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Abstract

Partial orders have applications in various areas in computer science such as distributed
systems, object oriented languages, knowledge representation systems and databases. In this
paper we present a new technique to encode partially ordered sets or posets. Specifically, we use
the family of two-dimensional posets, which we refer to as rectangles, to encode a given poset;
an element x is less than another element y in the partial order if and only if x is less than
y in at least one of the rectangular orders and y is not less than x in any of the rectangular
orders. The least number of rectangular orders needed to represent a poset is referred to as
its rectangular dimension. We establish upper bounds on rectangular dimension of posets in
general and special families of posets in particular. We also provide examples of families of
posets that can be encoded optimally using our technique but require much larger number of
bits per element using other techniques such as adjacency matrix, adjacency list and dimension
theory.

Key words partial order, poset, dimension, encoding graph, implicit representation

1 Introduction

The importance of managing the transitive closure of relationships has been acknowledged in several
areas in computer science. Examples include the subsumption relation in knowledge representation
systems [1, 5] and object oriented languages (OOL) [3], the causality relation in distributed systems
[6, 14], and the transitive closure query in deductive database systems [1]. These hierarchies of
objects are expected to grow larger in the future. Therefore it will become important to have
techniques that enable such hierarchies to be stored in a compact manner while, at the same time,
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admitting fast response to queries such as “is the object x related to the object y?”. In distributed
systems, for example, the order between any set of events is partial, and in many applications such
as electronic commerce systems, the set of events and their order may be recorded for later queries
such as “is bid x concurrent with bid y?”

A popular method to store a partially ordered set or poset is to view it as a directed acyclic
graph and represent the graph using adjacency matrix or adjacency list. The adjacency matrix
representation uses a matrix of size n× n, where n is the number of elements in the set. Elements
are assumed to be numbered from 1 to n. The (i, j)th entry of the matrix is 1 if and only if the
ith element is less than the jth element in the partial order; otherwise it is 0. To compare two
distinct elements, at most two entries of the matrix need to be examined. Thus the adjacency
matrix representation uses O(n) bits per element but allows O(1) response to the less-than query
(“is x less than y?”). In the adjacency list representation, a list is associated with each element;
the list for element x contains all elements greater than x. The adjacency list representation is only
useful for those posets which have low average degree.

Another method to represent a partial order on a set of elements is based on dimension theory
introduced by Dushnik and Miller [4]. In this theory, a poset is represented as intersection of a
collection of total orders on the set of elements, each of which extends the partial order. A collection
of total orders whose intersection is the given partial order constitutes a realizer of the partial order.
An element x is less than another element y in the partial order if and only if x is less than y in
all the total orders in the realizer. A total order can be represented optimally using logn bits per
element, where n is the number of elements, thereby furnishing a technique to represent a poset.
If the realizer contains k total orders, then each element can be encoded using O(k logn) bits per
element. Every element is simply represented by its rank in each total order. The dimension of a
poset is the least number of total orders required to realize the corresponding partial order. Clearly,
the dimension of a poset is one if and only if it is a total order. Yannakakis [18] established that
it is in general NP-complete to test whether the dimension of a poset is at most k for any fixed
k > 3. Poset dimension has been studied extensively; the interested reader can consult the book
[16]. When the dimension is small, the dimension-theoretic representation is more concise than the
adjacency matrix representation.

In our approach, we use posets with dimension at most two—called two-dimensional posets—as
“building blocks” for realizing a given poset. For convenience, we refer to two-dimensional posets
as rectangles. An element x is less than another element y in the given partial order if and only
if x is less than y in at least one of the rectangular orders and y is not less than x is any of the
rectangular orders. The set of rectangular orders that realizes a given partial order constitutes its
rectangular realizer. Also, the rectangular dimension of a poset is the least number of rectangular
orders needed to realize the corresponding partial order. Clearly, by definition, the rectangular
dimension of a poset is one if and only if its dimension is at most two. Trivially, the rectangular
dimension of a poset is upper bounded by its dimension.

It turns out that there are posets with arbitrarily high dimension but only constant rectangular
dimension. As an illustration, consider the family of bipartite posets called standard examples.
The standard example Sn for n > 3 is the poset induced by the 1-element and (n− 1)-element
subsets of n distinct elements when ordered by set containment. The graph representation of
S5, for example, is shown in Figure 1. In the figure, all edges are directed upwards. It can be
proved that a standard example has “large” dimension [16, Chapter 1]. Specifically, the dimension
of Sn is given by n for each n > 3. This implies that O(n logn) bits per element are required
to encode Sn using the dimension theory. On the other hand, we prove in this paper that the
rectangular dimension of Sn is two for each n > 3. Each rectangle can be encoded using O(logn)
bits. Therefore using rectangles leads to a much more efficient representation of Sn. We further
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Figure 1: The standard example S5.

prove that the rectangular dimension of the generalized crown Skn for n > 3 and k > 0 [16, Chapter
2], which is a generalization of the standard example, is also two. Its dimension, however, is given
by d2(n+ k)/(k + 2)e. Note that encoding Sn and Skn requires a large number of bits per element
(specifically, O(n logn) and O(n log(n+k)), respectively) using adjacency list representation as well.
A more detailed comparison with other techniques for representing a poset is given in Section 6.

We describe two methodologies to compute a rectangular realizer of a poset. The first method-
ology involves partitioning the ground set into one or more subsets; we refer to it as point de-
composition (also known as removal theorem in the literature). The second methodology involves
decomposing the partial order into one or more suborders; we refer to it as order decomposition.
Using point decomposition method, we prove upper bounds of n/3 and dn/4e on rectangular di-
mension of general posets and bipartite posets, respectively, where n is the number of elements
in the poset with n > 3. We also provide a bound on rectangular dimension of interval orders
that depends on the number of intervals with distinct lengths present in an interval order. Using
order decomposition method, we provide bounds on rectangular dimension of general posets based
on degree of connectivity and of bipartite posets based on degree of adjacency. As a corollary, we
derive an optimal encoding for generalized crown (and thereby for standard example) based on
rectangles.

For encoding a rectangular order in a rectangular realizer, we use the string representation
introduced in [8]. If a rectangle is represented using two chains, then each element requires O(logn)
bits per element per rectangle. However, using string representation, the number of bits required
can be as small as O(1) per element per rectangle.

The paper is organized as follows. In Section 2, we provide the background on partially ordered
sets and dimension theory and also describe the notation used in this paper. We formally define
the notions of rectangle, rectangular realizer and rectangular dimension in Section 3. The two
methodologies to compute rectangular realizers of posets are illustrated in Section 4 and Section 5,
respectively. The related work is discussed in Section 6. In Section 7, we present our conclusions
and outline some directions for future research.

2 Background and Notation

We use the terminology and notation given in [16]. Standard notation and definitions are repeated
here for completeness. The reader already familiar with partially ordered sets and dimension theory
can skip this section.

2.1 Partially Ordered Sets

We consider partially ordered set or poset P to be a pair (X,P ) where X is a set and P is a reflexive,
antisymmetric, and transitive binary relation on X. We call X the ground set while P is a partial
order on X. Elements of the ground set are also called points. We will only be concerned with
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finite posets in this paper. We write x 6 y in P and y > x in P when (x, y) ∈ P . The notations
x < y in P and y > x in P mean x 6 y in P and x 6= y. When the poset remains fixed throughout
the discussion, we abbreviate x < y in P by just writing x < y, etc. The dual of a partial order P
on X is denoted by P d and is defined by {(y, x) | (x, y) ∈ P }. The dual of a poset P = (X,P ) is
denoted by Pd and is defined by Pd = (X,P d).

Let P = (X,P ) be a poset and consider x, y ∈ X with x 6= y. We say x and y are comparable
in P , and write x ⊥ y in P , when either x < y in P or y < x in P . On the other hand, x and y
are incomparable in P , denoted x ‖ y in P , if neither x < y in P nor y < x in P . Let Y and Z be
disjoint subsets of X. We say Y and Z are incomparable in P and write Y ‖ Z in P if y ‖ z in P ,
for every y ∈ Y and z ∈ Z.

When P = (X,P ) is a poset and Y is a nonempty subset of X, the restriction of P to Y ,
denoted by P (Y ), is a partial order on Y and we call (Y, P (Y )) (also denoted P(Y)) a subposet of
(X,P ). A poset P = (X,P ) is called a chain if every distinct pair of points from X is comparable
in P . Similarly, we call a poset an antichain if every distinct pair of points from X is incomparable
in P . When (X,P ) is a chain, we call P a linear order (also, total order). A nonempty subset
Y ⊆ X is called a chain (respectively, antichain) if the subposet (Y, P (Y )) is a chain (respectively,
antichain).

A chain C of a poset is a maximum chain if no other chain of the poset contains more points
than C. A maximum antichain can be dually defined. The height of a poset P = (X,P ) is the
number of points in a maximum chain and is denoted by height(X,P ) (or height(P)). The width of
a poset P = (X,P ), denoted by width(X,P ) (or width(P)), is the number of points in a maximum
antichain.

A poset P = (X,P ) is connected if for every x, y ∈ X with x 6= y there is a finite sequence
x = x0, x1, . . . , xn = y of points from X so that xi ⊥ xi+1 in P for i = 0, 1, 2, . . . , n− 1. We call an
element a loose point if it is not comparable to any other element in the set.

We call a poset P = (X,P ) bipartite if there is no chain in the poset involving more than two
elements. In that case, the ground set X can be partitioned into two disjoint subsets L and U so
that P ⊆ L× U and we write P = (X,P ) = (L,U, P ). Note that the partition of X into L and U
may not be unique.

We depict a poset pictorially by its Hasse diagram or covering graph. Elements are denoted by
solid circles. There is an edge from x to y if x < y and there is no z so that x < z < y. Unless
otherwise stated, the edges are directed from bottom to top.

Let Y and Z be two disjoint subsets of the set X, and let L and M be the linear orders on Y
and Z, respectively. We use L < M to represent the linear order on Y ∪ Z in which the elements
of Y occur in the order given by L followed by the elements of Z as ordered by M .

2.2 Chain Realizer and Chain Dimension

Let P = (X,P ) be a poset. A family C = {C1, C2, . . . , Ct} of total orders on X is called a (chain)
realizer of P on X (also, C realizes P) if P =

⋂ C =
⋂t
i=1Ci. The (chain) dimension of a poset

P = (X,P ), denoted by dim(X,P ) (or dim(P)), is the least positive integer t for which there exists
a family C = {C1, C2, . . . , Ct} of t total orders on X so that C realizes P [16].

For example, the chain dimension of the poset in Figure 2 is three. The three total orders
that realize it are given by a3 < a1 < b1 < a2 < b2 < b3, a1 < a2 < b2 < a3 < b3 < b1 and
a2 < a3 < b3 < a1 < b1 < b2.

Remark 1 We use the term “chain realizer” instead of the term “realizer” to emphasize the dif-
ference between a realizer of a poset and a rectangular realizer of a poset defined in the next section.
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Figure 2: An example of a poset.

The same remark also applies to “chain dimension”.

3 Rectangles

In this section, we formally define the notions of rectangle, rectangular realizer and rectangular
dimension of a poset.

Definition 1 (rectangle) A rectangle is a two-dimensional poset.

When a poset P = (X,P ) is a rectangle, we call P as a rectangular order. For a rectangular
order R, we use R.1 and R.2 to refer to two total orders that realize R. In case the dimension of
R is one, both R.1 and R.2 refer to the same total order. Clearly, R = R.1 ∩R.2. A chain as well
as an antichain is a rectangle.

Definition 2 (rectangular realizer) Let P = (X,P ) be a poset. A family R = {R1, R2, . . . , Rt}
of rectangular orders on X is called a realizer of P on X (also, R realizes P) if for every x, y ∈ X,
x < y in P if and only if y ≮ x in Ri for each i ∈ [1, t] and x < y in Rj for some j ∈ [1, t].

If x ‖ y in P , then in a rectangular realizer R of P two cases are possible. Either x ‖ y in
all rectangular orders in R, or x < y in some rectangular order in R and y < x in some other
rectangular order in R. On the other hand, if x < y in P , then x < y in some rectangular order
in R and x < y or x ‖ y in all other rectangular orders in R. The notion of rectangular dimension
can now be defined as follows:

Definition 3 (rectangular dimension) The rectangular dimension of a
poset P = (X,P ), denoted by rdim(X,P ) (or rdim(P)), is the least positive integer t for which
there exists a family R = {R1, R2, . . . , Rt} of t rectangular orders on X so that R realizes P.

As an example, the rectangular dimension of the poset depicted in Figure 2 is two. The two
rectangular orders realizing it are given by {(a1 < a2 < a3 < b1 < b2 < b3), (a3 < a2 < a1 < b3 <
b2 < b1)} and {(b1 < a2 < b2 < a3 < b3 < a1), (b3 < a1 < b2 < a3 < b1 < a2)}.

The rectangular dimension of a poset and its dual are identical because the dual of a two-
dimensional poset is again a two-dimensional poset. The notions of rectangular realizer and rect-
angular dimension defined for a poset can be generalized to any (acyclic) relation on a ground
set. For a collection of rectangular orders R = {R1, R2, . . . , Rt}, let rel(R) denote the relation
realized by R. For example, consider the rectangular orders {(a < b < c), (c < a < b)} and
{(a < b < c), (b < c < a)}. The relation realized by the two orders collectively is given by
{(a, b), (b, c)}. Note that the relation is not transitive because it does not contain the ordered pair
(a, c). Next, we define two concepts that we use when deriving rectangular realizers for posets using
the point and order decomposition methods. Let X = Y ∪Z be a partition of X, and let Q and R
be rectangular orders on Y and Z, respectively. Then P = Q∪R is also a rectangular order on X.
Evidently, two chains realizing P are given by P.1 = Q.1 < R.1 and P.2 = R.2 < Q.2. Moreover,
P satisfies the following properties:
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1. P (Y ) = Q and P (Z) = R, and

2. y ‖ z in P for all y ∈ Y and z ∈ Z.

Definition 4 (disjoint composition) Let X = Y ∪ Z be a partition of X, and let Q and R be
rectangular orders on Y and Z, respectively. Then we say that the rectangular order P = Q∪R on
X is obtained by disjoint composition of the rectangular orders Q on Y and R on Z.

Definition 5 (non-interference) A rectangular order R is said to be non-interfering with a par-
tial order P if R ⊆ P .

Also, a rectangular realizer is non-interfering with a partial order if every rectangular order in
the realizer is non-interfering with the partial order. In other words, if two elements are incompa-
rable in the partial order, they are also incomparable in all rectangular orders in the realizer. In
that case, the partial order is given by the union of all rectangular orders in the realizer. Trivially,
every partial order (even a relation) has a non-interfering rectangular realizer.

4 Point Decomposition Method and its Applications

4.1 The Main Idea

Given a poset P = (X,P ), we partition the ground set X into two subsets: Y and X \ Y . We
first compute rectangular realizers, say Q and R, of the two induced subposets (Y, P (Y )) and
(X \ Y, P (X \ Y )), respectively. A rectangular realizer S of P (Y ) ∪ P (X \ Y ) on X can then be
obtained by disjoint composition of Q and R; each rectangular order of S is obtained by disjoint
composition of corresponding rectangular orders of Q and R (padding can be done if necessary).
Finally, we compute a rectangular realizer, say T , of the relation P \ (P (Y ) ∪ P (X \ Y )) on X.
To guarantee that S ∪ T constitutes a rectangular realizer of P on X, it suffices to ensure that T
is non-interfering with P . Note that it is not necessary that the relation realized by T , given by
rel(T ), be exactly P \(P (Y )∪P (X \Y )). It is sufficient that P \(P (Y )∪P (X \Y )) ⊆ rel(T ) ⊆ P .
We often choose Y such that T consists of a single rectangular order.

Our results in this section are based on the notion of indistinguishable elements. Let P = (X,P )
be a poset and consider an element x ∈ X and a subset Y ⊆ X. We denote the subset of elements
in Y that are less than x in P , that is, {y ∈ Y | y < x in P} by D(x, Y ) (called the down set of x in
Y ). Similarly, the subset of elements in Y that are greater than x in P , that is, {y ∈ Y |x < y in P}
is denoted by U(x, Y ) (called the up set of x in Y ). For convenience, we abbreviate D(x,X) by
D(x) and U(x,X) by U(x).

Definition 6 (indistinguishable elements) Two elements x, y ∈ X are said to be indistinguish-
able with respect to Y in P if D(x, Y ) = D(y, Y ) and U(x, Y ) = U(y, Y ).

The elements of X \ Y can be partitioned into equivalence classes such that elements in the
same class are mutually indistinguishable with respect to Y in P . These equivalence classes are
referred to as Y–indistinguishable classes of X \Y in P . The class for which D(x, Y ) = U(x, Y ) = ∅
for each element x in the class is called Y–disconnected class. (No element in the Y–disconnected-
class is comparable to any element in Y .) When deriving the rectangular realizer T to represent
P \ (P (Y ) ∪ P (X \ Y )) described earlier, it suffices to consider at most one representative element
from every Y–indistinguishable class.

For example, for the poset shown in Figure 2, D(b1, {a3, b3}) = {a3}. Furthermore, there are
three {a3, b3}–indistinguishable classes of {a1, a2, b1, b2}, namely {b1}, {a1, b2} and {a2}. The class
{a1, b2} is the {a3, b3}–disconnected class.
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Figure 3: The Y–indistinguishable classes of X \ Y in P where (Y, P (Y )) is a critical subposet of
the poset (X,P ) (note that in the Hasse diagram, the line segments between elements are directed
from left to right instead of the usual bottom to top).

4.2 Applications

In this section, we present some removal theorems and later use them to provide bounds on rect-
angular dimension of various posets.

4.2.1 Removal Theorems

Out first theorem is based on the notion of critical subposet. A pair (x, y) from X with x ‖ y in
P forms a critical pair in the subposet (Y, P (Y )) if D(x, Y ) ⊆ D(y, Y ) and U(x, Y ) ⊇ U(y, Y ). A
subposet (Y, P (Y )) is called a critical subposet of the poset (X,P ) if for every incomparable pair
(x, y) from Y either (x, y) or (y, x) forms a critical pair in the subposet (X \ Y, P (X \ Y )).

Theorem 1 (critical subposet removal theorem) Let (Y, P (Y )) be a critical subposet of the
poset P = (X,P ) where Y ( X. Then,

rdim(X,P ) 6 1 + max {rdim(X \ Y, P (X \ Y )), dim(Y, P (Y ))}

Proof: First, we compute a rectangular order R that contains all ordered pairs in the relation
P \ (P (Y )∪P (X \Y )). However, R may interfere with P . But, R is such that the ordered pairs in
R that do not belong to P only involve the elements of Y . Such ordered pairs are reversed later.
Now, to compute R, we claim that the elements of Y can be “viewed” as a chain with respect to
the elements of X \ Y . More precisely, it is possible to linearize the partial order P (Y ) to obtain
a total order T on Y that satisfies the following property: for all elements x, y ∈ Y if x < y in T
then D(x,X \ Y ) ⊆ D(y,X \ Y ) and U(x,X \ Y ) ⊇ U(y,X \ Y ). Let QD and QU be the relations
as defined:

QD = {(x, y) | x, y ∈ Y, x ‖ y in P (Y ) and D(x,X \ Y ) ( D(y,X \ Y )}

QU = {(x, y) | x, y ∈ Y, x ‖ y in P (Y ) and U(x,X \ Y ) ) U(y,X \ Y )}

We establish that the relation P (Y ) ∪ QD is acyclic. The main idea is that any cycle in
P (Y )∪QD, if it exists, must involve a pair from QD because P (Y ) is acyclic. Note that for every pair
(x, y) ∈ P (Y ), D(x,X\Y ) ⊆ D(y,X\Y ), and for every pair (x, y) ∈ QD, D(x,X\Y ) ( D(y,X\Y ).
Hence if an element p is involved in a cycle then D(p,X \ Y ) ( D(p,X \ Y )—a contradiction.
Similarly, it can be proved that the relation P (Y ) ∪QD ∪QU is acyclic as well. All incomparable
pairs that remain after taking the transitive closure of P (Y )∪QD∪QU are (X \ Y )–indistinguishable
in P and therefore can be ordered either way in T . The required total order T on Y is given by
any linearization of the relation P (Y ) ∪QD ∪QU .

We use yi to refer to the ith element in the total order T for i = 1, 2, . . . , n where n = |Y |. We now
compute the Y–indistinguishable classes of X \ Y in P . Figure 3 shows various Y–indistinguishable
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classes of X \ Y in P and how they relate to Y . In the figure we depict each equivalence class by a
single representative element, namely a for A, and di, ui and bi for Di, Ui and Bi, respectively, for
each i. The classes other than the Y–disconnected class A can be partitioned into three categories.
The first family of classes, denoted by D, consists of classes Di for i = 1, 2, . . . , n so that an element
x ∈ X \ Y belongs to Di if x < yi in P but yi−1 ‖ x in P . Note that when i = 1 only the first
condition is applicable, that is, x ∈ D1 if x < y1 in P . The second family of classes, denoted by U ,
consists of classes Ui for i = 1, 2, . . . , n so that an element x ∈ X \ Y belongs to Ui if yi < x in P
but x ‖ yi+1 in P . Again, note that when i = n only the first condition applies, that is, x ∈ Un if
yn < x in P . The third family of classes, denoted by B, contains classes Bi for i = 1, 2, . . . , n − 1
such that an element x ∈ X \ Y is contained in Bi if yi < x < yi+1. Clearly, all Y–indistinguishable
classes of X \ Y in P are covered by {A} ∪ D ∪ U ∪ B. The required rectangular order R is given
by:

R.1 = a < dn < dn−1 < · · · < d1 < y1 < b1 < y2 < b2 < · · · < yn <

un < un−1 < · · · < u1

R.2 = d1 < y1 < u1 < b1 < d2 < y2 < u2 < b2 < · · · < bn−1 < dn <

yn < un < a

Now, we independently compute representations for the subposets (Y, P (Y )) and (X \Y, P (X \
Y )). To represent the former, we use a chain realizer, and, to represent the latter, we use a
rectangular realizer. Set t = max{dim(Y, P (Y )), rdim(X \Y, P (X \Y ))}. Let C = {C1, C2, . . . , Ct}
be a chain realizer of P (Y ) on Y , and let S = {S1, S2, . . . , St} be a rectangular realizer of P (X \Y )
on X \Y . We construct a family of t rectangular orders T = {T1, T2, . . . , Tt} where the rectangular
order Ti on X is given by disjoint composition of the order Ci on Y and the order Si on X \ Y for
i = 1, 2, . . . , t. We choose a chain realizer and not a rectangular realizer for representing (Y, P (Y ))
because when we linearize P (Y ) we may introduce ordered pairs from Y × Y that are not present
in P . These pairs are reversed by the chain realizer. Finally, {R} ∪ T constitutes a rectangular
realizer of P on X. 2

A chain trivially constitutes a critical subposet of any poset because it does not contain any
incomparable pair. Also, the dimension of a chain is one. Thus, from critical subposet removal
theorem, it follows that:

Theorem 2 (chain removal theorem) Let C be a chain in the poset P = (X,P ). Then,

rdim(X,P ) 6 1 + rdim(X \ C,P (X \ C))

Does a similar theorem exist for an antichain? The answer is in general no. But in case the
antichain consists of only two elements, a removal theorem can indeed be provided.

Theorem 3 (incomparable pair removal theorem) Let P = (X,P ) be a poset and (x, y) be
an incomparable pair P . Then,

rdim(X,P ) 6 1 + rdim(X \ {x, y}, P )

Proof: For convenience, set Y = {x, y}. We give a rectangular order R containing the relation
P \ P (X \ Y ) (in this case, P (Y ) = ∅) that is non-interfering with P . Figure 4 depicts various
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Figure 4: The Y–indistinguishable classes of X \ Y in P where Y = {x, y} ⊆ X with x ‖ y in P .

Y–indistinguishable classes and how they relate to Y . As shown, there are seven such classes
represented by a, b, c, d, e, f and g. The required rectangular order R is given by:

R.1 = a < b < c < x < e < d < y < f < g

R.2 = d < c < y < g < b < x < f < e < a

It can be verified that R contains P \P (X\Y ) and does not interfere with P . Let S be a rectangular
realizer of P (X\Y ) on X\Y . We can obtain a rectangular realizer T of P (X\Y ) on X by disjointly
composing each rectangular order of S with the empty order on Y . Then {R} ∪ T constitutes a
rectangular realizer of P on X. 2

4.2.2 Establishing Upper Bounds on Rectangular Dimension

Since rdim(X,P ) 6 dim(X,P ) and dim(X,P ) 6 |X|/2 when |X| > 4, trivially, rdim(X,P ) 6 |X|/2
when |X| > 4. The bound is not tight for rectangular dimension as shown in this section. Before we
give a bound on the rectangular dimension of a general poset, we provide a bound on the rectangular
dimension of a bipartite poset. Recall that a poset P = (X,P ) is bipartite if it does not contain
any chain involving more than two elements. In that case, the ground set X can be partitioned
into two disjoint subsets L and U so that P ⊆ L× U and we write P = (X,P ) = (L,U, P ).

Theorem 4 Let P = (X,P ) = (L,U, P ) be a bipartite poset with nonempty L and U . Then,

rdim((X,P )) 6 min{d|L|/2e, d|U |/2e}

Proof: Without loss of generality, assume that d|L|/2e 6 d|U |/2e and further that |L| is even. In
case |L| is odd, we add an element to L that is not connected to any other element. Set t = d|L|/2e.
Using incomparable pair removal theorem repeatedly, we successively remove two elements from L
which, by definition of L, are incomparable in P until we have exhausted all elements in L. Clearly,
t pairs of elements are removed. Thus,

rdim(X,P ) 6 t+ rdim(U,P (U)) = t+ rdim(U, ∅) = t+ 1

Note, however, that we do not need a separate rectangle to represent the poset (U, ∅). This is
because the rectangular order constructed in the proof of the incomparable pair removal theorem
is non-interfering with P . This implies that for all x, y ∈ U , x ‖ y in each of the other t rectangular
orders. Therefore the fact that the elements of U form an antichain is already captured in the other
t rectangular orders. As a result, rdim(X,P ) 6 t = d|L|/2e. 2

Clearly, either |L| 6 |X|/2 or |U | 6 |X|/2. Thus, from Theorem 4, it follows that:
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Corollary 5 Let P = (X,P ) be a bipartite poset. Then,

rdim(X,P ) 6 d|X|/4e

For a general poset, a slightly weaker upper bound can be given.

Theorem 6 Let P = (X,P ) be a poset with |X| > 3. Then,

rdim(X,P ) 6 |X|/3

Proof for Theorem 6: The proof is by induction on the number of elements in X.

Base Case (|X| 6 5): It can be verified by doing case analysis that whenever |X| 6 5, dim(X,P ) 6
2 implying that rdim(X,P ) 6 1 [16, Page 23].

Induction Step: Suppose that rdim(X,P ) 6 |X|/3 whenever |X| 6 k where k > 5. Now
consider a poset (X,P ) with k+ 1 elements. In case the poset (X,P ) contains a chain C involving
three elements, from Theorem 2, rdim(X,P ) 6 1 + rdim(X \ C,P (X \ C)) 6 1 + |X \ C|/3
= 1 + (|X| − 3)/3 = |X|/3. Thus assume that the poset (X,P ) does not contain any chain
involving more than two elements, or, in other words, it is a bipartite poset. From Corollary 5,
rdim(X,P ) 6 d|X|/4e 6 |X|/3. 2

4.2.3 Bounding Rectangular Dimension of Interval Orders

Recall that a poset P = (X,P ) is an interval order if there exists an interval representation function
F assigning to each element x ∈ X a non-degenerate closed interval F (x) = [ax, bx] of the real line
R so that x < y in P if and only if bx < ay in R [16, Page 190]. We define the range of an interval
order (X,P ) with respect to an interval representation function F , denoted by range(X,P, F ), as
the cardinality of the set {bx − ax | x ∈ X with F (x) = [ax, bx]}. In case range(X,P, F ) = 1, the
interval order (X,P ) is called a semi-order [16, Page 192]. We show that the rectangular dimension
of an interval order is at most two more than its range. This is an extension of the result in the
dimension theory that if range(X,P, F ) = 1 then dim(X,P ) 6 3 [16, Page 196].

Theorem 7 Let P = (X,P ) be an interval order with interval representation F . Then,

rdim(X,P ) 6 range(X,P, F ) + 2

Proof: Set t = range(X,P, F ). Clearly, the ground set X can be partitioned into t subsets Xi for
i = 1, 2, . . . , t such that each induced subposet (Xi, P (Xi)) is a semi-order. We claim that each
subposet (Xi, P (Xi)) is also a critical subposet of the poset (X,P ).

Consider a subposet (Xi, P (Xi)) and elements x, y ∈ Xi with x ‖ y in P (Xi). Let bx − ax =
by − ay = d (say) where F (x) = [ax, bx] and F (y) = [ay, by]. Either ax 6 ay or ay 6 ax. Without
loss of generality, assume that ax 6 ay. We establish that D(x) ⊆ D(y) and U(x) ⊇ U(y) which in
turn implies that (x, y) is a critical pair in (X,P ) and hence a critical pair in (X \ Y, P (X \ Y )).
Consider an element z ∈ X with F (z) = [az, bz]. If z ∈ D(x) then bz < ax 6 ay implying that
z ∈ D(y). Similarly, if z ∈ U(y) then az > by = ay + d > ax + d = bx or, equivalently, az > bx
implying that z ∈ U(x).

The dimension of a semi-order is at most three. Thus, by repeatedly apply the critical subposet
removal theorem, we obtain:

rdim(X,P ) 6 range(X,P, F )− 1 + max{rdim(Xt, P (Xt)), 3}
Since the rectangular dimension of a semi-order is also at most three,
rdim(X,P ) 6 range(X,P, F )− 1 + 3 = range(X,P, F ) + 2. 2
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5 Order Decomposition Method and its Applications

5.1 The Main Idea

Given a poset P = (X,P ), we first decompose the partial order P into t suborders Pi for i =
1, 2, . . . , t. It is not necessary for the suborders to be disjoint. We next compute a rectangular
realizer Ri for each subposet (P,Xi) such that Ri is non-interfering with P . Then the collection of
rectangular orders R = R1 ∪R2 ∪ · · · ∪ Rt constitutes a rectangular realizer of P on X. When we
specify a decomposition of a partial order into suborders, we do not enumerate the reflexive pairs
which can always be added later.

5.2 Applications

In this section, we provide upper bounds on rectangular dimension of posets based on two measures:
“degree of connectivity” and “degree of adjacency”.

5.2.1 Bounding Rectangular Dimension of Posets based on Degree of Connectivity

Suppose the Hasse diagram (or covering graph) of a poset P = (X,P ) is such that every element
in the graph has at most one outgoing edge. In this case the covering graph resembles a forest of
trees. In particular, for every element x ∈ X, U(x) forms a chain in P . Such a poset belongs to
the class of series-parallel posets [10, 12, 17]. The dimension of a series-parallel poset is at most
two and hence its rectangular dimension is at most one [10, 12, 17]. Similarly, a poset whose Hasse
diagram is such that every element has at most one incoming edge also has rectangular dimension
of one.

A natural question to ask is: what other posets have “small” rectangular dimension? In this
section, we show that posets with “low” indegree have “small” rectangular dimension. Furthermore,
we show that posets in which the indegree of every element is either “low” or “high” (but not
“medium”) also have “small” rectangular dimension.

For a poset P = (X,P ) and an element x ∈ X, the indegree of x in P , denoted degD(x),
is defined as the number of elements less than x in P [16, Page 165]. Let ∆D(X,P ) denote
max{degD(x) | x ∈ X}. The outdegree of an element can be dually defined.

Theorem 8 Let P = (X,P ) be a poset with ∆D(X,P ) 6 k where k > 1. Then,

rdim(X,P ) 6 k

Proof: The central idea is to decompose the partial order into at most k suborders such that the
subposet induced by each suborder is a rectangle.

For each element x ∈ X, number all elements in D(x) from 1 to |D(x)|. The ith sub-
order Pi for i = 1, 2, . . . , k is given by the reflexive transitive closure of the set {(x, y)|x ∈
X and y is the ith element in D(x), if it exists}. Clearly, each element has at most one incom-
ing edge in the Hasse diagram of (X,Pi). Hence (X,Pi) is a series-parallel poset, which implies
that Pi is a rectangular order. Since Pi ⊆ P , Pi is non-interfering with P . Therefore it follows that
the set {P1, P2, . . . , Pk} constitutes a rectangular realizer of P on X. 2

We now show that if the indegree of every element in a poset is either at most k or at least
|X| − k, then the rectangular dimension of the poset is at most d3k/2e+ 1.

11



Theorem 9 Let P = (X,P ) be a poset such that for every element x ∈ X, either degD(x) 6 k or
degD(x) > |X| − k where k > 1. Then,

rdim(X,P ) 6 d3k/2e+ 1

Proof: It suffices to prove that rdim(X,P ) 6 d3k/2e + 1 when k 6 b|X|/2c. Our approach is to
partition the ground set X into two disjoint subsets L and U such that (1) for every element x ∈ L,
|D(x)| 6 k, and (2) for every element x ∈ U , |D(x)| > |X| − k. Clearly, there is no element in U
that is less than some element in L; otherwise D(x) ⊃ D(y) with x ∈ L, y ∈ U , and y < x in P
implying that |D(x)| > |D(y)| > |X| − k > d|X|/2e—a contradiction. We now bound the size of
U in case it is non-empty. Consider a minimal element x of (U,P (U)). By definition, D(x) ⊆ L.
Therefore |L| > |D(x)| > |X| − k which in turn implies that |U | 6 k.

Set t = d3k/2e + 1. Let T be some total order on L ∪ U . We construct a rectangular order R
on X as follows:

R.1 = T (L) < T (U)

R.2 = T d(L) < T d(U)

Note that R(L) = ∅, R(U) = ∅ and every element of L is less than every element of U in
R. Therefore some ordered pairs in R need to be reversed. However, since every element in
U has high indegree, the number of such ordered pairs is small. Let Q1 = P (L) ∪ P (U) and
Q2 = {(y, x) | x ∈ L, y ∈ U and x ‖ y in P }. Informally, Q1 captures those ordered pairs in P that
do not belong to R, and Q2 reverses those ordered pairs in R that are not present in P .

To represent (X,Q1), we observe that the indegree of every element in (X,Q1) is at most k; for
elements in L, it follows from the definition of L, and for elements in U , it follows from the fact
that |U | 6 k. As a result, we can use the construction in the proof of Theorem 8 to compute a
non-interfering rectangular realizer of Q1 on X consisting of at most k rectangular orders, say S.

To represent (X,Q2), we observe that (X,Q2) is actually a bipartite poset, say (L′, U ′, Q2),
where L′ = U and U ′ = L. Further, |L′| = |U | 6 k. As a result, we can use the construction in the
proof of Theorem 4 to compute a non-interfering rectangular realizer of Q2 on X consisting of at
most dk/2e rectangular orders, say T .

Finally, {R} ∪ S ∪ T constitutes a rectangular realizer of P on X consisting of at most 1 + k+
dk/2e = d3k/2e+ 1 rectangular orders. 2

5.2.2 Bounding Rectangular Dimension of Bipartite Posets Based on Degree of Ad-
jacency

In this section, we prove that bipartite posets with high degree of adjacency have small rectangular
dimension. We then prove that a generalized crown has rectangular dimension of two by showing
that it has high degree of adjacency. To prove our results, we use two properties defined by Spinrad,
Branstädt and Stewart in [15].

Definition 7 (adjacency property [15]) A bipartite poset P = (X,P ) = (L,U, P ) satisfies the
adjacency property if there is an ordering of elements of U such that for each element x ∈ L,
elements of U(x) ⊆ U occur consecutively in the ordering.

Definition 8 (enclosure property [15]) A bipartite poset P = (X,P ) = (L,U, P ) that satisfies
the adjacency property also satisfies the enclosure property if for all elements x, y ∈ L with U(x) ⊆
U(y), elements in U(y) \ U(x) ⊆ U occur consecutively in the ordering dictated by the adjacency
property.
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Spinrad, Branstädt and Stewart in [15] prove that a bipartite poset satisfying both adjacency
and enclosure properties has dimension of at most two. This implies that the rectangular dimension
of such a poset is at most one. We generalize their result to arbitrary bipartite posets.

Theorem 10 Let P = (X,P ) = (L,U, P ) be a bipartite poset. Suppose P is decomposed into
t suborders Pi for i = 1, 2, . . . , t such that each induced bipartite subposet (X,Pi) satisfies the
adjacency property. Then,

rdim(X,P ) 6 t+ 2

If each bipartite subposet (X,Pi) for i = 1, 2, . . . , n also satisfies the enclosure property, then,

rdim(X,P ) 6 t

Proof: For each bipartite subposet (X,Pi) for i ∈ [1, t], we construct a rectangular order Ri that
contains P . However, Ri may interfere with P . But Ri is such that the ordered pairs in Ri that
do not belong to P only involve the elements of L. Such ordered pairs are reversed later.

Let T be some total order on L ∪ U that is consistent with the order on U as dictated by the
adjacency property. We denote the ith element in the total order T (U) by ui for i = 1, 2, . . . , n
where n = |U |. The two total orders Ri.1 and Ri.2 on X that realize the rectangular order Ri are
both constructed recursively. To construct Ri.1, we start with the empty order G0. At the ith step
for i = 1, 2, . . . , n, we “append” to Gi−1 the element ui and those elements of D(ui) that are not
already in Gi−1 as follows:

Gi = Gi−1 < T (D(ui) \Gi−1) < ui

Finally, to obtain Ri.1, we “append” to Gn the remaining elements of L (that are not already in
there) as follows: Ri.1 = Gn < T (L \Gn). The total order Ri.2 is constructed in a similar fashion
except that the elements of U are considered in the reverse order. More precisely, starting from
the empty order H0, Hi for i = 1, 2, . . . , n is constructed recursively as given:

Hi = Hi−1 < T (D(un−i+1) \Hi−1) < un−i+1

Finally, we “prepend” to Hn the remaining elements of L (that are not already in there) to obtain
Ri.2 as follows: Ri.2 = T (L \ Hn) < Hn. We show that the rectangular order Ri satisfies two
important properties. First, it contains all ordered pairs in P . Second, all “other” ordered pairs in
R, given by R \ P , only involve the elements of L.

Since Ri.1(U) = T (U) and Ri.2(U) = T d(U), Ri(U) = ∅ implying that the elements of U form
an antichain in Ri. Note that L \Gn = L \Hn. Let A = L \Gn. Informally, an element of A is a
“loose” point not connected to any other element in X. Clearly, by construction, for all a ∈ A and
u ∈ U , a‖u in Ri. It now remains to be shown that Ri∩(U×(L\A)) = ∅ and Ri∩((L\A)×U) = P .

Consider elements a ∈ L \ A and b ∈ U . In case b < a in Ri.1, there exists an element c ∈ U
so that b < c in T and a ∈ D(c). However, by construction, c < b in Ri.2 implying that a < b
in Ri.2. As a result, a ‖ b in Ri. Thus no element of U is less than an element of L \ A in Ri or
Ri ∩ (U × (L \A)) = ∅.

Now, consider the other case when a < b in Ri.1. Suppose a ∈ D(b). By construction, a < b
in Ri.2 which implies that a < b in Ri. Thus every ordered pair in P is also an ordered pair in Ri
or P ⊆ Ri. Finally, suppose a 6∈ D(b). Then there is an element c ∈ U with c < b in T such that
a ∈ D(c). We claim that b < a in Ri.2. Assume the contrary, that is, a < b in Ri.2. Since a 6∈ D(b),
there is an element d ∈ U such that d < b in T d with a ∈ D(d). Therefore (1) a ∈ D(c) ∩ D(d),
(2) c < b < d in T , and (3) a 6∈ D(b). Combining the three, we can infer that elements in U(a)
do not occur consecutively in T , which violates the adjacency property—a contradiction. Thus
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Figure 5: The crown S2
4.

if an element of L \ A is incomparable with an element of U in P then so is the case in Ri or
Ri ∩ ((L \A)× U) ⊆ P .

It follows that the family of rectangular orders R = {R1, R2, . . . , Rt} “almost” realizes P on X
but for some ordered pairs involving the elements of L, which need to be reversed. To accomplish
that, we need two more rectangles. The first of the two rectangular orders, say Rt+1, is obtained by
disjoint composition of T (L) on L with the empty order on U . The second of the two rectangular
orders, say Rt+2, is obtained by disjoint composition of T d(L) on L with the empty order on U .
Clearly, R∪ {Rt+1, Rt+2} realizes P on X.

We now prove the second part of the theorem. Suppose each bipartite subposet (X,Pi) for
i = 1, 2, . . . , n satisfies the enclosure property as well. This implies that rdim(X,Pi) 6 1 for each
i ∈ [1, t]. Thus each suborder Pi is a rectangular order on X and, evidently, {P1, P2, . . . , Pt}
constitutes a rectangular realizer of P on X. 2

We now show a generalized crown can be represented using only a small number of rectangles.
Recall that the generalized crown Skn [16, Chapter 2], for integers n > 3 and k > 0, is a bipar-
tite poset with L = {a1, a2, . . . , an+k} and U = {b1, b2, . . . , bn+k}. For each i = 1, 2, . . . , n + k,
bi ‖ {ai, ai+1, . . . , ai+k} in Skn, and bi > aj in Skn for each j = i+ k + 1, i+ k + 2, . . . , i+ k + n− 1.
In the definition, the subscripts are to be interpreted cyclically. Figure 5 depicts S2

4.

Theorem 11 The rectangular dimension of a generalized crown is at most two.

Proof: We decompose the partial order of the generalized crown Skn into two suborders such that
both satisfy the adjacency and enclosure properties. To accomplish this, it helps to redefine the
generalized crown Skn from the point of view of the elements in L. For each i = 1, 2, . . . , n + k,
ai ‖ {bi−k, bi−k+1, . . . , bi} in Skn, and ai < bj in Skn for each j = i+ 1, i+ 2, . . . , i+ n− 1. Of course,
the subscripts are to be interpreted cyclically.

For each element ai ∈ L, we partition the set U(ai) = {bi+1, bi+2, . . . , bi+n−1} into two subsets
denoted by U1(ai) and U2(ai). The first subset U1(ai) consists of elements bj for j = i + 1, i +
2, . . . ,min{i+n− 1, n+k}. In case i+n− 1 > n+k, the second subset U2(ai) consists of elements
bj for j = 1, 2, . . . , i− k − 1; otherwise it is empty. For an illustration, refer to Figure 6.

Now, the first suborder P1 is given by {(a, b) | a ∈ L and b ∈ U1(a)}, and the second suborder
P2 is given by {(a, b) | a ∈ L and b ∈ U2(a)}. Clearly, both subposets (L ∪ U,P1) and (L ∪ U,P2)
satisfy the adjacency and enclosure properties. 2

In contrast, the dimension of a generalized crown can be “large”. Specifically, dim(Skn) =
d2(n + k)/(k + 2)e for each n > 3 and k > 0 [16, Chapter 2]. Note that the class of generalized
crowns includes the class of standard examples. Therefore the rectangular dimension of a standard
example is also at most two.

Using Theorem 10, a simple heuristic to compute a rectangular realizer of a bipartite poset
can be derived based on the following observation: any bipartite poset with at most two minimal
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Figure 6: (a) The crown S2
4, (b) and (c) its two subposets that satisfy the adjacency and enclosure

properties.

elements satisfies both adjacency and enclosure properties. To see why, consider a bipartite poset
P = (X,P ) = (L,U, P ) with |L| = 2. Suppose the two minimal elements are a and b, and let S be
some total order on U . We construct another total order T on U as follows:

T = S
(
U(a) \ U(b)

)
< S

(
U(a) ∩ U(b)

)
< S

(
U(b) \ U(a)

)
<

S
(
U \ (U(a) ∪ U(b))

)

Clearly, all elements of U(a) as well as U(b) occur consecutively in T . Now, assume that |L| > 2.
A suborder P1 ⊆ P satisfying the adjacency property can now be obtained as follows. Pick two
elements from L with maximum outdegrees. They serve as elements a and b. Add all their outgoing
edges to P1. It turns out that we can add more edges to P1 and still ensure that P1 satisfies the
adjacency property. Specifically, for every element x ∈ L\{a, b}, we can compute the largest subset
of U(x) whose elements occur consecutively in T and add the corresponding edges to P1. Finally,
we compute P \ P1 and repeat the above steps to compute P2 and so on.

6 Related Work

The boolean dimension of a poset P = (X,P ), defined by Gambosi, Nešetřil and Talamo [7], is the
least positive integer t so that there exist a boolean formula F (b1, b2, . . . , bt) on boolean variables
b1, b2, . . . , bt and total orders {C1, C2, . . . Ct} satisfying the following: for every x, y ∈ X, x 6 y
in P if and only if F (b1, b2, . . . , bt) evaluates to true where bi is true if and only if x 6 y in Ci.
The notions of dimension and rectangular dimension can be derived from the notion of boolean
dimension by appropriately defining the boolean formula. For example, to derive the notion of
dimension, the boolean formula can be set to b1 ∧ b2 ∧ · · · ∧ bt. On the other hand, to derive the
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notion of rectangular dimension, the boolean formula can be set to
(

(b1 ∧ b2) ∨ (b3 ∧ b4) ∨ · · · ∨
(bt−1 ∧ bt)

)∧(
(b1 ∨ b2) ∧ (b3 ∨ b4) ∧ · · · ∧ (bt−1 ∨ bt)

)
. Clearly, the boolean dimension of a poset

is less than or equal to its rectangular dimension. However, using boolean dimension entails the
added complexity of representing the boolean formula F .

The encoding dimension of a poset P = (X,P ) is defined as the least positive integer t with

t =
m∑
i=1
dlog2(ki)e such that P can be embedded into K1×K2× · · · ×Km where Ki denotes a chain

of length ki [9]. The encoding dimension minimizes the number of bits as opposed to the chain
dimension which minimizes the number of chains in a chain realizer. Clearly, if the objective is to
minimize the number of bits, the code assigned to each element when rectangles are used is at most
two times the encoding dimension of a poset. However, posets with large encoding dimension that
can be encoded optimally using rectangles include standard examples and generalized crowns.

Garg and Skawratananond introduce the notion of string in [8]. A poset is said to form a string
if there is a function f assigning integer values to each element in the set so that an element x is
less than another element y in the partial order if f(x) < f(y). In case f(x) 6 f(y), we say that x
is less than or equal to y in the string. Trivially, a chain is a string and the dimension of a string
is at most two. A set of strings realizes a partial order if an element x is less than another element
y in the partial order if and only if x is less than or equal to y in all the strings and x is less than
y in at least one of the strings. The string dimension of a poset is the least number of strings
required to realize the corresponding partial order. Garg and Skawratananond [8] prove that the
string dimension of a poset, which is itself not a string, is equal to its dimension. However, encoding
posets using strings could potentially use much fewer bits than chains. For example, encoding an
antichain using strings requires only 1 bit per element; every element is assigned bit 0. It can be
proved that every poset can be encoded using strings with at most n bits per element, where n
is the number of elements. Algorithms by Fidge [6] and Mattern [14] for encoding the causality
relation between events in a distributed computation using vector clocks can be viewed as special
cases of encoding using strings.

It is possible to expand the class of extensions available for use in realizers in dimension theory.
In particular, interval orders can be used instead of chains. In that case, the interval dimension
of a poset is defined as the least number of interval orders whose intersection is same as the
given partial order [16]. Posets with arbitrarily large interval dimension but constant rectangular
dimension include standard examples and generalized crowns.

Capelle [2] propose a technique in which the given partial order is decomposed into a set
of interval orders for which optimal encoding is already known. The scheme is similar to our
order decomposition method but for the “building block” which is an interval order instead of
a two-dimensional poset. While the focus in [2] is on developing a heuristic for decomposition
and evaluating its performance experimentally, we primarily concern ourselves with establishing
theoretical upper bounds on the rectangular dimension of a poset in general and special families of
posets in particular.

In PQ-encoding, proposed by Zibin and Gil [19], the set of elements is partitioned into slices;
each element belongs to exactly one slice. Each slice satisfies the following property: there exists
an ordering of elements such that for every element x in the slice, the elements in x∪D(x) appear
consecutively in the ordering. An element is assigned a code which consists of (number of slices
+ 3) integers. Using PQ-encoding, a less-than query can be answered in O(1) time. However,
PQ-encoding may not produce an optimal encoding for a poset. For a poset P = (X,P ), let
numslices(X,P ) denote the least number of such slices into which X can be partitioned. For
the standard example Sn, no slice can contain more than two maximal elements implying that
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numslices(Sn) = dn/2e. In this case, therefore, PQ-encoding assigns a code consisting of O(n logn)
bits to each element which requires much more space than the encoding obtained using rectangles.
Similarly, for the generalized crown Skn, no slice can contain more than k + 1 maximal elements.
Therefore numslices(Skn) = d(n+k)/(k+1)e, which implies that the PQ-encoding for the generalized
crown is suboptimal.

Madej and West [13] give the notion of interval inclusion number of a poset. An interval
inclusion representation of a poset is a set-valued function f that assigns to every element in the
set a union of intervals from the real line R so that an element x is less than another element y in the
partial order if f(x) ( f(y). The interval inclusion number of a poset is the least positive integer
t for which there is an interval inclusion representation of the poset that maps to every element a
union of at most t intervals from the real line R. The algorithm proposed by Agrawal, Borgida
and Jagdish [1] for managing transitive relationships in a directed acyclic graph can be viewed
as computing an interval inclusion representation of the poset. Many results on the rectangular
dimension of a poset in this paper also hold for its interval inclusion number. However, for the
boolean lattice Bn, which contains 2n elements and whose interval inclusion number is equal to
dn/2e, to our knowledge, O(n logn) bits per element are required if interval inclusion representation
is used. Our method, in contrast, assigns optimal O(n) bits to each element (by utilizing string
representation).

A graph with n vertices has an implicit representation if it is possible to assign a label of
size O(logn) to every vertex so that the adjacency relation between every pair of vertices can be
ascertained by simply examining the labels of the two vertices only [11]. Due to the limit on the
size of the label, not every graph (or poset) has an implicit representation. Kannan, Naor and
Rudich study in [11] which graphs permit implicit representation; the coding scheme may vary
with graphs. We, on the other hand, investigate the behaviour of a specific coding scheme, based
on rectangles, for different classes of posets.

7 Conclusion and Future Work

In this paper, we present a novel technique for encoding posets using rectangles. We establish upper
bounds on rectangular dimension of posets in general and special families of posets in particular.
We also provide examples of posets that can be encoded optimally using our technique but require
may more bits per element element using other techniques such as adjacency matrix, adjacency
list, dimension, interval dimension and PQ-encoding [16, 9, 19, 8].

Many interesting questions still remain. For instance, given n distinct elements, it can be proved
that as many as 2θ(n

2) different posets can be constructed. Using information theory, therefore, a
lower bound of θ(n/ logn) can be obtained on the rectangular dimension of a poset (even a bipartite
poset) in the worst case. In this paper, we have only established upper bounds of n/3 and dn/4e
on the rectangular dimension of general posets and bipartite posets, respectively, when n > 3.
Can we tighten the upper bound to match the lower bound? What classes of posets have large
rectangular dimension? Is it possible to compute the rectangular dimension of a poset efficiently
or is the problem NP-hard?

We also plan to investigate in detail the relationship between the rectangular dimension of a
poset and other measures of dimension such as interval dimension and interval inclusion number.
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