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Abstract

Observation of global properties of a distributed program
is required in many applications such as debugging of pro-
grams and fault-tolerance in distributed systems. I present a
survey of algorithms for observing various classes of global
properties. These properties include those possibly true in
a computation, definitely true in a computation and those
based on the control flow structure of the computation.

1 Introduction

One of the fundamental problems in development of dis-
tributed software is that no process has access to the global
state. Consequently, computation of any global predicate or
a function requires a non-trivial programming effort. For
example, consider a distributed debugging system. The de-
tection of global predicate arises in implementing the most
basic command of a debugging system:“stop the program
when the predicate q is true.” To stop the program, it is
necessary to detect the predicate q; a non-trivial task if q
requires access to the global state.

There have been three approaches in solving the detec-
tion of global predicates. The first approach is based on the
global snapshot algorithm by Chandy and Lamport [3, 2, 22].
Their approach requires repeated computation of consistent
global snapshots of the computation till the desired pred-
icate becomes true. This approach works only for stable
predicates, that is, predicates which do not turn false once
they become true. Some examples of stable predicates are
deadlock and termination. Once a system has terminated
it will stay terminated. The desired predicate q may not
be stable and may turn true only between two successive
snapshots.�supported in part by the NSF Grants ECS-9414780, CCR-9520540,
TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant

The second approach to global predicate detection is
based on the construction of the lattice of global states.
This approach, first presented by Cooper and Marzullo [6],
allows user to detect unstable predicates. However, given n
processes each with k “relevant” local states, their approach
requires exploring O(kn) possible global states in the worst
case.

The third approach is based on exploiting the structure
of the predicate q [15]. This approach, instead of building
the lattice, directly uses the computation to deduce if q
became true. The emphasis of this approach is to develop
practical algorithms albeit for special classes of predicates.
In this paper, we present a survey of algorithms that use this
approach.

2 Our Model

We assume a loosely-coupled message-passing system
without any shared memory or a global clock. A distributed
program consists of N processes denoted by fP1,P2,...,PN g
communicating via asynchronous messages. In this paper,
we will be concerned with a single run of a distributed pro-
gram. We assume that no messages are altered or spuriously
introduced. We do not make any assumptions about FIFO
nature of the channels.

A local state is the value of all program variables and
processor registers (including the program counter) for a
single process. The execution of a process can be viewed
as a sequence of local states. We use a causally precedes
relation, ‘!,’ between states similar to that of Lamport’s
causally precedes relation between events [18]. The causally
precedes relation between two states s and t can be formally
stated as: s! t iff s occurs before t in the same process, or
the action following s is a send of a message and the action
preceding t is a receive of that message, or there exists
a state u such that s causally precedes u and u causally
precedes t. Two states s and t are concurrent if s does not
causally precede t and t does not causally precede s. A cut
is a collection of local states such that exactly one state is



included from each process. A cut is called a consistent cut
or a global state if all states are pairwise concurrent. The
set of all global states form a lattice [19].

A local predicate is defined as any boolean-valued for-
mula on a local state. For any process, Pi, a local predicate
is written as li. A process can obviously detect a local
predicate on its own.

We categorize the properties that we survey in this pa-
per into three classes. The first class of predicates are of the
form possibly: q where q is any predicate defined on a single
global state [6]. The predicate possibly: q is true if in the
lattice of global states there is a path from the initial global
state to the final global state in which q is true in some inter-
mediate state. The second class of predicates are of the form
definitely: q. The predicate definitely: q is true if q becomes
true in all paths from the initial state to the final state in the
lattice of global states. Possibly: q and definitely: q roughly
correspond to weak and strong predicates in [15]. Possi-
bly true predicates are useful for detecting bad conditions
such as violation of mutual exclusion, whereas definitely
true predicates are useful to verify occurrence of good pred-
icates such as commit point on transaction systems. The
third class includes poset based predicates that require more
than one global state for their evaluation. An example is a se-
quence of local predicates l1 ! l2 ! : : : ln. This predicate
is true in an execution if and only if there exists a sequence
of local states s1; s2; :::; sn sequenced by Lamport’s causally
precedes relation such that li is true in the local state si for
1 � i � n. This type of predicate cannot be evaluated on
an individual global state. We discuss each of these classes
next.

3 Possibly True Predicates

In a distributed computation, possibly: q is true if and
only if there exists a consistent global state in which q is true.
The method of constructing all global states is, however,
prohibitively expensive for most applications. Even when q
is a boolean expression, and processes do not communicate,
the problem of detecting possibly: q is NP-complete. The
proof of NP-completeness of this problem first presented
in [4] is as follows. The problem is in NP, since a non-
deterministic Turing machine can guess the global state and
then verify that q is indeed true in that global state. To see
NP-hardness, consider the satisfiability problem on boolean
variables x1; x2; :::; xn. By defining each process to host a
single variable which takes value false and true in two states,
it is easy to see that a given boolean expression q is true iff
possibly: q is true in the computation.

Even though the problem is NP-complete for general
boolean expressions, there exist efficient algorithms for sev-
eral classes of q which occur in practice. In this section, we
survey classes of q for which efficient algorithms are known.

3.1 Conjunctive Predicates

A weak conjunctive predicate (WCP) is of the formpossibly : (l1 ^ l2 ^ ::: ^ ln) where each li is a predi-
cate local to a single process. For example, suppose we
are developing a mutual exclusion algorithm between two
processes. Let CSi represent the local predicate that the
process Pi is in the critical section. Then, the WCP for-
mula possibly : (CS1 ^ CS2) represents any possibility
of violation of mutual exclusion for a particular run. As
another example, let Readi (Writei) denote that Pi has
a read lock (write lock resp.) on a shared data item.
Then, possibly : Read1 ^ Write2 represents the condi-
tion that P1 has a read lock and concurrently P2 has a
write lock. Note that the interpretation of conjunction is
not with respect to time, but with respect to causality. That
is, possibly : Read1 ^Write2 may be true even if there is
no instant of time in which P1 has the read lock and P2 has
the write lock. An advantage of this interpretation is that
WCP algorithms detect even those conditions which may
not manifest themselves in a particular execution, but which
would show up with different processing speeds. For exam-
ple, in a distributed mutual exclusion algorithm it may be
possible that two processes do not access the critical region
simultaneously even if they both had permission to enter the
critical region concurrently. WCP algorithms will detect
such a scenario.

From the definition, possibly : (l1 ^ l2 ^ :::^ ln) is true
if there exists a consistent cut in which all local predicates
are true. There can be two approaches to detect a WCP.
We could form consistent cuts and check whether (l1 ^::: ^ ln) is true in that cut. Alternatively, we could piece
together local states in which the local predicates are true
and check whether the global state so formed is consistent.
The second approach has the advantage that it needs to
examine only those local states in which local predicates are
true. Therefore, we follow the second approach.

In the second approach of predicate detection, there are
two main difficulties for efficient detection. First, the total
number of local states in which the local predicate is true may
be quite large. Second, there is a combinatorial explosion
if we construct all possible global states by piecing together
all local states. For example, even if we have only two states
from each of n processes, there are 2n possible global states.

We solve the first problem by observing that if two local
states say s and t on the same process are separated only
by internal events, then they are indistinguishable to other
processes so far as consistency is concerned. That is, ifu is a local state on some other process, then sjju if and
only if tjju. Thus, it is sufficient to consider at most one
local state between two external events. A slightly more
detailed argument shows that it is sufficient to consider at
most one local state between two send events [15]. This



observation leads to a significant reduction in complexity
since we expect the total number of external events to be
much less than the total number of events in a process.

We now turn our attention to the problem of combina-
torial explosion. Assume that we are considering a global
state G formed by collecting one local state from each pro-
cess. If G is consistent, we are done. Otherwise, there exists; t 2 G such that s ! t. A crucial observation is thats ! t implies that not only G is inconsistent but also all
global states which include state s and any state u followingt are inconsistent. In other words, we can eliminate states from our consideration altogether. The only thing that
remains is the ability to determine whether s ! t. But this
can be easily accomplished using vector clocks [8, 19].

We are now ready to present a centralized algorithm, a
token-based decentralized algorithm and a completely dis-
tributed algorithm to detect WCP.
Centralized Algorithm
The centralized algorithm for WCP [15] requires every pro-
cess to send its vector clock to a centralized checker process
whenever its local predicate becomes true for the first time
between two external events by that process. Assuming
that a process sends or receives at most m messages, the
checker process will receive at most mn such vectors. We
will assume that the checker process receives vectors from
any process in a FIFO order and stores them in a queue.
The checker process can then simply check whether all vec-
tors at the head of the queue are incomparable. If they are,
the checker process has succeeded in finding a consistent
cut. Otherwise, the checker process can discard any vector
which is found to be smaller than some other vector. Since
it takes at most n comparisons before a vector is discarded
and there are at most mn vectors, this algorithm requiresO(n2m) comparisons to determine if the WCP was true in
that run. Further, [10] shows that any algorithm based on
comparing vector clocks requires at least Ω(n2m) compar-
isons.
Token-based decentralized Algorithm
The above algorithm requires the checker process to keep
queues of vectors for all processes. This may impose unrea-
sonable space and time requirements for some applications.
We now discuss a decentralized algorithm first presented in
[12]. With each application process, we use a monitor pro-
cess Mi that maintains the queue of local snapshots of Pi.
Further, instead of a checker process, this algorithm uses a
token which carries in it the candidate global state and in-
formation sufficient to determine if the global state satisfies
the WCP. That is, the token contains two vectors. The first
vector is labeled G. This vector defines the current candi-
date cut. If G[i] has the value k, then state k from processPi is part of the current candidate cut. Note that all states
on the candidate cut satisfy local predicates. However, the
states may not be mutually concurrent (i.e. the candidate cut

may not be a consistent cut). The token is initialized with8i : G[i] = 0.
The second vector is labeled color, where color[i] in-

dicates the color for the candidate state from application
process Pi. The color of a state can be either red or green.
If color[i] = red then the state G[i] and all its predecessors
have been eliminated and can never satisfy the WCP. Ifcolor[i] = green, then there is no state in G such that G[i]
causally precedes that state. The token is initialized with8i : color[i] = red.

The token is sent to monitor process Mi only whencolor[i] = red. When it receives the token, Mi waits to
receive a new candidate state from Pi and then checks for
violations of consistency conditions with this new candi-
date. This activity is repeated until the candidate state did
not causally precede any other state on the candidate cut (i.e.
the candidate can be labeled green). Next, Mi examines the
token to see if any other states violate concurrency. If it finds
any j such that G[j] causally precedes G[i], then it makescolor[j] red. Finally, if all states in G are green, that is G is
consistent, then Mi has detected the WCP. Otherwise, Mi
sends the token to a process whose color is red. Note that the
token can start on any process. Since the entire color vector
is initialized to red, it must eventually visit every process at
least once.

This algorithm requires O(n2m) total work and O(nm)
work per process where m is the number of messages sent
or received by any process and n is the number of processes
over which the predicate is defined.

One drawback of the single-token WCP detection algo-
rithm is that it has no concurrency — a monitor process is
active only if it has the token. We can increase the paral-
lelism in the algorithm by using multiple tokens in the sys-
tem. For this we partition the set of monitor processes into
groups and use one token-algorithm for each group. Once
there are no longer any red states from processes within the
group, the token is returned to a pre-determined process (sayP0). When P0 has received all the tokens, it merges the in-
formation in the tokens to identify a new global cut. Some
processes may not satisfy the consistency condition for this
new cut. If so, a token is sent into each group containing
such a process.
Distributed Algorithm
An even more parallel algorithm can be used as follows.
As in the token based algorithm, each process maintains
its queue of local snapshots. Each process Pi attempts to
color itself green as follows. Let the local snapshot at the
head of its queue be s. The predecessor of this state on
any process Pj can be determined from the vector clock
at the state s:v. To color itself green, the process sends out
messages red messages containings:v[j] to all processes Pj.
On receiving a red message with k, Pj needs to discard all
local snapshots in which its local state is less than or equal to



k. The algorithm implicitly terminates when all processes
are green and there are no red messages in transit. The
termination can be detected by any termination detection
algorithm such as [7].

If the global predicate involves local predicates from all
processes, then direct dependences instead of vector clock
can be used. This is because a cut which consists of all
processes in the system is consistent if and only if there is
no message which is received in the cut but not sent. This
is not true when the cut does not contain all processes -
there may be indirect causal precedence between two states
in the cut which goes through a process outside the cut. It
is easy to adapt the centralized algorithm, the token based
algorithm, or distributed algorithm to use direct dependency
instead of vector clocks [12].

Distributed algorithms for off-line evaluation of global
predicates are also discussed in [28].

3.2 Channel Predicates

Many properties in distributed systems such as termina-
tion detection and bounding of global virtual time [24] are
based on the state of message channels. Therefore, they are
not suitable for specification via weak conjunctive predicates
which are based on states of processes only. Conjunctive
channel predicates are an extension of weak conjunctive
predicates to include states of message channels.

A channel predicate is any boolean function of the state
of a channel. We define a channel to be a uni-directional
connection between two processes — one process performs
all send events and the other all receive events. Let s and t be
states at Pi and Pj. Let s:Sent[j] denote the sequence of all
messages sent at or before state s from i to j, and t:Rcvd[i]
denote the sequence of all messages received at or before
state t from i to j. Channels have no memory. Hence, the
state of a channel is the difference between the set of mes-
sages sent and the set of messages received. A channel pred-
icate can then be written as: chanp(s:Sent[j]� t:Rcvd[i]).
A global predicate formed by the conjunction of local pred-
icates and channel predicates is called a Generalized Con-
junctive Predicate (GCP). An example of a GCP is: “all
processes are passive and all channels are empty,”.

We now discuss a centralized algorithm for channel pred-
icates [13]. The key to making our algorithm efficient is to
restrict the channel predicates to a class which we call lin-
ear. A channel predicate is linear if given any channel state,
in which the predicate is false, then either sending more
messages without receiving any message is guaranteed to
leave the predicate false, or receiving more messages with-
out sending any messages is guaranteed to leave the predi-
cate false. For example, consider the condition “the channel
is empty.” If this condition is false, that is, more mes-
sages have been sent than received, it cannot be made true

by sending more messages. As another example, consider
the predicate, “The channel contains exactly 5 messages”.
When the channel contains less than 5 messages, receiving
more messages will not make the predicate true. If there
are more than 5 messages in the channel, then sending more
messages cannot make the predicate true. The channel pred-
icate, “the channel has an even number of messages” is not
linear. Most channel predicates used in practice are linear.

Linearity is an important key to efficient detection of
channel predicates. In any global state in which the predicate
is false, we can be certain of at least one process which
must make further progress before the channel predicate
can become true. Furthermore, it can be shown that the first
global state satisfying a GCP can be well defined only when
channel predicates are linear [13].

We first discuss a centralized algorithm to detect a GCP.
The work of detection of the GCP is divided among checker
and non-checker processes. The non-checker processes are
used in the computation and have local predicates and chan-
nels with predicates. The checker process is the process that
determines if these predicates are true in the same global
state.

The non-checker processes monitor local predicates.
These processes also maintain information about the send
and receive channel history for all channels incident to them,
that is, connections to all processes for which they can send
or receive messages. The non-checker processes send a
message to the checker process whenever the local predi-
cate becomes true for the first time since the last program
message was sent or received. This message is called a local
snapshot and is of the form: (vector, incsend, increcv) wherevector is the current vector timestamp while incsend andincrecv are the list of messages sent to and received from
other non-checker processes since the last message for pred-
icate detection was sent.

The checker process is responsible for searching for a
consistent cut that satisfies the GCP. Its pursuit of this cut
can be most easily described as considering a sequence of
candidate cuts. If the candidate cut either is not a consistent
cut, or does not satisfy some term of the GCP (local predicate
or a channel predicate), the checker can efficiently eliminate
one of the states along the cut. The eliminated state can never
be part of a consistent cut that satisfies the GCP. The checker
can then advance the cut by considering the successor to one
of the eliminated states on the cut. If the checker finds a cut
for which no state can be eliminated, then that cut satisfies
the GCP and the detection algorithm halts.

The algorithm can also be decentralized based on ideas
discussed for WCP algorithm. For example, we briefly
discuss a decentralized algorithm based on the idea of a
token. Each process is responsible for keeping its queue
of local snapshots. As in the WCP algorithm, the token
moves from one process to another till a consistent cut is



found. Each process is also responsible for checking channel
predicates for all channels for which it is a sender. To enable
the sender to do so, the receiver for any channel sends the
list of messages (or the list of message sequence numbers)
received along the channel upto the state which is indicated
in the token. The sender evaluates the channel predicate
only when it has received this list from the receiver. If any
channel predicate is found false, then either the sender or
the receiver can be colored red. The GCP is detected by
the token if all states in its cut are green. A more detailed
description of this algorithm and its proof of correctness can
be found in [13].

We note here that if a predicate is stable, then either the
approach outlined above, or Chandy and Lamport’s algo-
rithm can be used for predicate detection. We now argue
that even for stable predicates it is advantageous to use the
general algorithm shown here. First, in many applications
(such as debugging), it is desirable to compute the least
global state which satisfies some given predicate. The snap-
shot algorithms cannot be used for this purpose. Second,
the snapshot algorithm may result in excessive overhead
depending upon the frequency of snapshots. A process in
Chandy and Lamport’s algorithm is forced to take a local
snapshot upon receiving a marker even if it knows that the
global snapshot that includes its local snapshot cannot sat-
isfy the predicate being detected. For example, suppose that
the property being detected is termination. Clearly, if a pro-
cess is not terminated then the entire system could not have
terminated. In this case, computation of the global snapshot
is a wasted effort.

We also note here that the algorithm for GCP can be
optimized by exploiting specific properties of the channel
predicate. For example, to check whether a channel is empty
it may suffice to deal with the number of messages rather
than message themselves. Such optimizations are discussed
in detail in [21].

3.3 Relational Predicates

So far, we have discussed only those predicates which
can be written as boolean expression of local predicates.
Now consider the predicate (x1 +x2 + : : :+xn < k) wherexi’s are variables on different processes and k is a constant.
This predicate called relational predicate cannot be written
as a concise boolean expression of local predicates.

Relational predicates are useful for detecting global con-
ditions such as loss of tokens and violations of a limited
resource. For example, consider a system in which there
are k tokens indicating availability of k resources. If xi
denotes the number of tokens at process Pi, then

Pi xi < k
indicates loss of one or more tokens. As another example,
consider a server which can handle at most k connections
at a time. Client processes Pi have variables xi which indi-

cates the number of connections it has with the server. The
predicate (Pi xi > k) indicates a potential error.

The predicate to be detected, previously expressed as(x1 + x2 + :::+ xn < k), can be stated formally as:9G : consistent(G) :
Xsi2G si:xi < k

We now discuss an algorithm first presented in [4]. We
detect this predicate by computing

minG : consistent(G) :
Xsi2G si:xi

and then comparing this value to the constant k.
We transform the poset into a flow graph such that the

max-flow in the graph is equal to the min-value of the poset.
The resulting flow graph is obtained as follows. The vertex
set of the graph includes all local states and two additional
nodes called source and sink. The edge set is given below.� First, we add edges from the source to all initial statess with the capacity 1.� For any two states s and t such that s immediately pre-

cedes t, we add an edge between them with capacitys:x.� We add edges from all final states s to the sink with
the capacity s:x.� For any two states s and t such that a message is sent
immediately after s which is received before t, we
first identify the successor to s, say s0. We then add
an edge from t to s0 with capacity 1.

Note that the cut of G has finite value if and only if the cut
is a consistent cut of S. We relate a cut in the flow graph to
a cut in the poset as follows: If edge e connects vertices s
and t in G, and if e is part of the cut of flow graph G, then
the state corresponding to s is part of the cut in poset S. The
min-value of a poset S is equal to the min cut of its flow
graph G.

Based on the above result, a checker based algorithm can
be devised as follows. First, the sequence of states from
each process is reduced by replacing the subsequence of
states between any two message events with a single state.
The value of xi for this new state is defined as the minimum
of xi over the original states. Second, each process locally
maintains the direct dependence relation for each state. Each
process creates a local snapshot for every state, consisting of
the value of xi and the direct dependence information. The
local snapshots are sent to a checker process which forms the
flow-graph. The checker then runs a max-flow algorithm to
find the min cut. If this value is less than k, then the bounded
sum predicate is detected.



There are other approaches possible for relational predi-
cates. In [25], we discuss relational global predicates which
have the form (x1+x2 � k), wherex1 andx2 are integer val-
ues at processes P1 and P2 in a system of N processes. The
algorithm is fully decentralized, runs concurrently with the
target program, uses constant size message tags (four inte-
gers), and generates one debug message for each message re-
ceived byP1 andP2. The results have been generalized to an
algebra (D;%; �)where % and � are binary operators in do-
mainD, % is commutative, associative and idempotent, and� distributes over %. In this algebra we can calculate value
of the expression (v1 % v2 %:::% vn) where fv1; v2; :::vng is
the set which contains the value of x1 �x2 in each consistent
cut. For example if (D;%; �) = (Integers;min;+) then we
could calculate the minimum value ofx1+x2 over all global
states.

In [26], we present another special case of relational pred-
icates. Here we assume that xi are boolean variables. Such
predicates are useful, for example, in detecting violation ofk-mutual exclusion. In this case, even though the predicatex1 + x2::+ xn � k can be written as a disjunction of con-
junctive predicates, it is not efficient to do so since there are�nk� conjuncts in the boolean expression. Our algorithm is

based on finding an anti-chain of size k in the poset of states
in which the boolean predicate is true.

3.4 General Possibly true Predicates

The concept of linearity of channel predicates has been
generalized to apply for any general predicate in [4]. A
predicate is defined to be linear if its falsehood on any global
stateG implies that there exists at least one state s inG such
that the predicate is also false for any global state H � G
containing s. We call s a forbidden state in G. It is easy to
see that weak conjunctive predicates are linear. Linearity of
a predicate can be exploited for a simple detection algorithm.
If the predicate is false along a cut, then at least one state in
that cut is forbidden and can be discarded.

In another approach, Stoller and Schneider [23] combine
Garg and Waldecker’s algorithm with that of Cooper and
Marzullo to detect predicates of the form^j Φj(x1; ::xk); (1)

where Φ() is a predicate with variables, xi, from different
processes. That is, Φ() is a predicate made up of conditions
spread across multiple processes. An example of a predicate
in this form is (x1 = x2) ^ (x3 > x4), where x1; ::; x4 are
variables on different processes. For any predicate defined
using equation 1, they define a fixed set as the set of variables
such that on fixing these variables, the predicate reduces to
a WCP. In our example, if we fix x1 = 4 and x4 = 6, we
get (4 = x2) ^ (x3 > 6) which a WCP. By evaluating all

WCP predicates obtained by using all possible values of the
variables in fixed set, the original predicate can be detected.

4 Definitely True Predicates

We now discuss detection of predicates of the form
definitely: q. Intuitively, definitely: q is true when q is
true for all possible observations of that execution. We will
restrict our attention to strong conjunctive predicates (SCP)
in which q of the form l1 ^ l2^ : : : ln. For example, suppose
we were testing a commit protocol. Let Readyi denote the
local predicate that the process Pi is ready to commit. If
the transaction was committed, then for all possible obser-
vations, there was a certain point in the execution when all
processes were ready to commit. By detecting the SCP for-
mula definitely: (Ready1^Ready2 : : :^Readyn) existence
of such a point can be verified. The key concept in detecting
SCP’s is that of overlapping intervals. Let I1 and I2 be two
sequences of contiguous states such that local predicates l1
and l2 are true in I1 and I2 respectively. We say that I1 andI2 overlap if the lower end point of I1 causally precedes the
higher endpoint of I2 and vice-versa. An important result
is that the SCP is true iff there exist intervals in which local
predicates are true such that any pair of these intervals over-
lap. The proof of this result can be found in [16]. Based on
this condition, algorithms to detect SCP can be developed
in a manner similar to detection of WCP.

5 Poset based Predicates

The predicates we have discussed so far are based on
formulas defined on a single cut. Informally, these pred-
icates capture violation of safety properties. Many useful
properties requires evaluation of formulas on a sequence of
cuts.

5.1 Sequences of Local Predicates

An early work in this area is by Miller and Choi who
discuss detection of a sequence of local predicates [20]. An
example is a predicate l1 ! l2 that becomes true when there
are two states s1 and s2 such that l1 is true in state s1, l2 is
true in state s2 and s1 ! s2. Hurfin, Plouzeau and Raynal
[17] extended the sequence of local predicates to the atomic
sequence of local predicates. In this class, occurrences of
local predicates can be forbidden between adjacent predi-
cates in a sequence of local predicates. The example given
above for linked predicates could be expanded to include:
“local predicate ri never occurs in between local predicatesli and li+1”. Each local predicate can belong to a different
process in the computation. This can be further generalized
to detect interval-constrained sequences of global predicates



as shown in [1]. This approach, however, requires traversal
of the lattice of the global states.

The work on sequence of predicates has also been gen-
eralized to detect any regular pattern of local predicates
[9]. A regular pattern is defined as a regular expression
of local predicates. For example, pq�r is true in a com-
putation if there exists a sequence of consecutive local
states (s1; s2; : : : ; sn) such that p is true in s1, q is true ins2; : : : ; sn�1, and r is true in sn. Note that the states in the
sequence need not belong to the same process – two states
are consecutive if they are adjacent in the same process or
one sends a message and the other receives it.

The algorithm for detecting regular patterns is very ef-
ficient. First the regular expression is converted into a de-
terministic finite state machine. Assume that there are m
states in the state machine. To avoid any confusion we refer
to the states of the distributed computation as local states in
this section. Now with each local state s we keep a boolean
bit string X[1::m] such that X[i] is 1 iff the state X[i] can
be reached by traversing a sequence of local states that ends
in s. Observe that it is sufficient to give the update rules forX because if any of the final state X[i] becomes 1, then the
regular pattern has been detected. The boolean string X[i]
is easy to obtain given the boolean strings for its predecessor
states. For example, if X[i] is true in the predecessor local
state, local predicate p is true in the current local state and
the finite state machine moves from state X[i] to X[j] on
label p, then X[j] is set to 1 in the current local state. To
ensure that any local state has access to X of predecessor
local states, the bit strings are piggybacked with messages.
Thus, this algorithm detects a regular pattern with no addi-
tional messages. Existing messages are tagged with a fixed
number of bits independent of the number of processes in
the system.

Regular patterns can be extended to include patterns on
rooted directed acyclic graphs (dag) which are subposets
of the original poset. A linear sequence of states is a spe-
cial case of a rooted dag, hence regular patterns are a special
case of regular dag patterns. Many program behaviors which
could be easily described by regular dag patterns cannot be
described with existing mechanisms. This is true even for
fundamental behaviors such as data scattering, data collec-
tion, and barrier synchronization. Moreover, detection of
rooted dag patterns is inherently efficient due to the struc-
tural similarities between the specified dag pattern and the
program under test. An algorithm for detecting dag patterns
can be found in [14].

5.2 Poset Logic

So far we have discussed predicates which are either
based on a single global state or a sequence of local states.
Chiou and Korfhage [5] discuss a method of combining

concurrency with sequencing. This has been generalized to
a recursive logic called RCL in [27]. A formula in RCL
is evaluated on a poset. One can think of a formula as a
boolean function whose argument is a poset. The rules for
constructing well formed formulas are given by the syntactic
definitions shown below:f = S j f ^ fS = g j ghfiS j ghhfiiS

The basic component of a formula is a weak conjunctive
predicate which is represented by the terminal symbol g.
The symbol S is a sequence of WCP formulas. The symbolf is a conjunction of these sequences. The symbols hi andhhii are used for weak and strong sequencing respectively.
A cut g weakly precedes h if it lies in the causal past ofh. A cut g strongly precedes h iff every state in g causally
precedes every state in h.

When S is fully expanded, it has the formghfighfig : : : ghfig (or a sequence with hhii). When such
a sequence is true on a poset, then each g corresponds to
an antichain. The regions in between these antichains are
subposets upon which the f’s in the sequence are evaluated.
An efficient algorithm to detect any formula in RCL is given
in [27].

6 Conclusions

Observation of a distributed computation is an useful
abstraction for many fundamental problems in distributed
software. In this paper, we have presented a survey of effi-
cient algorithms for observation. Many of these algorithms
are discussed in greater detail in [11].
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