminates the running time wasted by
Java garbage collector.

ParaMount is also an online enumeration algorithm, which can
incrementally enumerate the global states during the construction
of the poset. Because of this property, ParaMount can run along
with the execution of concurrent or distributed programs and is ap-
plicable even to non-terminating programs such as web-server ap-
plications. Note that the online and parallel property of ParaMount
can be applied together. Thus, it is possible to use ParaMount to
perform an online-and-parallel predicate detection.

We evaluate the online property of ParaMount by conducting
an online-and-parallel predicate detection of data races in concur-
rent programs. We compare our predicate detector with another
general-purpose predicate detector, RV runtime [22] (the succes-
sor of jPredictor), and an online data race detector, FastTrack [10],
using several benchmarks, e.g., sor, tsp, and hedc [5, 10, 33]. On av-
erage, our detector is 10 to 50 times faster than RV runtime. On the
benchmark raytracer, RV runtime runs out of memory whereas our
detector uses only 25% of the system memory. The performance of
our detector is also comparable to that of FastTrack for most bench-
marks even though the enumeration algorithm of ParaMount is not
designed specifically for detecting data races.

The rest of the paper is organized as follows. Section 2 defines
the poset of events and consistent global states. Section 3 presents
the parallel algorithm – ParaMount – for global states enumeration.
Section 4 gives the implementation of our online-and-parallel pred-
icate detector. Section 5 shows the experimental results. Section 6
discusses the related work. Section 7 concludes the paper.

t1

t2

e1[1] e1[2]

e2[1] e2[2]

G1

G2

G3

(a)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

(b)
{0,0}

{1,0} {0,1}

{2,0} {1,1}

{2,1} {1,2}

{2,2}

{0,2}

(c)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

e1[1].vc=[1,0] [2,1]

[1,2] e2[1].vc=[0,1]

(d)

Figure 4. (a) A poset of events. The global states G1 and G2 are consistent but G3 is not. (b) All consistent global states of the poset. (c)
The set of global states of the poset. The grayed out global states are inconsistent. (d) The vector clocks of the events in the poset.

2. Definitions
ParaMount takes as input a poset of events and enumerates all
consistent global states of that poset as discussed next.

2.1 Poset of Events and Consistent Global States
A concurrent execution is modeled as a poset P = (E,→) of
events, which contains a set E of events together with Lamport’s
happened-before (HB) relation [18]. The HB relation is used to
represent the causal dependency between events. In the rest of the
paper, the HB relation is denoted by the symbol →. The events
that are executed on thread i are denoted as the sequence Ei =
ei[1], ei[2], · · · of events, and the symbol ei denotes an arbitrary
event in Ei. Figure 4(a) shows a poset with two threads. The hori-
zontal arrows represent the total order relation among the sequence
of events that occur on the same thread.

A consistent global state, G, is a subset of E, such that if G
includes any event f , then it also includes all events that happened
before f [3]. Formally, G is a consistent global state if

∀e, f : (f ∈ G) ∧ (e→ f)⇒ (e ∈ G).

In Figure 4(a), the global state G2 contains three events: e1[1], e2[1],
and e2[2]. G1 and G2 are consistent but G3 is not, because
e2[1]→ e1[2] but e2[1] 6∈ G3.

A global state can be identified by the maximal events of each
thread, called frontier. The frontier can be simply written as an
array of integers, in which the i-th integer is the index of the
event in Ei. For instance, the global state G1 in Figure 4(a) is
represented by the frontier {e1[1], e2[0]} or simply {1, 0}; the
event e2[0] means no event is executed by thread t2. The symbol
G[i] denotes the event of thread ti in the frontier of G. For example,
G1[1] refers to the event e1[1]. The symbol G(e) denotes a global
state containing the event e in its frontier. Given a set of global
states such that each of them contains e in its frontier, let Gmin(e)
denote the least global state, and Gmax(e) denote the greatest
global state. In Figure 4(a), G1 is the least (smallest) and G2 is the
greatest (largest) global state of all global states containing e1[1] in
the frontier.

All consistent global states of the poset in Figure 4(a) are shown
by the dashed lines in Figure 4(b). Moreover, the relationship of
these global states is illustrated in Figure 4(c), in which the incon-
sistent global states are grayed out. The objective of ParaMount is
to enumerate the set of consistent global states in parallel.

2.2 Vector Clocks and Happened-Before Relation
In the poset P , each event has a vector clock (vc), which is an
array of integers, and the information of the HB relation is stored
in vector clocks. If a thread ti executes an event ei, then ei.vc[i] is
the index of ei in Ei. Moreover, for j 6= i, ei.vc[j] is the index of
event ej in Ej such that ej → ei. For instance, in Figure 4(d), the
vector clock e1[2].vc = [2, 1] contains the information: the index
of the current event e1[2] is 2 and the event e2[1]→ e1[2].

Algorithm 1 ParaMountWorker(P)
Input: A poset of events P .

1: while true do
2: Event e← P .getNextEventInTotalOrder→p()
3: if e is null then break;
4: Gmin(e) = e.vc . Get least global state from e’s vector clock.
5: Gbnd(e)← P .getBoundaryGlobalState()
6: BoundedEnumeration(P,Gmin(e), Gbnd(e), e) . Enumerate
∀G : Gmin(e) ≤ G ≤ Gbnd(e) using Algorithm 2.

7: end while

t1

t2

e1[1] e1[2]

e2[1] e2[2]

Gbnd(e1[2])

Gbnd(e2[2])

Gbnd(e1[1])

Gbnd(e2[1])

Figure 5. The boundary global states of the events in the poset.
Assume that the total order among the events is e1[1]→p e2[1]→p

e1[2]→p e2[2].

During predicate detection, vector clocks are used as follows.
First, the poset is constructed by logging the vector clock of every
event. Second, the HB relation between events is extracted from
the vector clocks and then used by the enumeration algorithm to
generate all consistent global states of the poset. It is worth noting
that the frontier of Gmin(e) can be extracted from e.vc directly.
For example, Gmin(e1[1]) = {1, 0} and e1[1].vc = [1, 0].

3. ParaMount
3.1 Parallel Algorithm for Global States Enumeration
Algorithm 1 shows the worker procedure of ParaMount; each
worker is executed by a thread during the enumeration. Before
starting the workers, ParaMount determines a total order →p

among the events in the poset. Since the poset of events forms
a directed acyclic graph (DAG), the order →p can be calculated
using any topological sort algorithm for DAG [7]. Because of the
topological sort, this property holds:

Property 1. For all events e and f , e→ f ⇒ e→p f .

Moreover, two concurrent events e and f can be sorted in either
e →p f or f →p e. In other words, the total order→p among the
events is equivalent to the execution order of the events when the
program is run on one single thread. For the poset in Figure 5, the
four possible total orders among the events are:

1. e1[1]→p e2[1]→p e1[2]→p e2[2],

2. e1[1]→p e2[1]→p e2[2]→p e1[2],

t1

t2

e1[1] e1[2]

e2[1] e2[2]

(a)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

(b)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

(c)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

(d)

Figure 6. Assume that the total order among the events is
e1[1] →p e2[1] →p e1[2] →p e2[2], then we get (a) the inter-
val I(e1[1]), (b) the interval I(e2[1]), (c) the interval I(e1[2]), and
(d) the interval I(e2[2]) of global states. The global state {0, 0} is
a special case and always belongs to the interval of the first event
in the total order→p, which is e1[1].

3. e2[1]→p e1[1]→p e2[2]→p e1[2],

4. e2[1]→p e1[1]→p e1[2]→p e2[2].

Any one of the total orders can be used by ParaMount to parti-
tion the set of global states, which is performed from lines 2 to 5.
The boundary of an interval of global states is defined by two global
states Gmin and Gbnd, which are determined with respect to the
events in the poset. Specifically, ParaMount computes Gmin(e)
and Gbnd(e) for each event e. Then, any global state G such that
Gmin(e) ≤ G ≤ Gbnd(e) is contained in that interval. Here, the
comparison between two global states G and G′ is defined as fol-
lowing:

G ≤ G′ ≡ ∀i : 1 ≤ i ≤ n : G[i] ≤ G′[i].

At line 2, ParaMount gets the next event in the total order →p.
If there are no more events, then all intervals are processed. At
line 4, Gmin(e) is simply obtained from the vector clock e.vc. And
Gbnd(e) is defined as follows:

Definition 1. Gbnd(e) = {f ∈ E | (f = e) ∨ (f →p e)}.
The examples of Gbnd are shown in Figure 5, in which we

assume that the total order among the events is e1[1]→p e2[1]→p

e1[2] →p e2[2]. For event e1[2], Gbnd(e1[2]) includes all events
that are totally ordered before e1[2]. Hence, we get Gbnd(e1[2]) =
{2, 1}. For the same total order, we also get Gbnd(e1[1]) = {1, 0},
Gbnd(e2[1]) = {1, 1}, and Gbnd(e2[2]) = {2, 2}. We next show
that Gbnd(e) is consistent:

Theorem 1. Gbnd(e) is a consistent global state for all event e.

Proof. To show that Gbnd(e) is consistent, we show that for any
event f ∈ Gbnd(e) if there exists any event g such that g → f ,
then g ∈ Gbnd(e).

From Property 1, g → f implies g →p f . Since f ∈ Gbnd(e),
we get (f = e) ∨ (f →p e) from Definition 1. If (f = e), we
get g →p e. And if (f →p e), we get g →p e because of the
transitivity of→p. In both cases, g ∈ Gbnd(e).

An enumeration interval I(e) of global states corresponding to
any event e is formally defined as follows:

Definition 2. I(e) = {G | Gmin(e) ≤ G ≤ Gbnd(e)}
Figure 6 shows the intervals of global states that are calculated for
the events in the poset. In Figure 6(a), the global state {0, 0} is

Algorithm 2 BoundedEnumeration(P,Gmin(e), Gbnd(e), e)
Input: A poset P , the new event e, and the least Gmin(e) and boundary

Gbnd(e) global state of e.
1: G← Gmin(e) . G: the current global state.
2: while G ≤ Gbnd(e) do
3: predicate(P,G, e) . Check the predicate upon G.
4: if G = Gbnd(e) then break; . Reached the boundary of I(e).
5: k ← n
6: for k ← n to 1 : G[k] ≤ Gbnd(e)[k] do . Select a new event ek

to add into G.
7: Event ek = the next event on thread tk .
8: if ek is enabled then break;
9: G[k]← G[k] + 1 . Add event ek into G.

10: for i← (k + 1) to n do G[i]← Gmin(e)[i] . Reset events due
to lexical order.

11: for i← (k + 1) to n do
12: for j ← 1 to k do
13: Event ej = the current maximal event on tj .
14: G[i]← max(G[i], ei.vc[i])

15: end while

a special case and is always enumerated by the first event in the
total order →p, i.e., e1[1]. At line 6 of Algorithm 1, ParaMount
enumerates the interval of global state for the corresponding event.

3.2 Bounded Enumeration Algorithm
ParaMount can use existing sequential algorithm as its subroutine
to enumerate the intervals of global states. However, the sequential
algorithm needs to be modified (or bounded) to provide the two
properties. First, it takes as input the boundary of an interval of
global states and enumerates only the global states in the interval.
Second, it enumerates each global state in the given interval exactly
once.

We use the lexical enumeration algorithm in [11, 12] as an
example to show the modification for the subroutine. Algorithm 2
shows the bounded lexical algorithm. The first modification is
located at line 1: the least global state Gmin(e) of event e is used as
the initial global state. The second modification is located at lines
2, 4, and 6: the boundary global state Gbnd(e) is used to limit the
global states that are enumerated by the algorithm. At line 3, the
user specified condition is checked whether it can become true in
current global state G. Lines 5 to 14 is a simplified implementation
of the original lexical enumeration algorithm in [11, 12].

Lemma 1. Given an event e in the poset P , Algorithm 2 enumer-
ates every consistent global state G in the interval I(e) exactly
once.

Proof. Suppose there exists a poset Q, which has an initial global
state Ginit and a final global state Gfinal. Lines 5-15 give the least
consistent global state in lexical order as shown in [12]. Specifi-
cally, the while loop at line 2 enumerates every global state G of
Q such that Ginit ≤ G ≤ Gfinal. By the definition of Gmin(e),
Gmin(e) ≤ Gbnd(e). Algorithm 2 uses the property by assign-
ing Gmin(e) to Ginit and Gbnd(e) to Gfinal. Hence, Algorithm 2
enumerates every consistent global state G of P exactly once such
that Gmin(e) ≤ G ≤ Gbnd(e).

In the evaluation section, the similar modification is applied into
the BFS algorithm [6] for comparison.

3.3 Correctness of ParaMount
Now we show that every global state is contained in one of the
intervals of global states (Lemma 2) and all intervals are disjoint
(Lemma 3).

Concurrent
Program

Java Virtual Machine
(JVM)

Execution Path Monitoring

Bounded
Enumeration

Predicate
Evaluation

Vector Clock
Calculation

Global State

Events

Intervals
Online

ParaMount

Done?

No

Yes

Figure 7. The framework of our online-and-parallel predicate de-
tector.

Lemma 2. In Algorithm 1, for every consistent global state G of
the poset P , there exists an event e such that G ∈ I(e).

Proof. We show that for any consistent global state G in the poset
P , there exists an event e such that Gmin(e) ≤ G ≤ Gbnd(e). Let
e be the last event (with respect to the total order→p) in G. From
the definition of Gmin(e), we get Gmin(e) ≤ G. Since e is the last
event in G, for any event f in G, either (f →p e) or (f = e). Then
from the definition of Gbnd(e), we get G ≤ Gbnd(e).

Lemma 3. In Algorithm 1, for every consistent global state G of
the poset P , there exists at most one e such that G ∈ I(e).

Proof. Suppose event e is the last event (with respect to the total
order→p) in G. We now show that there does not exist any event
f 6= e such that Gmin(f) ≤ G ≤ Gbnd(f). The proof is by
contradiction.

Suppose that Gmin(f) ≤ G ≤ Gbnd(f). Since f ∈ Gmin(f),
we get f ∈ G. Because e is the last event in G, we get (f →p e),
which implies (e 6= f) ∧ (e 6→p f). From the definition of Gbnd

(Definition 1), we get G 6≤ Gbnd(f), which is a contradiction.

Theorem 2. Algorithm 1 enumerates every consistent global state
of the poset P exactly once when it uses Algorithm 2 as a subrou-
tine.

Proof. Follows from Lemma 1, Lemma 2, and Lemma 3.

3.4 Work and Space Complexity
Now we analyze the work complexity of ParaMount when using
Algorithm 2 as its subroutine. Suppose that the poset P consists of
n threads, |E| events, |H| pairs of happened-before relation, and
i(P) global states. The work complexity of the topological sort is
O(|E| + |H|). For each worker, the work complexity is O(n) be-
cause it has to store Gmin and Gbnd at lines 4 and 5. Algorithm 2
takes O(n2) work for each global state because of the nested for
loop at lines 11 and 12. Due to Theorem 2, Algorithm 2 cumula-
tively enumerates exactly i(P) global states. As a result, the com-
bination of ParaMount and Algorithm 2 takes O(n2 · i(P)) work,
which is as the same as that of the sequential lexical algorithm. In
this sense, ParaMount is work optimal.

As for space complexity, ParaMount uses O(n) space for
storing Gmin and Gbnd. Hence, the total space complexity of
ParaMount is O(n · |E|). Note that the existing general-purpose
predicate detector, RV runtime [22], uses the BFS algorithm [6],
which consumes memory space exponential in the number of
threads in the poset. Thus, it could run out of memory even for
a moderately sized benchmark.

4. Implementation of Online Predicate Detector
To evaluate the online property of ParaMount, we use it to build an
online-and-parallel predicate detector. Figure 7 shows the frame-
work of our predicate detector, which is described next.

Algorithm 3 calculateVectorClock(vci, vcj)
Input: Two vector clocks for the calculation
Output: The vector clock for the new event

1: vci[i]← vci[i] + 1
2: for k ← 1 to n do
3: vci[k] = max(vci[k], vcj [k])
4: vcj ← vci
5: return vci

4.1 Part I : Construction of Poset P
In the first part, the detector captures the events, which are relevant
to the condition to be detected, and their causal dependencies from
the observed execution path of the program. When the program is
loaded into JVM in the first time, the detector uses bytecode injec-
tion technique [1] to inject monitoring instructions into the program
during runtime. The injected bytecode are stored in memory, so the
original Java program and Java bytecode are unmodified.

When the program starts, the operations of the program are cap-
tured as events. Then, the events along with their causal depen-
dencies are converted into the poset P , in which the causal depen-
dency between events is represented by Lamport’s happened-before
(HB) relation. The HB relation is established by the following rules
[10, 19]:

1. Process order: If two events e and f are consecutively executed
by the same thread, then e→ f .

2. Lock-atomicity: If event e corresponds to a thread releasing a
lock and f corresponds to subsequent acquisition of that lock
(including implicit locks and monitors), then e → f . Note that
any causal dependency that is induced by a Java monitor is also
established by this rule.

3. Fork-join: One thread creates a new thread or waits for another
thread to terminate.

4. Transitivity: If e→ f and f → g, then e→ g.

During bytecode injection, every thread and lock object is au-
tomatically attached with a vector clock. When a lock-atomicity
or fork-join event is inserted into P , the vector clocks of different
threads or locks are updated using Algorithm 3. For example, let
event e correspond to the operation of a thread t acquiring a lock l,
then the two vector clocks, t.vc and l.vc are passed as arguments
to Algorithm 3, i.e., calculateVectorClock(t.vc, l.vc). The re-
turned vector clock is copied to the event’s vector clock e.vc. If the
inserted event is a process-ordered event, the vector clock of the
thread is simply incremented and copied to the event.

4.2 Part II : Online Global States Enumeration
In the second part, the online detector uses ParaMount to enumerate
global states along with the execution of the concurrent program.
When an event e is captured, a callback function is triggered to
insert e into P and to enumerate I(e). Since multiple events may
occur concurrently, the intervals of global states are enumerated in
parallel. By default, the bounded lexical algorithm is used as the
subroutine of ParaMount.

Algorithm 4 shows the worker of ParaMount which is modified
for the online predicate detection. In comparison with Algorithm 1,
there are two differences. First, the worker in Algorithm 4 is instan-
tiated for each interval of global states. Second, the poset P is not
a complete poset because of the online detection. Hence, the events
in P cannot be topologically sorted at this point. Therefore, we
use the order of insertion into the data structure of P at line 2 as
the total order→p. Specifically, the atomic block from line 1 to 5

Algorithm 4 OnlineParaMountWorker(P , e)
Input: The new event e to be inserted into the poset P .

1: atomic {
2: Insert e into the data structure of P .
3: Gmin(e) = e.vc
4: Gbnd(e)← P .snapshotOfMaximalEventsOfThreads()
5: }
6: BoundedEnumeration(P,Gmin(e), Gbnd(e), e) . Enumerate the

interval I(e) of global states using Algorithm 2.

t1

t2

e1[1] e1[2]

e2[1] e2[2]

Gbnd(e1[2])

(a)

t1

t2

e1[1] e1[2]

e2[1] e2[2]

Gbnd(e1[2])

(b)

Figure 8. (a) One possible observed execution path when event
e1[1] is inserted into P. Suppose the insertion order is e1[1] →p

e2[1] →p e1[2] →p e2[2]. (b) Another possible observed path, in
where the insertion order is e1[1]→p e2[1]→p e2[2]→p e1[2].

ensures that the events are inserted sequentially. Furthermore, the
injected callback function ensures that a thread cannot execute the
next event until it has successfully inserted the current event into P .
Thus, Property 1 is achieved by the insertion order of the events.

At line 3, Gmin(e) is obtained from the vector clock of e, which
is calculated using Algorithm 3. At line 4, Gbnd(e) is determined
by taking a snapshot of the maximal events of threads. Figure 8
shows an example of computing Gbnd(e1[2]). In Figure 8(a), if
the insertion order is e1[1] →p e2[1] →p e1[2] →p e2[2], then
the detector will not see e2[2] when taking the snapshot for event
e1[2]. Hence, our detector gets Gbnd(e1[2]) = {2, 1}. Figure 8(b)
shows another example. If events e1[1], e2[1], and e2[2] are inserted
before event e1[2], then it gets Gbnd(e1[2]) = {2, 2}. It is easy to
see that the snapshot of maximal events satisfies the definition of
Gbnd in Definition 1.

Since ParaMount allows multiple intervals of global states to be
enumerated in parallel, we need to show that the combination of
Algorithm 2 and Algorithm 4 can be executed concurrently.

Theorem 3. Algorithm 2 and Algorithm 4 can be executed concur-
rently without violating correctness.

Proof. The freedom from deadlock is obvious since the atomic
block of Algorithm 4 can be implemented using one mutex with
no wait inside the atomic block.

We now show that the execution of Algorithm 4 does not af-
fect the concurrent executions of Algorithm 2. Suppose that Al-
gorithm 2 is enumerating the global states corresponding to event e
and Algorithm 4 is concurrently inserting event f . Since Algorithm
2 stops at Gbnd(e), it does not require the information on f . More-
over, the only modification of the poset P happens in the atomic
block of Algorithm 4. Hence, there is no interference between the
two algorithms.

4.3 Part III : Predicate Evaluation
We use the predicate for detecting data races as an example, be-
cause the condition is easy to understand and requires little knowl-
edge about the concurrent programs. A data race occurs when a pair
of conflicting operations (e.g., read-write or write-write operations)

Algorithm 5 predicate(P,G, e)
Input: A global state G and the new event e.
Output: the global state that contains data races.

1: if e.op = W then . e is a write event.
2: for i← 1 to n : e′ ← G[i] do
3: if (e′.op = W ∨R)∧ sameMemoryAddress(e, e′) then
4: // a data race detected.
5: else if e.op = R then . e is a read event.
6: for i← 1 to n : e′ ← G[i] do
7: if (e′.op = W)∧ sameMemoryAddress(e, e′) then
8: // a data race detected.

t1
v1.w v1.r

v2.r v2.r
v1.r v1.r
v2.w

lock.acquire()

lock.release()

fork()

(a)

t1
ec

v1.w
v2.r

v1.r
v2.w

ec
lock.acquire()

lock.release()

fork()

(b)

Figure 9. (a) The original process-ordered events. (b) Only the first
write or read event of a variable in a sequence of process-ordered
events is captured. Moreover, the events are merged into an event
collection, ec.

Algorithm 6 predicate(P,G, e)
Input: A global state G and the new event e.
Output: the global state that contains data races.

1: if e.op = W then . e is a write event.
2: for i← 1 to n : ec← G[i] do
3: for all e′ ∈ ec do
4: if (e′.op = W ∨R)∧ sameMemoryAddress(e, e′) then
5: // a data race detected.
6: else if e.op = R then . e is a read event.
7: for i← 1 to n : ec← G[i] do
8: for all e′ ∈ ec do
9: if (e′.op = W)∧ sameMemoryAddress(e, e′) then

10: // a data race detected.

is executed concurrently by different threads on the same memory
address.

Algorithm 5 detects data races when the current event e is a
write or a read event (line 1 and line 5). Assume that e is a write
event. Then the for-loop at line 2 gets the maximal event e′ of
other threads. From the construction rules in Part I, two process-
ordered events of different threads would not have direct HB rela-
tion. Therefore, any two process-ordered events in the frontier of
global state can be executed concurrently. Subsequently, if events
e and e′ at line 3 are conflicting operations on the same memory
address, then a data race has detected.

4.4 Other Implementation Details
Our detector captures only the process-ordered events that are rel-
evant to the predicate, which are the read and write operations of
variables. Moreover, multiple consecutive process-ordered events,
which are executed by the same thread, are merged into one event
collection. Two process-ordered events are considered consecutive

if there is no fork-join or lock atomicity event between them. The
event collection only stores the first write operation of each vari-
able. If there is no write operation for that variable, then its first
read operation is stored. In addition, the events in the same event
collection share the same vector clock.

Figure 9 shows an example. At the left side of Figure 9(a),
thread t1 performs a write and then a read operation on variable v1.
In addition, it performs two read operations on variable v2. Then,
our detector only inserts the first write event for v1 and the first
read event for v2 into P , as shown at the left side of Figure 9(b).
The events in the event collection ec will share the same vector
clock and ec is used as an event instance during the enumeration
of global states. Algorithm 6 shows the modified predicate for
the implementation. The loops at lines 2 and 7 retrieve the event
collection on each thread, then the inner loops at lines 4 and 9 check
whether the event collection contain any event that conflicts with
the current event.

5. Evaluation
5.1 Experimental Results of ParaMount
Now we evaluate the performance of ParaMount, whose subroutine
uses bounded BFS algorithm (which is modified from the BFS al-
gorithm [6] and denoted by B-Para) or bounded lexical algorithm
(which is modified from the lexical algorithm in [11, 12] and de-
noted by L-Para). Note that the BFS algorithm in [6] may enumer-
ate the same global state multiple times. In this experiment, we have
enhanced it with the technique mentioned in [12], so the BFS algo-
rithm and the subroutine of B-Para enumerates every global state
exactly once.

Table 1 shows the benchmarks that are used in the experi-
ment. The benchmarks with the prefix “d-” are randomly gen-
erated posets for modeling distributed computations. The bench-
marks bank, tsp, hedc, and elevator are the posets that are gener-
ated from real-world concurrent programs. The benchmark banking
contains a typical error pattern in concurrent programs [8]; tsp is a
parallel solver for the traveling salesman problem; hedc is a crawler
for searching Internet archives; and elevator is a discrete event sim-
ulator for an elevator system. The benchmark programs tsp, hedc,
and elevator are also used in [5, 10, 33]. Every program is run once
and its execution path is converted to a poset of events using the
rules that had been discussed in the implementation section. Then
the enumeration algorithm takes as input the poset and outputs the
set of global states of that poset. The column ”n” shows the number
of threads or processes in the poset.

Table 1 also shows the running times of the compared algo-
rithms. The number of threads that are used by B-Para and L-Para
are shown in the parentheses. All the experiments are conducted on
a Linux machine with an Intel Core i7 1.6 GHz CPU and the heap
size of Java virtual machine is limited to 2GB. The running time is
wall-clock time measured in seconds.

From Table 1, BFS algorithm has the worst performance be-
cause of its expensive time complexity. Moreover, it failed to finish
almost half of the benchmarks because it ran out of the available

1 2 4 8
1

2.5

5

7.5

10

12

Number of Threads

Sp
ee

du
p

R
at

e

d-300
d-500
d-10k

tsp

Figure 10. Speedup rate of B-Para with respect to the sequential
BFS algorithm.

1 2 4 8
1

2.5

5

7.5

10

Number of Threads

Sp
ee

du
p

ra
te

d-300
d-10k
hedc

elevator

Figure 11. Speedup rate of L-Para with respect to the sequential
lexical algorithm.

memory (o.o.m.). The reason is that BFS algorithm has to store in-
termediate global states for future enumerations and the number of
the intermediate global states might grow exponentially in the num-
ber of threads in the worst case. In B-Para, the benchmarks bank,
hedc, and elevator are able to finish because the set of global states
are partitioned into multiple small intervals; each of which induces
much fewer number of intermediate global states and hence the
consumed memory can be less than 2GB.

Partitioning the set of global states helps the performance of the
original enumeration algorithm. Figure 10 show the speedup rate
of B-Para with respect to the running time of BFS algorithm. The
speedup rate on benchmarks bank, hedc, and elevator are not shown
because BFS algorithm cannot finish the enumeration. When B-
Para uses one single thread, its performance can be even faster
than the original BFS algorithm. The reason is that BFS algorithm
continuously triggers Java garbage collector to release the memory,
which is used for storing the intermediate global states. In B-Para,
the number of intermediate global states is reduced and hence
the running time spent by Java garbage collector is significantly

Table 1. The information of benchmarks and running time (seconds) of BFS algorithm, lexical algorithm, and ParaMount.
Benchmark n #events #global states BFS BPara(1) BPara(2) BPara(4) BPara(8) Lexical LPara(1) LPara(2) LPara(4) LPara(8)

d-300 10 300 42million 47.0 35.9 19.4 10.6 6.9 3.4 3.5 1.5 0.8 0.5
d-500 10 500 237million 380.8 195.4 100.5 54.5 33.6 17.8 15.3 7.6 3.9 2.1
d-10K 10 10,000 4,962million 8,599.1 4,089.0 2,190.5 1,150.4 757.7 406.8 327.3 163.4 105.0 43.1
bank 8 96 815million o.o.m. 635.3 521.4 372.4 302.5 50.8 40.3 20.5 11.0 5.8
tsp 8 10,528 13million 8.6 7.1 3.7 1.9 1.1 1.6 1.5 0.8 0.4 2.3

hedc 12 216 4,486million o.o.m. 10,850.7 10,182.2 8,032.5 4,646.9 487.4 406.5 203.3 110.8 72.1
elevator 12 38,528 27,643million o.o.m. 28,655.3 13,903.2 6,985.4 3,696.2 4,233.8 3,491.6 1,742.7 870.2 435.7

d-300
d-500

d-10k bank tsp hedc
elevator0

50

100

Benchmark

M
em

or
y

(M
B

)
Lexical

L-Para w/ 8 threads

Figure 12. Memory usage of the lexical algorithm and L-Para.

reduced. Moreover, B-Para can be up to 11 times faster than BFS
algorithm when using 8 threads.

Figure 11 show the speedup rate of L-Para with respect to the
sequential lexical algorithm. We show 4 of the benchmarks because
the other benchmarks have the similar trend. For lexical algorithm,
partitioning the set of global states still helps the performance for
most benchmarks. When using one single thread, L-Para can reduce
20% of the running time in average. When using 8 threads, L-Para
can be 6 to 10 times faster than the original lexical algorithm.

Figure 12 shows the memory usage of lexical algorithm and
L-Para. Since lexical algorithm is stateless, the memory is mainly
used to store the poset, which is the input itself. Although ParaMount
requires additional space to store Gmin(e) and Gbnd(e) for each
event e, the consumed memory is quite small. For most of the
benchmarks, the memory usage of ParaMount is identical to that of
the original enumeration algorithm.

5.2 Experimental Results of Online Predicate Detection
To evaluate the online property of ParaMount, we use it to imple-
ment an online-and-parallel predicate detector and then use the de-
tector to detect data races in concurrent programs. In this experi-
ment, the bounded lexical algorithm is used as the subroutine of
ParaMount.

Table 2 shows the benchmarks that are used in the experiment.
“LoC” shows the lines of code. “Thread” shows the number of
threads that are used to drive each benchmark and ParaMount; af-
ter a thread executes an event, the thread is immediately used to
enumerate the interval of global states. Thus, no additional threads
are spawn for ParaMount. “#Var” shows the number of variables
of the benchmark. Besides the concurrent benchmarks that are
used in previous experiment, we also use the following bench-
marks. Benchmarks set (faulty) and set (correct) are incorrect and

correct implementations of the concurrent set [15]; arraylist1 is
a non-thread-safe container and arraylist2 is a thread-safe con-
tainer from Java library; sor is a scientific computation application;
and raytracer is a benchmark for measuring the performance of a
3D raytracer. The benchmarks sor and raytracer are also used in
[5, 10, 33].

We compare our online-and-parallel predicate detector (denoted
as ParaMount) with another general predicate detector, RV runtime
[22], and an online race detector, FastTrack [10]. We chose RV
runtime because it is the successor of jPredictor [5] and it uses the
notion of predicate detection. The enumeration algorithm that is
used in RV runtime is the BFS algorithm [6]. We chose FastTrack
because it is the fastest online race detector that uses the technique
of vector clocks, even though its algorithm detects only data races.
The input of each detector is a concurrent program and the output
is a list of variables with data races.

The experimental results are shown in Table 2, in which the
column “Base” shows the original execution time of the bench-
marks. Each running time of ParaMount, RV runtime, and Fast-
Track includes the time to inject bytecode for monitoring, to exe-
cute the benchmark program, and to perform predicate detection.
In RV runtime, bytecode injection and predicate detection are per-
formed in offline; and in both ParaMount and FastTrack, they are
performed in online. The running time is wall-time measure in mil-
liseconds. The benchmark elevator contains several sleep() func-
tion calls, which dominate the overall running time, so its running
time is almost the same on different detectors; except the one on
RV runtime. The numbers of the variables that have data races are
also shown in the table.

On average, RV runtime takes 15 seconds to inject the monitor
instruments into the benchmark programs. Without considering
the running time of bytecode injection, RV runtime still requires
15 seconds or more to finish predicate detection for most of the
benchmarks while our predicate detector is able to finish within
one second. In the benchmark raytracer, RV runtime ran out of the
available memory because its BFS enumeration algorithm requires
exponential memory space. Furthermore, RV runtime reported a
false alarm on the benchmark – arraylist1. The reported variable
is located in the test driver and its data race is benign; however,
both our predicate detector and FastTrack can correctly rule out
the variable. In set (faulty) and set (correct), RV runtime reported
several benign races. Moreover, it failed to detect the data race in
raytracer. Currently, the results of RV runtime are not completely
collected because the tool throws exceptions on some benchmarks.

When compared with FastTrack, the experiments show that
ParaMount is as fast as FastTrack for most benchmarks even though
its enumeration strategy is not specifically designed for detecting
data races. In set (faulty) and set (correct), the concurrent set uses

Table 2. The result of the data race detection.
Information Running Time (ms) # Detection

Benchmark LoC Thread #Var Base ParaMount RV runtime FastTrack ParaMount RV runtime FastTrack

banking 139 4 7 3 72 32,000 40 1 1 1
set (faulty) 223 4 10 61 152 37,000 428 1 3 1
set (correct) 260 4 10 94 110 39,000 468 0 3 1
arraylist1 1,474 4 6 3 7 exception 29 3 4a 3
arraylist2 1,377 4 16 4 5 exception 4 0 – 0
sor 255 4 20 19 81 41,000 179 0 0 0
elevator 547 4 23 16,000 16,000 83,000 16,000 0 0 0
tsp 702 4 36 7 114 exception 146 1 – 1
raytracer 1,885 4 77 32 1240 o.o.m. 998 1 0b 1
hedc 25,027 8 345 241 940 exception 1,140 4 – 4

a Acquired before the exception is thrown.
b The field with data races is not shown in the candidate list of RV runtime.

Table 3. Comparisons of the detectors.
Detector Type Poset Construction Global States Enumeration Predicate Assumption

ParaMount Online 1-pass Parallel No assumption
RV runtime (jPredictor) Offline 2-passes optimization Sequential No assumption
FastTrack Online 1-pass No enumeration involved Data races

a single linked list to store the data; the linked list is synchronized
using a fine-grained hand-over-hand lock-mechanism [15]. When-
ever a new data is added to the set, a node object of the linked
list is created. In set (faulty), the variable next of a node has data
races because the variable will be illegally accessed when a thread
is adding a new entry and another thread is removing an existing
entry.

In set (correct), the access of the variable next is always pro-
tected by a lock. However, the variable next is initialized without
the protection of locks; consequently, FastTrack reports the variable
even if it is well protected in subsequent accesses. In our implemen-
tation, we do not consider initialization events to ever cause the data
race since no other thread can have reference to uninstantiated ob-
ject or variable. In this manner we avoid reporting benign races due
to initialization. The source code and the proof of the correctness
of the benchmark set (correct) are available in [15].

Table 3 lists the properties of the detectors that are used in this
experiment. RV runtime is an offline predicate detector and hence it
can construct the poset of events in 2-passes. It first logs the event
on the observed execution path and then uses a pre-processor to
optimize the poset of events with respect to the property of the
predicate. The construction method [10, 19] used by FastTrack and
ParaMount is 1-pass and hence is difficult to optimize; however, it
can be used in an online fashion.

For enumeration of global states, RV runtime uses the BFS al-
gorithm [6] to perform offline enumeration. The enumeration al-
gorithm is general-purpose, which makes no assumptions on the
nature of the predicate and guarantees that every global state is enu-
merated at least once. Unfortunately, the algorithm may enumerate
the same global state multiple times. ParaMount is also general-
purpose but it ensures that every global state is enumerated exactly
once. FastTrack does not have any algorithm for global states enu-
meration, because its detection method is particularly designed for
data races.

5.3 Limitations of the Online Predicate Detector
Our online predicate detector uses ParaMount for global states enu-
meration. Therefore, it guarantees that every global state of the ob-
served execution path (i.e., the poset of events) is enumerated ex-
actly once. However, the method [10, 19] that is used for capturing
the HB relation between events does not consider the commuting
of mutex. The problem can be solved by incorporating the tech-
nique of RichTest [19], which uses a thread scheduler to control
the threads and changes the acquisition order of locks. The tech-
nique ensures that every re-execution of the program produces a
new poset of events. Therefore, RichTest and our online predicate
detector are complementary tools.

The second limitation is that even though ParaMount transforms
the original lattice of global states enumeration into multiple inter-
vals of global states, the total number of global states is still i(P),
which is exponential in the number of threads in the poset of events.

6. Related Work
6.1 Global States Enumeration
Cooper and Marzullo [6] gave the first algorithm for global states
enumeration. The algorithm is based on breadth first search (BFS)

algorithm and requires O(n3 × i(P)) time and exponential space
in n, which is the number of processes in P . Alagar and Venkate-
san [2] presented the notion of global interval which reduces the
space complexity to O(|E|). Steiner [30] gave an algorithm that
uses O(|E| ·i(P)) time, and Squire [29] further improved the com-
putation time to O(log|E| · i(P)).

Pruesse and Ruskey [26] gave the first algorithm that generates
global states in a combinatorial Gray code manner. The algorithm
uses O(|E| · i(P)) time and can be reduced to O(∆(P) · i(P))
time, where ∆(P) is the in-degree of an event; however, the space
grows exponentially in |E|. Later, Jegou et al. [17] and Habib et al.
[14] improved the space complexity to O(n · |E|).

Ganter [11] presented an algorithm, which uses the notion of
lexical order, and Garg [12] gave the implementation using vector
clocks [9, 21]. The lexical algorithm requires O(n2 · i(P)) time
but the algorithm itself is stateless and hence requires no additional
space besides the poset.

None of the above-mentioned algorithms takes parallelism into
consideration. ParaMount is the first parallel enumeration algo-
rithm. Furthermore, ParaMount can enumerate the set of global
states in an online fashion. Although Jegou et al. [17] had studied
the algorithm for online global states enumeration, their algorithm
cannot enumerate global states in parallel. The reason is that their
algorithm incrementally builds the subset of global states using the
information from previously built subsets.

6.2 Predicate Detection
jPredictor [5] is the first verification tool that applies the notion of
predicate detection on concurrent systems. In jPredictor, the global
states of poset are enumerated in an offline fashion using the BFS
enumeration algorithm [6]. jPredictor focuses on the construction
of poset and provides a flexible model for capturing the causal de-
pendency between events. In this work, ParaMount provides an effi-
cient parallel strategy for the global states enumeration. Moreover,
ParaMount has been used to build an online-and-parallel predicate
detector.

Predicates for detecting different kinds of condition have been
extensively studied in the context of distributed systems. These
predicates can be roughly categorized into conjunctive predicates
[13], linear and semi-linear predicates [4], relational predicates
[31], restricted temporal logics [24, 27] etc.

6.3 Testing and Debugging with Scheduler
CHESS [23], Java PathFinder [32], and RichTest [19] execute the
program repeatedly and incorporate a scheduler to ensure that each
run of the program explores a new execution path. CHESS and Java
PathFinder schedule concurrent events into a totally ordered se-
quence and enable the corresponding threads to execute the events
one at a time. The scheduler of RichTest directly changes the par-
tial order among concurrent events. The approach retains the con-
currency of events and hence they can be executed concurrently
during the testing of the program.

Some tools combine the techniques of scheduler and the no-
tion of predicate detection. These tools have two phases: predic-
tion and replay. In the prediction phase, inferred execution paths
are generated from the poset and are checked to determine if the
predicate holds. In the replay phase, the program is re-executed

by using any thread schedule to execute the inferred paths and to
determine whether the condition can really happen [25, 28, 34].
However, they have assumptions on the condition to be detected
and they use heuristic strategies to enumerate global states.

7. Conclusion
We have presented the first parallel and online algorithm, named
ParaMount, for global states enumeration. ParaMount can be run
along with the execution of concurrent or distributed programs and
hence is applicable even to non-terminating programs such as web-
server applications. Moreover, ParaMount makes no assumptions to
the nature of the predicate to be detected. It guarantees that every
global state is enumerated exactly once.

From the experimental results, ParaMount can speedup the ex-
isting sequential algorithms up to 11 times with 8 threads. More-
over, we built a simple online-and-parallel predicate detector using
ParaMount to detect data races in concurrent programs. We com-
pare the detection results from ParaMount with those from another
general-purpose predicate detector, RV runtime [22], and an on-
line data race detector, FastTrack [10] on several benchmarks. Even
though ParaMount is not specifically designed for detecting data
races, the experiments show that it is still useful even for data races
for most benchmarks.

Acknowledgments
This research is supported in part by National Science Foundation
awards CNS-1346245 and CNS-1115808 and the Cullen Trust for
Higher Education.

References
[1] ASM – a java bytecode engineering library. URL

http://asm.ow2.org/.

[2] S. Alagar and S. Venkatesan. Techniques to tackle state explosion in
global predicate detection. IEEE Trans. on Software Engineering, 27:
412–417, 2001.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: Determining
global states of distributed systems. ACM Transactions on Computer
Systems, 3(1):63–75, 1985.

[4] C. Chase and V. K. Garg. Detection of global predicates: Techniques
and their limitations. Distributed Computing, 11(4):191–201, 1998.

[5] F. Chen, T. F. Serbanuta, and G. Roşu. jPredictor: a predictive runtime
analysis tool for java. In Proceedings of the International Conference
on Software Engineering, pages 221–230, 2008.

[6] R. Cooper and K. Marzullo. Consistent detection of global predicates.
In Proc. of the Workshop on Parallel and Distributed Debugging,
pages 163–173, 1991.

[7] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction
to Algorithms. McGraw-Hill Higher Education, 2nd edition, 2001.

[8] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In Proceedings of the International Parallel and Distributed
Processing Symposium, 2003.

[9] C. J. Fidge. Timestamps in message-passing systems that preserve the
partial ordering. In Proceedings of the Australian Computer Science
Conference, pages 56–66, 1988.

[10] C. Flanagan and S. N. Freund. FastTrack: efficient and precise dy-
namic race detection. In Proceedings of the Conference on Program-
ming Language Design and Implementation, pages 121–133, 2009.

[11] B. Ganter. Two basic algorithms in concept analysis. In Proceedings
of the International Conference on Formal Concept Analysis, pages
312–340, 2010.

[12] V. K. Garg. Enumerating global states of a distributed computation.
In Proceedings of the International Conference on Parallel and Dis-
tributed Computing Systems, pages 134–139, 2003.

[13] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in
distributed programs. IEEE Transactions on Parallel and Distributed
Systems, 5(3):299–307, 1994.

[14] M. Habib, R. Medina, L. Nourine, and G. Steiner. Efficient algorithms
on distributive lattices. Discrete Appl. Math., 110(2-3):169–187, 2001.

[15] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming.
Morgan Kaufmann, 2008. ISBN 9780080569581.

[16] J. Huang and C. Zhang. Persuasive prediction of concurrency access
anomalies. In Proceedings of the International Symposium on Soft-
ware Testing and Analysis, pages 144–154, 2011.

[17] R. Jegou, R. Medina, and L. Nourine. Linear space algorithm for
on-line detection of global predicates. In Proc. of the International
Workshop on Structures in Concurrency Theory, pages 175–189, 1995.

[18] L. Lamport. Time, clocks, and the ordering of events in a distributed
system. Communications of the ACM, 21(7):558–565, 1978.

[19] Y. Lei and R. Carver. Reachability testing of concurrent programs.
IEEE Transactions on Software Engineering, 32(6):382–403, 2006.

[20] S. Lu, J. Tucek, F. Qin, and Y. Zhou. AVIO: detecting atomicity
violations via access interleaving invariants. In Proceedings of the
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 37–48, 2006.

[21] F. Mattern. Virtual time and global states of distributed systems.
In Proc. of the International Workshop on Parallel and Distributed
Algorithms, pages 125–226, Chateau de Bonas, France, 1988.

[22] P. Meredith and G. Roşu. Runtime Verification with the RV system. In
the International Conference on Runtime Verification, pages 136–152,
2010.

[23] M. Musuvathi and S. Qadeer. Iterative context bounding for systematic
testing of multithreaded programs. In Proceedings of Conference on
Programming language design and implementation, pages 446–455,
2007.

[24] V. A. Ogale and V. K. Garg. Detecting temporal logic predicates on
distributed computations. In Proceedings of International Symposium
in Distributed Computing, pages 420–434, 2007.

[25] S. Park, S. Lu, and Y. Zhou. CTrigger: exposing atomicity violation
bugs from their hiding places. In Proceedings of the International
Conference on Architectural support for programming languages and
operating systems, pages 25–36, 2009.

[26] G. Pruesse and F. Ruskey. Gray codes from antimatroids. Order 10,
pages 239–252, 1993.

[27] A. Sen and V. K. Garg. Detecting temporal logic predicates on the
happened-before model. In Proceedings of the International Parallel
and Distributed Processing Symposium, 2002.

[28] F. Sorrentino, A. Farzan, and P. Madhusudan. Penelope: weaving
threads to expose atomicity violations. In Proceedings of the Inter-
national Symposium on Foundations of Software Engineering, pages
37–46, 2010.

[29] M. B. Squire. Enumerating the ideals of a poset. In PhD Dissertation,
Department of Computer Science, North Carolina State University,
1995.

[30] G. Steiner. An algorithm to generate the ideals of a partial order. Oper.
Res. Lett., 5(6):317–320, 1986.

[31] A. I. Tomlinson and V. K. Garg. Monitoring functions on global
states of distributed programs. Journal of Parallel and Distributed
Computing, 41(2):173–189, 1997.

[32] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model
checking programs. Automated Software Engineering Journal, 10(2):
203–232, 2003.

[33] C. von Praun and T. R. Gross. Object race detection. In Proceedings
of the Conference on Object-Oriented Programming, Systems, Lan-
guages, and Applications, pages 70–82, 2001.

[34] J. Yu, S. Narayanasamy, C. Pereira, and G. Pokam. Maple: A
coverage-driven testing tool for multithreaded programs. In Proceed-
ings of the International Conference on Object Oriented Programming
Systems Languages and Applications, pages 485–502, 2012.

