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Abstract

Observation of global propertiesof adistributed program
isrequired in many applications such as debugging of pro-
gramsand fault-tolerancein distributed systems. | present a
survey of algorithmsfor observing various classes of global
properties. These properties include those possibly truein
a computation, definitely true in a computation and those
based on the control flow structure of the computation.

1 Introduction

One of the fundamental problemsin development of dis-
tributed software is that no process has access to the global
state. Consequently, computation of any global predicate or
a function requires a non-trivial programming effort. For
example, consider a distributed debugging system. The de-
tection of global predicate arises in implementing the most
basic command of a debugging system:*stop the program
when the predicate ¢ is true” To stop the program, it is
necessary to detect the predicate ¢; a non-trivia task if g
requires access to the global state.

There have been three approaches in solving the detec-
tion of global predicates. Thefirst approach isbased onthe
global snapshot a gorithm by Chandy and Lamport [3, 2, 22].
Their approach requires repeated computation of consistent
global snapshots of the computation till the desired pred-
icate becomes true. This approach works only for stable
predicates, that is, predicates which do not turn false once
they become true. Some examples of stable predicates are
deadlock and termination. Once a system has terminated
it will stay terminated. The desired predicate ¢ may not
be stable and may turn true only between two successive
snapshots.
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The second approach to global predicate detection is
based on the construction of the lattice of globa states.
This approach, first presented by Cooper and Marzullo [6],
allows user to detect unstable predicates. However, given n
processes each with & “relevant” local states, their approach
requiresexploring O (k™) possibleglobal statesin theworst
case.

The third approach is based on exploiting the structure
of the predicate ¢ [15]. This approach, instead of building
the lattice, directly uses the computation to deduce if ¢
became true. The emphasis of this approach is to develop
practical algorithms albeit for specid classes of predicates.
In this paper, we present asurvey of agorithmsthat usethis
approach.

2 Our Modd

We assume a loosaly-coupled message-passing system
without any shared memory or aglobal clock. A distributed
program consistsof N processes denoted by { P1,7%,...,Py }
communicating via asynchronous messages. In this paper,
we will be concerned with a single run of a distributed pro-
gram. We assume that no messages are altered or spuriously
introduced. We do not make any assumptions about FIFO
nature of the channels.

A local state is the value of al program variables and
processor registers (including the program counter) for a
single process. The execution of a process can be viewed
as a sequence of loca states. We use a causally precedes
relation, ‘—, between states similar to that of Lamport’s
causally precedesrel ation between events[18]. Thecausally
precedes rel ation between two states s and ¢ can beformally
dstated as: s — t iff s occurs beforet in the same process, or
the action following s is a send of amessage and the action
preceding ¢ is a receive of that message, or there exists
a state « such that s causaly precedes u and u causally
precedes . Two states s and ¢ are concurrent if s does not
causally precede ¢ and ¢ does not causally precede s. A cut
is a collection of loca states such that exactly one state is



included from each process. A cut iscalled a consistent cut
or aglobal stateif all states are pairwise concurrent. The
set of all global states form alattice[19].

A local predicate is defined as any boolean-valued for-
mulaon aloca state. For any process, P;, alocal predicate
is written as [;. A process can obvioudy detect a loca
predicate on its own.

We categorize the properties that we survey in this pa-
per into three classes. Thefirst class of predicates are of the
form possibly: ¢ where ¢ isany predicate defined onasingle
global state [6]. The predicate possibly: ¢ istrueif in the
lattice of global states thereis a path from the initial global
stateto thefinal global statein which ¢ istruein some inter-
mediate state. The second class of predicates are of theform
definitely: ¢. The predicate definitely: ¢ istrueif ¢ becomes
truein dl pathsfrom theinitial state to thefinal stateinthe
lattice of global states. Possibly: ¢ and definitely: ¢ roughly
correspond to weak and strong predicates in [15]. Possi-
bly true predicates are useful for detecting bad conditions
such as violation of mutual exclusion, whereas definitely
true predicates are useful to verify occurrence of good pred-
icates such as commit point on transaction systems. The
third classincludes poset based predicates that require more
than oneglobal statefor their evaluation. An exampleisase-
quence of local predicates; — I, — .. .l,. Thispredicate
istruein an execution if and only if there exists a sequence
of local statessy, so, ..., s, Sequenced by Lamport’scausally
precedes relation such that /; istrueintheloca state s; for
1 < i < n. Thistype of predicate cannot be evaluated on
an individual global state. We discuss each of these classes
next.

3 Possibly True Predicates

In a distributed computation, possibly: ¢ is true if and
only if thereexistsaconsistent global stateinwhich ¢ istrue.
The method of constructing all global states is, however,
prohibitively expensive for most applications. Even when q
isaboolean expression, and processes do not communicate,
the problem of detecting possibly: ¢ is NP-complete. The
proof of NP-completeness of this problem first presented
in [4] is as follows. The problem is in NP, since a non-
deterministic Turing machine can guessthe global state and
then verify that ¢ isindeed truein that globa state. To see
NP-hardness, consider the satisfiability problem on boolean
variables x1, #, ..., #,. By defining each process to host a
singlevariablewhich takesvaluefa seand truein two states,
itiseasy to see that a given boolean expression ¢ istrue iff
possibly: ¢ istruein the computation.

Even though the problem is NP-complete for general
bool ean expressions, there exist efficient algorithmsfor sev-
eral classes of ¢ which occur in practice. Inthissection, we
survey classes of ¢ for which efficient algorithmsare known.

3.1 Conjunctive Predicates

A weak conjunctive predicate (WCP) is of the form
possibly = (b Ala A ... Aly) where each [; is a predi-
cate locd to a single process. For example, suppose we
are developing a mutua exclusion agorithm between two
processes. Let C'S; represent the local predicate that the
process P; isin the critical section. Then, the WCP for-
mula possibly : (C'S1 A CSz) represents any possibility
of violation of mutual exclusion for a particular run. As
another example, let Read; (Write;) denote that P; has
a read lock (write lock resp.) on a shared data item.
Then, possibly : Ready A Write, represents the condi-
tion that P, has a read lock and concurrently P, has a
write lock. Note that the interpretation of conjunction is
not with respect to time, but with respect to causality. That
is, possibly : Ready A Writep may betrue even if thereis
no instant of timein which P; hastheread lock and P, has
the write lock. An advantage of this interpretation is that
WCP agorithms detect even those conditions which may
not manifest themselvesin aparticular execution, but which
would show up with different processing speeds. For exam-
ple, in a distributed mutua exclusion agorithm it may be
possiblethat two processes do not access the critical region
simultaneously even if they both had permission to enter the
critical region concurrently. WCP algorithms will detect
such a scenario.

From the definition, possibly @ ({1 Ala A .. A l,) iStrue
if there exists a consistent cut in which all loca predicates
are true. There can be two approaches to detect a WCP.
We could form consistent cuts and check whether ({1 A
... A lp) istruein that cut. Alternatively, we could piece
together local states in which the local predicates are true
and check whether the global state so formed is consistent.
The second approach has the advantage that it needs to
examine only thoseloca statesinwhich loca predicates are
true. Therefore, we follow the second approach.

In the second approach of predicate detection, there are
two main difficulties for efficient detection. First, the total
number of local statesinwhichthelocal predicateistruemay
be quite large. Second, there is a combinatorial explosion
if we construct all possible global states by piecing together
all loca states. For example, even if we have only two states
fromeach of n processes, thereare 2™ possibleglobal states.

We solve thefirst problem by observing that if two local
dtates say s and ¢ on the same process are separated only
by interna events, then they are indistinguishableto other
processes so far as consistency is concerned. That is, if
u is aloca state on some other process, then s||u if and
only if ¢||u. Thus, it is sufficient to consider at most one
loca state between two external events. A dlightly more
detailed argument shows that it is sufficient to consider at
most one local state between two send events [15]. This



observation leads to a significant reduction in complexity
since we expect the total number of external events to be
much less than the total number of events in a process.

We now turn our attention to the problem of combina-
torial explosion. Assume that we are considering a global
state G formed by collecting one local state from each pro-
cess. If G isconsistent, we are done. Otherwise, there exist
s,t € G such that s — t. A crucia observation is that
s — t implies that not only ' is inconsistent but also al
global stateswhich include state s and any state « following
t are inconsistent. In other words, we can eliminate state
s from our consideration atogether. The only thing that
remainsis the ability to determine whether s — ¢. But this
can be easily accomplished using vector clocks[8, 19].

We are now ready to present a centralized algorithm, a
token-based decentralized agorithm and a completely dis-
tributed algorithm to detect WCP.

Centralized Algorithm

The centraized agorithm for WCP[15] requires every pro-
cess to send itsvector clock to acentralized checker process
whenever itslocal predicate becomes true for the first time
between two external events by that process. Assuming
that a process sends or receives at most m messages, the
checker process will receive at most mn such vectors. We
will assume that the checker process receives vectors from
any process in a FIFO order and stores them in a queue.
The checker process can then simply check whether al vec-
torsat the head of the queue are incomparable. If they are,
the checker process has succeeded in finding a consistent
cut. Otherwise, the checker process can discard any vector
which isfound to be smaller than some other vector. Since
it takes at most » comparisons before a vector is discarded
and there are at most mn vectors, this algorithm requires
O(n?m) comparisonsto determine if the WCP was truein
that run. Further, [10] shows that any algorithm based on
comparing vector clocks requires at least Q(n?m) compar-
isons.

Token-based decentralized Algorithm

The above agorithm requires the checker process to keep
gueues of vectorsfor al processes. Thismay impose unrea-
sonabl e space and time requirements for some applications.
We now discuss a decentralized al gorithm first presented in
[12]. With each application process, we use a monitor pro-
cess M; that maintains the queue of local snapshots of 7.
Further, instead of a checker process, this algorithm uses a
token which carries in it the candidate globa state and in-
formation sufficient to determineif the global state satisfies
the WCP. That is, the token contains two vectors. The first
vector is labeled G. This vector defines the current candi-
date cut. If G[¢] hasthe value &, then state & from process
P; is part of the current candidate cut. Note that all states
on the candidate cut satisfy local predicates. However, the
statesmay not be mutually concurrent (i.e. thecandidate cut

may not be a consistent cut). The token isinitialized with
Vi: Gl =0.

The second vector is labeled color, where color[i] in-
dicates the color for the candidate state from application
process P;. The color of a state can be either red or green.
If color[i] = red thenthe state (7[¢] and | its predecessors
have been eliminated and can never satisfy the WCP. If
color[i] = green, then thereisno state in &G such that G[¢]
causally precedes that state. The token is initialized with
Vi @ color[i] = red.

The token is sent to monitor process M; only when
color[i] = red. When it receives the token, M,; waits to
receive a new candidate state from P; and then checks for
violations of consistency conditions with this new candi-
date. This activity is repesated until the candidate state did
not causally precede any other state on thecandidate cut (i.e.
the candidate can be labeled green). Next, M; examines the
tokento seeif any other statesviolate concurrency. If it finds
any j such that GG[;] causally precedes G[i], then it makes
color[j] red. Findly, if al statesin GG are green, that is G is
consistent, then M; has detected the WCP. Otherwise, M;
sendsthetoken to aprocesswhosecolorisred. Notethat the
token can start on any process. Since the entire color vector
isinitialized to red, it must eventually visit every process at
least once.

This algorithm requires O(n?m) total work and O(nm)
work per process where m isthe number of messages sent
or received by any process and » isthe number of processes
over which the predicate is defined.

One drawback of the single-token WCP detection ago-
rithmis that it has no concurrency — a monitor process is
active only if it has the token. We can increase the paral-
lelism in the algorithm by using multipletokensin the sys-
tem. For thiswe partition the set of monitor processes into
groups and use one token-algorithm for each group. Once
there are no longer any red states from processes within the
group, thetokenisreturned to apre-determined process (say
Po). When Py has received all the tokens, it merges thein-
formation in the tokens to identify a new globa cut. Some
processes may not satisfy the consistency condition for this
new cut. If so, atoken is sent into each group containing
such a process.

Distributed Algorithm

An even more parald agorithm can be used as follows.
As in the token based algorithm, each process maintains
its queue of local snapshots. Each process P; attempts to
color itself green as follows. Let the loca snapshot at the
head of its queue be s. The predecessor of this state on
any process £; can be determined from the vector clock
at the state s.v. To color itself green, the process sends out
messages red messages containing s.v|[j] toall processes F;.
On receiving a red message with £, P; needs to discard all
local snapshotsinwhichitsloca stateislessthan or equal to



k. The algorithm implicitly terminates when al processes
are green and there are no red messages in transit. The
termination can be detected by any termination detection
algorithm such as[7].

If the global predicate involves loca predicates from al
processes, then direct dependences instead of vector clock
can be used. This is because a cut which consists of al
processes in the system is consistent if and only if thereis
no message which is received in the cut but not sent. This
is not true when the cut does not contain al processes -
there may beindirect causal precedence between two states
in the cut which goes through a process outside the cut. It
is easy to adapt the centralized agorithm, the token based
algorithm, or distributed algorithm to use direct dependency
instead of vector clocks [12].

Distributed algorithms for off-line evaluation of global
predicates are al so discussed in [28].

3.2 Channd Predicates

Many propertiesin distributed systems such as termina
tion detection and bounding of global virtua time [24] are
based on the state of message channels. Therefore, they are
not suitablefor specification viaweak conjunctive predicates
which are based on states of processes only. Conjunctive
channel predicates are an extension of weak conjunctive
predicates to include states of message channels.

A channel predicate is any boolean function of the state
of a channel. We define a channel to be a uni-directional
connection between two processes — one process performs
all send eventsand the other dl receive events. Let s and ¢ be
statesat P; and P;. Let s.Sent|[;] denotethe sequence of all
messages sent at or before state s from i to j, and ¢. Revd(]
denote the sequence of all messages received at or before
state ¢t from ¢ to j. Channels have no memory. Hence, the
state of a channedl is the difference between the set of mes-
sages sent and the set of messages received. A channel pred-
icate can thenbe writtenas: chanp(s.Sent[j] —t. Revd[d]).
A global predicate formed by the conjunction of local pred-
icates and channel predicates is called a Generalized Con-
junctive Predicate (GCP). An example of a GCP is. “al
processes are passive and al channels are empty,”.

We now discussacentralized algorithmfor channel pred-
icates [13]. The key to making our agorithm efficient isto
restrict the channel predicates to a class which we call lin-
ear. A channel predicateislinear if given any channel state,
in which the predicate is fase, then either sending more
messages without receiving any message is guaranteed to
leave the predicate false, or receiving more messages with-
out sending any messages is guaranteed to leave the predi-
catefalse. For example, consider the condition “the channel
is empty.” If this condition is fase, that is, more mes-
sages have been sent than received, it cannot be made true

by sending more messages. As another example, consider
the predicate, “The channel contains exactly 5 messages’.
When the channel contains less than 5 messages, receiving
more messages will not make the predicate true. If there
are more than 5 messages in the channel, then sending more
messages cannot makethe predicatetrue. The channel pred-
icate, “the channel has an even number of messages’ is not
linear. Most channel predicates used in practice are linear.

Linearity is an important key to efficient detection of
channel predicates. Inany globa stateinwhich the predicate
is false, we can be certain of at least one process which
must make further progress before the channel predicate
can become true. Furthermore, it can be shown that thefirst
olobal state satisfying a GCP can bewell defined only when
channel predicates are linear [13].

We first discuss a centralized algorithm to detect a GCP.
Thework of detection of the GCPisdivided among checker
and non-checker processes. The non-checker processes are
used in the computation and have local predicates and chan-
nelswith predicates. The checker processisthe process that
determines if these predicates are true in the same global
State.

The non-checker processes monitor local predicates.
These processes also maintain information about the send
and receive channel history for al channelsincident to them,
that is, connectionsto all processes for which they can send
or recelve messages. The non-checker processes send a
message to the checker process whenever the local predi-
cate becomes true for the first time since the last program
message was sent or received. Thismessage iscalled alocal
snapshot and isof theform: (vector, incsend, increcv) where
vector isthe current vector timestamp while incsend and
inerecv are the list of messages sent to and received from
other non-checker processes since the last message for pred-
icate detection was sent.

The checker process is responsible for searching for a
consistent cut that satisfies the GCP. Its pursuit of this cut
can be most easily described as considering a sequence of
candidate cuts. If the candidate cut either isnot a consistent
cut, or does not satisfy someterm of the GCP (local predicate
or achannel predicate), the checker can efficiently eliminate
oneof thestatesal ongthecut. Theeiminated state can never
bepart of aconsistent cut that satisfiesthe GCP. Thechecker
can then advance the cut by considering the successor to one
of the eliminated states on the cut. If the checker finds a cut
for which no state can be eliminated, then that cut satisfies
the GCP and the detection algorithm halts.

The algorithm can aso be decentralized based on ideas
discussed for WCP agorithm. For example, we briefly
discuss a decentralized agorithm based on the idea of a
token. Each process is responsible for keeping its queue
of local snapshots. As in the WCP algorithm, the token
moves from one process to another till a consistent cut is



found. Each processisalso responsiblefor checking channel
predicatesfor all channelsfor whichitisasender. Toenable
the sender to do so, the receiver for any channel sends the
list of messages (or the list of message sequence numbers)
received a ong the channel upto the state whichisindicated
in the token. The sender evaluates the channd predicate
only when it has received thislist from the receiver. If any
channel predicate is found fase, then either the sender or
the recelver can be colored red. The GCP is detected by
the token if al statesin its cut are green. A more detailed
description of thisalgorithm and its proof of correctness can
befoundin[13].

We note here that if a predicate is stable, then either the
approach outlined above, or Chandy and Lamport’s ago-
rithm can be used for predicate detection. We now argue
that even for stable predicates it is advantageous to use the
genera agorithm shown here. First, in many applications
(such as debugging), it is desirable to compute the least
global state which satisfies some given predicate. The snap-
shot agorithms cannot be used for this purpose. Second,
the snapshot agorithm may result in excessive overhead
depending upon the frequency of snapshots. A processin
Chandy and Lamport’s agorithm is forced to take a loca
snapshot upon receiving a marker even if it knows that the
global snapshot that includes its local snapshot cannot sat-
isfy the predicate being detected. For example, supposethat
the property being detected istermination. Clearly, if apro-
cess is not terminated then the entire system could not have
terminated. In thiscase, computation of the global snapshot
isawasted effort.

We aso note here that the agorithm for GCP can be
optimized by exploiting specific properties of the channel
predicate. For example, to check whether achannel isempty
it may suffice to deal with the number of messages rather
than message themselves. Such optimizationsare discussed
indetail in[21].

3.3 Redational Predicates

So far, we have discussed only those predicates which
can be written as boolean expression of local predicates.
Now consider thepredicate (x1+ 22+ . . .+ 2, < k) where
z;'sare variables on different processes and k isa constant.
This predicate called relational predicate cannot be written
as a concise boolean expression of local predicates.

Relational predicates are useful for detecting global con-
ditions such as loss of tokens and violations of a limited
resource. For example, consider a system in which there
are k tokens indicating availability of % resources. If z;
denotes the number of tokensat process P;, then ), x; < k
indicates loss of one or more tokens. As another example,
consider a server which can handle at most # connections
at atime. Client processes P; have variables «; which indi-

cates the number of connectionsit has with the server. The
predicate (3, x; > k) indicates a potential error.

The predicate to be detected, previously expressed as
(z14 22+ ...+ x5, < k), can be stated formaly as:

3G : consistent(G) : Z sia; <k
$,€EG

We now discuss an agorithm first presented in [4]. We
detect this predicate by computing

minG : consistent(G) : Z 8.0
$,€EG

and then comparing thisvalue to the constant k.

We transform the poset into a flow graph such that the
max-flow in the graph is equal to the min-val ue of the poset.
The resulting flow graph is obtained as follows. The vertex
set of the graph includes all local states and two additional
nodes called source and sink. The edge set is given bel ow.

o First, we add edgesfrom the sourceto all initial states
s with the capacity co.

o Forany two states s and¢ suchthat s immediately pre-
cedes ¢, we add an edge between them with capacity

5.%.

o We add edges from all final states s to the sink with
the capacity s.x.

o For any two states s and ¢ such that amessage is sent
immediately after s which is received before ¢, we
first identify the successor to s, say s’. We then add
an edge from¢ to s’ with capacity co.

Note that the cut of ¢ has finite value if and only if the cut
isaconsistent cut of S. Wereate acut in the flow graph to
acut in the poset as follows: If edge e connects vertices s
andtin GG, and if e ispart of the cut of flow graph ¢, then
the state corresponding to s ispart of the cut in poset S. The
min-value of a poset S is equal to the min cut of its flow
graph .

Based on the above result, a checker based algorithm can
be devised as follows. First, the sequence of states from
each process is reduced by replacing the subsequence of
states between any two message events with a single state.
Thevaueof z; for thisnew stateis defined as the minimum
of z; over the original states. Second, each process locally
mai ntainsthedirect dependencerel ation for each state. Each
process creates alocal snapshot for every state, consisting of
the value of x; and the direct dependence information. The
local snapshotsare sent to achecker processwhich formsthe
flow-graph. The checker then runs a max-flow algorithm to
findthemincut. If thisvalueislessthan k, then thebounded
sum predicate is detected.



There are other approaches possible for relational predi-
cates. In[25], we discussrelationa global predicates which
havetheform (z14+z2 > k), wherez1 and z, areinteger val-
ues at processes P; and P, inasystem of V processes. The
algorithm is fully decentralized, runs concurrently with the
target program, uses constant size message tags (four inte-
gers), and generates one debug messagefor each messagere-
ceived by P; and P,. Theresultshave been generalizedto an
agebra (D, %, ) where % and  are binary operatorsin do-
main D, % iscommutative, associ ative and idempotent, and
+ distributes over %. In this algebrawe can calculate value
of theexpression (v % v, %...%v,) where {vy, vo, .0, } IS
the set which containsthe value of x4 * z, in each consistent
cut. For exampleif (D, %, ) = (Integers, min, +) then we
could calculatethe minimumvalueof 21+ x, over al global
states.

In[26], we present another specia caseof relationa pred-
icates. Here we assume that z; are boolean variables. Such
predicates are useful, for example, in detecting violation of
k-mutual exclusion. In thiscase, even though the predicate
x1+ 2.. + @, > k can bewritten as a digunction of con-
junctive predicates, it is not efficient to do so since there are

(Z) conjunctsin the boolean expression. Our agorithmis

based on finding an anti-chain of size k in the poset of states
in which the boolean predicate istrue.

34 General Possibly true Predicates

The concept of linearity of channel predicates has been
generaized to apply for any generd predicate in [4]. A
predicateisdefined to belinear if itsfal sehood on any global
state G impliesthat there exists at least one state s in G such
that the predicate is also fase for any global state H > ¢
containing s. Wecall s aforbidden statein G. It iseasy to
see that weak conjunctive predicates are linear. Linearity of
apredicate can beexploited for asimpledetection a gorithm.
If the predicate isfalse along a cut, then at least one statein
that cut isforbidden and can be discarded.

In another approach, Stoller and Schneider [23] combine
Garg and Wadecker’s algorithm with that of Cooper and
Marzullo to detect predicates of the form

N q)j(l‘l,..l‘k), (@D}

where ®() is a predicate with variables, «;, from different
processes. That is, ®() is apredicate made up of conditions
spread across multipleprocesses. An exampleof apredicate
inthisformis (z1 = z2) A (x3 > x4), Where z1, .., x4 are
variables on different processes. For any predicate defined
using equation 1, they define afixed set astheset of variables
such that on fixing these variables, the predicate reduces to
aWCP In our example, if we fix x1 = 4 and 24 = 6, we
get (4 = x2) A (z3 > 6) which aWCP. By evaluating all

WCP predicates obtained by using al possible values of the
variablesin fixed set, the original predicate can be detected.

4 Definitely True Predicates

We now discuss detection of predicates of the form
definitely: ¢. Intuitively, definitely: ¢ is true when ¢ is
truefor al possible observations of that execution. We will
restrict our attention to strong conjunctive predicates (SCP)
inwhich ¢ of theformly Ao A .. . 1,,. For example, suppose
we were testing a commit protocol. Let Ready; denote the
local predicate that the process F; is ready to commit. |If
the transaction was committed, then for all possible obser-
vations, there was a certain point in the execution when all
processes were ready to commit. By detecting the SCP for-
muladefinitely: (Readyi A Readys . . .A Ready,,) existence
of such apoint can beverified. Thekey concept in detecting
SCP'sisthat of overlapping intervals. Let 7; and I betwo
sequences of contiguous states such that local predicates i3
and [, aretruein I; and I, respectively. We say that 7; and
1 overlap if the lower end point of I; causally precedes the
higher endpoint of 7, and vice-versa. An important result
isthat the SCPistrueiff there exist intervalsin which local
predicates are true such that any pair of these intervalsover-
lap. The proof of thisresult can be foundin [16]. Based on
this condition, algorithms to detect SCP can be devel oped
in amanner similar to detection of WCP.

5 Poset based Predicates

The predicates we have discussed so far are based on
formulas defined on a single cut. Informaly, these pred-
icates capture violation of safety properties. Many useful
properties requires evaluation of formulas on a sequence of
cuts.

5.1 Sequences of Local Predicates

An early work in this area is by Miller and Choi who
discuss detection of a sequence of local predicates[20]. An
exampleisapredicatel; — [, that becomes true when there
are two states s; and s, such that {1 istruein state s1, {> IS
truein state s, and s; — s2. Hurfin, Plouzeau and Raynal
[17] extended the sequence of local predicates to the atomic
sequence of local predicates. In this class, occurrences of
local predicates can be forbidden between adjacent predi-
cates in a sequence of loca predicates. The example given
above for linked predicates could be expanded to include:
“local predicate r; never occursin between loca predicates
l; and ;11". Each local predicate can belong to a different
process in the computation. This can be further generalized
to detect interval -constrai ned sequences of global predicates



as shown in [1]. Thisapproach, however, requires traversa
of the lattice of the global states.

The work on sequence of predicates has also been gen-
eralized to detect any regular pattern of local predicates
[9]. A regular pattern is defined as a regular expression
of loca predicates. For example, pg*r is true in a com-
putation if there exists a sequence of consecutive loca
states (s1, s2, . . ., $,) such that p istruein s1, ¢ istruein
$2,...,8,_1,and ristruein s,. Notethat the statesin the
sequence need not belong to the same process — two states
are consecutive if they are adjacent in the same process or
one sends a message and the other receivesit.

The agorithm for detecting regular patternsis very ef-
ficient. First the regular expression is converted into a de-
terministic finite state machine. Assume that there are m
dtatesin the state machine. To avoid any confusion we refer
to the states of the distributed computation aslocal statesin
thissection. Now with each loca state s we keep a boolean
bit string X [1..m] such that X[¢] is 1 iff the state X [i] can
be reached by traversing aseguence of local statesthat ends
ins. Observethat it is sufficient to give the update rules for
X becauseif any of thefinal state X[i] becomes 1, then the
regular pattern has been detected. The boolean string X []
iseasy to obtain given the bool ean stringsfor its predecessor
states. For example, if X[i] istruein the predecessor loca
dtate, loca predicate p istruein the current loca state and
the finite state machine moves from state X|[i] to X[;] on
label p, then X[j] is set to 1 in the current local state. To
ensure that any local state has access to X of predecessor
local states, the bit strings are piggybacked with messages.
Thus, this agorithm detects a regular pattern with no addi-
tional messages. Existing messages are tagged with afixed
number of bits independent of the number of processes in
the system.

Regular patterns can be extended to include patterns on
rooted directed acyclic graphs (dag) which are subposets
of the original poset. A linear sequence of statesis a spe-
cial case of arooted dag, henceregular patterns are a special
caseof regul ar dag patterns. Many program behaviorswhich
could be easily described by regular dag patterns cannot be
described with existing mechanisms. This is true even for
fundamental behaviors such as data scattering, data collec-
tion, and barrier synchronization. Moreover, detection of
rooted dag patterns is inherently efficient due to the struc-
tural similarities between the specified dag pattern and the
program under test. An agorithmfor detecting dag patterns
can befoundin[14].

5.2 Poset Logic

So far we have discussed predicates which are either
based on a single global state or a sequence of local states.
Chiou and Korfhage [5] discuss a method of combining

concurrency with sequencing. This has been generalized to
a recursive logic called RCL in [27]. A formulain RCL
is evaluated on a poset. One can think of a formula as a
boolean function whose argument is a poset. The rules for
constructingwell formed formulasare given by the syntactic
definitions shown below:

f =
S =

S| fnf
g | 9{H)s | g(f)s

The basic component of aformulaisawesk conjunctive
predicate which is represented by the termina symbol g.
The symbol S isasequence of WCP formulas. The symbol
f isaconjunction of these sequences. The symbols () and
{()) are used for weak and strong sequencing respectively.
A cut g weakly precedes h if it lies in the causal past of
h. A cut ¢ strongly precedes h iff every statein ¢ causally
precedes every statein h.

When S is fully expanded, it has the form
9{)g{f)g - 9{f)g (or asequence with (())). When such
a seguence is true on a poset, then each ¢ corresponds to
an antichain. The regions in between these antichains are
subposets upon which the f’sin the sequence are eval uated.
An efficient algorithmto detect any formulain RCL isgiven

in[27].
6 Conclusons

Observation of a distributed computation is an useful
abstraction for many fundamental problems in distributed
software. In this paper, we have presented a survey of effi-
cient algorithmsfor observation. Many of these algorithms
are discussed in greater detail in [11].
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