
Appli
ations of Latti
e Theory to DistributedComputingVijay K. GargECE DepartmentUniversity of TexasAustin, TX, USAgarg�e
e.utexas.edu Neeraj MittalCS DepartmentUniversity of Texas, DallasRi
hardson, TX, USAneerajm�utdallas.edu Alper SenECE DepartmentUniversity of TexasAustin, TX, USAsen�e
e.utexas.eduAbstra
tIn this note, we dis
uss the appli
ations of latti
e theory to solving problems in distributedsystems. The �rst problem we 
onsider is that of dete
ting a predi
ate in a 
omputation,i.e., determining whether there exists a 
onsistent 
ut of the 
omputation satisfying the givenpredi
ate. The se
ond problem involves 
omputing the sli
e of a 
omputation with respe
t to apredi
ate. A sli
e is a 
on
ise representation of all those global states of the 
omputation thatsatisfy the given predi
ate. The third problem we 
onsider is that of analyzing a partial ordertra
e of a distributed program to determine whether it satis�es the given temporal logi
 formula.Finally, we 
onsider the problem of timestamping events and global states of a 
omputation to
apture the order relationship. We dis
uss how the results from latti
e theory 
an be used insolving ea
h of the above problems.1 Introdu
tionIn 1978, Lamport in a seminal paper [Lam78℄ argued that the order of events that 
an be observedin a distributed 
omputation is only partial. He 
alled this partial order the happened-before orderand presented a me
hanism 
alled logi
al 
lo
ks that gave a timestamp in a totally ordered domainpreserving the happened-before order. Sin
e the theory of partial orders matured in 50's and 60'smostly due to pioneering work by Birkho� and Dilworth, it is natural to assume that the theoryof partial orders would then be applied to distributed 
omputing in the next few years. However,the progress in appli
ation of the theory of partial orders to distributed 
omputing has been slow.We dis
uss a few of these appli
ations in distributed 
omputing espe
ially in the areas of globalproperty evaluation and timestamping events.In 1985, Chandy and Lamport [CL85℄ de�ned a 
onsistent 
ut, also 
alled a 
onsistent globalstate. Let E be the set of events of a 
omputation and ! be the happened-before order on E. Asubset G of E is a 
onsistent 
ut if whenever it 
ontains an element f then it 
ontains all elements ethat happened-before f . This 
on
ept is identi
al to the notion of order ideal in the latti
e theory.In that paper, they also gave a distributed algorithm to re
ord a 
onsistent 
utIn 1989, Mattern [Mat89℄ showed that the set of all 
onsistent 
uts of a distributed 
omputationforms a latti
e. This result is a spe
ial 
ase of the theorem in latti
e theory that the set of all idealsof a partial order forms a distributive latti
e. Note that Mattern (
on
urrently with Fidge [Fid91℄)also de�ned a ve
tor 
lo
k me
hanism that 
an be used to timestamp events in a distributed
omputation. Ve
tor 
lo
ks have been used extensively in many distributed algorithms [Gar02b℄.



In 1991, Charron-Bost [CB91℄ gave a lower bound on the dimension of ve
tor 
lo
ks usingdimension theory of partial orders. Dimension theory of partial orders was initiated by Dushnikand Miller in 1941 [DM41℄. In that paper, they also gave a family of posets Sn of width n whi
hhad dimension n.In 1995, Chase and Garg [CG95℄ de�ned linear predi
ates for eÆ
ient dete
tion of global predi-
ates. It 
an be shown that a predi
ate B is linear if and only if the set of 
onsistent 
uts satisfyingB is 
losed under the meet operation of the latti
e of 
onsistent 
uts. The set of linear predi
ates
an be dete
ted eÆ
iently assuming eÆ
ient advan
ement property.So far, the fa
t that the set of 
onsistent 
uts form a distributive latti
e was not really exploitedin distributed 
omputing literature. One of the fundamental theorems of Birkho� states that every�nite distributive latti
e 
an be generated by the poset formed by its join-irredu
ible elements.Sin
e the set of join-irredu
ible elements may be (exponentially) smaller than the latti
e itself, thistheorem is very useful 
omputationally.In 2001, Garg and Mittal [GM01℄ introdu
ed the notion of 
omputation sli
e based on thistheorem. A sli
e of a 
omputation with respe
t to a predi
ate B is a 
on
ise representation of all
onsistent 
uts that satisfy B. Sli
e has bene�ts in terms of state spa
e redu
tion for predi
atedete
tion. These appli
ations were further explored by Mittal and Garg in [MG01, MG03℄.In 2001, Garg and Skawratananond [GS01℄ de�ned a spe
ial type of partial order 
alled stringand showed that Fidge-Mattern ve
tor 
lo
k 
orresponds to a string realizer of a poset. They alsoapplied Dilworth's theorem for the dimension of a �nite distributive latti
e to show that any ve
tor
lo
k me
hanism that 
an timestamp a 
onsistent 
ut of a distributed 
omputation on N pro
essesmust have dimension at least N .In 2002, Sen and Garg [SG02, SG03b℄ developed algorithms to 
ompute sli
es for temporallogi
 formulas. These algorithms are useful in dete
ting temporal logi
 formulas in a distributed
omputation [SG02℄. They implemented a tool 
alled Partial Order Tra
e Analyzer (POTA)[SG03b℄for evaluating temporal logi
 formulas on partial order tra
es.The purpose of this note is to provide the reader with relevant 
on
epts in latti
e theory and abrief survey of its appli
ations to distributed 
omputing. The note is organized as follows. Se
tion 2provides the basi
 de�nitions in latti
e theory. Se
tion 3 gives appli
ations of latti
e theory in globalpredi
ate dete
tion, Se
tion 4 in 
omputation sli
ing, Se
tion 5 in partial order tra
e analysis, andSe
tion 6 in timestamping events and 
onsistent 
uts.2 Partially Ordered Sets and Latti
esA pair (X;P ) is 
alled a partially ordered set or poset ifX is a set and P is a re
exive, antisymmetri
,and transitive binary relation on X. We 
all X the ground set while P is a partial order on X. The6 and divides relations on the set of natural numbers are some examples of partial orders.We write x 6 y and y > x in P when (x; y) 2 P . Also, x < y and y > x in P means x 6 y inP and x 6= y. Let x; y 2 X with x 6= y. If either x < y or y < x, we say x and y are 
omparable.On the other hand, if neither x < y nor x > y, then we say x and y are in
omparable.A poset (X;P ) is 
alled a 
hain or a linear order if every distin
t pair of points from X is
omparable in P . Similarly, we 
all a poset an anti
hain if every distin
t pair of points from X isin
omparable in P . The width of a poset is de�ned to be the largest anti
hain in the poset and isdenoted by width(P ).Finite posets are often depi
ted graphi
ally using a Hasse diagram. To de�ne Hasse diagrams,we �rst de�ne a relation 
overs as follows. For any two elements x; y, we say y 
overs x if x < yand 8z 2 X : x 6 z < y implies z = x. In other words, there should not be any element z with



x < z < y. A Hasse diagram of a poset is a graph with the property that there is an edge from xto y if and only if y 
overs x. Furthermore, when drawing the �gure in an Eu
lidean plane, x isdrawn lower than y when y 
overs x. For example, 
onsider the poset (X;6).X def= fa; b; 
; d; eg; 6 def= f(a; a); (b; b); (
; 
); (d; d); (a; b); (a; 
); (a; d); (a; e); (b; d); (b; e); (
; e); (d; e)g:The �rst Hasse diagram in Figure 1 
orresponds to this poset.An element y 2 X is 
alled an upper bound for S � X if s 6 y in P , for every s 2 S. An upperbound y for S is the least upper bound for S, provided y 6 y0 in P for every upper bound y0 ofS. Lower bounds and greatest lower bounds are de�ned similarly. The greatest lower bound is alsoreferred to as in�mum or meet. Similarly, the least upper bound is also referred to as supremum orjoin. We denote the meet of fa; bg by a u b, and the join of fa; bg by a t b.In the set of natural numbers ordered by the divides relation, the join 
orresponds to �ndingthe greatest 
ommon divisor and the meet 
orresponds to �nding the least 
ommon multiple of twonatural numbers.The greatest lower bound or the least upper bound may not always exist. In the third posetin Figure 1, the set fb; 
g does not have any least upper bound (although both d and e are upperbounds). fff f f
f
f
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Figure 1: Only the �rst two posets are latti
es.A set of partially-ordered elements (or poset) forms a latti
e if the greatest lower bound and theleast upper bound exist and are 
ontained in the set for every pair of elements. Thus, the �rst twoposets in Figure 1 are latti
es, whereas the third one is not. As another example, the power set ofa given set forms a latti
e under � relation.Example 1 For the set fx; y; zg, the power set is given by f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg;fx; y; zgg. The meet of the two elements of a power set is given by their interse
tion. For example,the meet of fx; yg and fy; zg is fyg. Dually, the join is given by their union. For example, thejoin of fx; yg and fy; zg is fx; y; zg. In other words, the meet and join operators of the latti
e
orrespond to interse
tion (\) and union ([), respe
tively.The latti
e in Example 1 is 
alled a Boolean latti
e. A subset of a latti
e is a sublatti
e ifit is 
losed under the meet and join operations. For example, in the Boolean latti
e the set ofall subsets of fx; y; zg that 
ontain x forms a sublatti
e. However, the set of all subsets withat most two elements does not form a sublatti
e. A latti
e is distributive if its meet operatordistributes over its join operator. For example, sin
e interse
tion distributes over union, a Boolean



latti
e is distributive. The latti
e of natural numbers with 6 de�ned as the relation divides is alsodistributive. Two important nondistributive latti
es, 
alled diamond and pentagon, are shown inFigure 2.
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esOne of the Birkho�'s results on latti
es states that a latti
e is distributive if and only if it doesnot 
ontain a pentagon or a diamond as a sublatti
e [DP90℄.Now, 
onsider a (�nite) set of partially-ordered elements (not ne
essarily a latti
e). A subsetof elements forms an order ideal (or simply an ideal) if whenever an element is 
ontained in thesubset then all its pre
eding elements are also 
ontained in the subset. Formally, a subset S of Xis an order ideal if it satis�es8x; y 2 X : (x 2 S) ^ (y 6 x)) (y 2 S)Example 2 For the poset in Figure 3(b), some examples of ideals are fa; b; 
g and fa; bg. However,fa; dg is not an ideal be
ause it 
ontains d but not b, whi
h pre
edes d.It is well-known that the set of ideals of a poset forms a distributive latti
e under � relation[DP90℄. For a distributed 
omputation, whi
h is essentially a poset of events ordered by Lamport'shappened-before relation [Lam78℄, the notion of order ideal 
oin
ides with that of 
onsistent 
ut.Therefore it 
an be dedu
ed that the set of 
onsistent 
uts of a 
omputation forms a distributivelatti
e.By using the notion of ideals, we went from a poset to a distributive latti
e. Is it possibleto go in the reverse dire
tion? The answer is provided by Birkho�'s Representation Theorem[DP90℄. Intuitively, the result says that a �nite distributive latti
e 
an be uniquely 
hara
terizedby only a small subset of its elements known as join-irredu
ible elements An element of a latti
eis join-irredu
ible if (1) it is not the least element, and (2) it 
annot be expressed as join of twoelements, both di�erent from itself. Clearly, the join-irredu
ible elements of a Boolean latti
e arethe singleton sets.Example 3 The Boolean latti
e in Example 1 has three join-irredu
ible elements, namely fxg,fyg and fzg. As expe
ted, every other element that is di�erent from ; 
an be expressed as theunion of some or all of these three elements.Pi
torially, in a �nite latti
e, an element is join-irredu
ible if and only if it has exa
tly one lower
over, that is, there is exa
tly one edge 
oming into the element in the Hasse diagram. Intuitively,the join-irredu
ible elements of a distributive latti
e a
t as basis elements for the latti
e. Everyelement of the latti
e, ex
ept for the least one (e.g., ; in a Boolean latti
e), 
an be written as the
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Figure 3: (a) An example of a distributive latti
e (b) its partial order representation.join of some or all of these join-irredu
ible elements. The notion of meet-irredu
ible elements 
anbe de�ned dually. The meet-irredu
ible elements of a Boolean latti
e are given by those subsetsof the ground set that have exa
tly one element missing. Thus, the meet-irredu
ible elements ofthe Boolean latti
e in Example 1 are fx; yg, fy; zg and fx; zg. Clearly, every other element that isdi�erent from fx; y; zg 
an be expressed as the interse
tion of some or all of these three elements.Birkho�'s Theorem states that every �nite poset P is isomorphi
 to the set of join-irredu
ibleelements of the set of ideals of P . Similarly, every �nite distributive latti
e is isomorphi
 to theset of ideals of its join-irredu
ible elements. Thus, Birkho�'s Theorem establishes the dualitybetween �nite posets and �nite distributive latti
es. We 
an go from a �nite poset to its dual �nitedistributive latti
e by 
onstru
ting the set of its order ideals and from the �nite distributive latti
eto the poset by restri
ting it to join-irredu
ible elements. For example, Figure 3(b) gives the poset
orresponding to the latti
e in Figure 3(a).3 Dete
ting Global Predi
atesA predi
ate is simply a boolean fun
tion from the set of all 
onsistent 
uts to f0; 1g. Equivalently,a predi
ate spe
i�es a subset of 
onsistent 
uts in whi
h the boolean fun
tion evaluates to 1.We now de�ne various 
lasses of predi
ates. The 
lass of meet-
losed predi
ates are usefulbe
ause they allow us to 
ompute the least 
onsistent 
ut that satis�es a given predi
ate.De�nition 1 (Meet-Closed Predi
ates) A predi
ate B is meet-
losed if for all 
onsistent 
utsG;H: B(G) ^B(H)) B(G uH)The predi
ate \does not 
ontain x" in the Boolean latti
e is meet-
losed whereas the predi
ate\has size k" is not.In a distributed 
omputation, we de�ne a predi
ate to be lo
al if its truth value depends onlyon the state of a single pro
ess. Any global predi
ate that 
an be expressed as a 
onjun
tion oflo
al predi
ates is meet-
losed.It follows from the de�nition that if there exists any 
onsistent 
ut that satis�es a meet-
losedpredi
ate B, then there exists the least one. Note that the predi
ate false whi
h 
orresponds tothe empty subset and the predi
ate true whi
h 
orresponds to the entire set of 
onsistent 
uts are



meet-
losed predi
ates. We now give another 
hara
terization of meet-
losed predi
ates that willbe useful for 
omputing the least 
onsistent 
ut that satis�es the predi
ate. To this end, we �rstde�ne the notion of a 
ru
ial event for a 
onsistent 
ut.De�nition 2 (Cru
ial Element) For a 
onsistent 
ut G $ E and a predi
ate B, we de�ne e 2E �G to be 
ru
ial for G as:
ru
ial(G; e;B) def= 8H � G : (e 2 H) _ :B(H):De�nition 3 (Linear Predi
ates) A predi
ate B is linear if for all 
onsistent 
uts G $ E,:B(G)) 9e 2 E �G : 
ru
ial(G; e;B):Intuitively, this means that any 
onsistent 
ut H, that is at least G, 
annot satisfy the predi
ateunless it 
ontains e. Now, we haveTheorem 1 ([CG95℄) A predi
ate B is linear if and only if it is meet-
losed.Proof: First assume that B is not 
losed under meet. We show that B is not linear. Sin
e B isnot 
losed under meets, there exist two 
onsistent 
uts H and K su
h that B(H) and B(K) butnot B(H uK). De�ne G to be H uK. G is a stri
t subset of H � E be
ause B(H) but not B(G).Therefore, G 
annot be equal to E. We show that B is not linear by showing that there does notexist any 
ru
ial element for G. A 
ru
ial element e, if it exists, 
annot be in H � G be
ause Kdoes not 
ontain e and still B(K) holds. Similarly, it 
annot be in K � G be
ause H does not
ontain e and still B(H) holds. It also 
annot be in E � (H [K) be
ause of the same reason. We
on
lude that there does not exist any 
ru
ial event for G.Now assume that B is not linear. This implies that there exists G $ E su
h that :B(G) andnone of the elements in E�G is 
ru
ial. We �rst 
laim that E�G 
annot be a singleton. Assumeif possible E � G 
ontains only one element e. Then, any 
onsistent 
ut H that 
ontains G anddoes not 
ontain e must be equal to G itself. This implies that :B(H) be
ause we assumed :B(G).Therefore, e is 
ru
ial 
ontradi
ting our assumption that none of the elements in E �G is 
ru
ial.Let W = E � G. For ea
h e 2 W , we de�ne He as the 
onsistent 
ut that 
ontains G, does not
ontain e and still satis�es B. It is easy to see that G is the meet of all He. Therefore, B is notmeet-
losed be
ause all He satisfy B, but not their meets. 2Example 4 Consider the Boolean Latti
e generated by all subsets of f1; :::; ng. Let the predi
ateB de�ned to be true on a 
onsistent 
ut G as \If G 
ontains any odd i < n, then it also 
ontainsi + 1." It is easy to verify that B is meet-
losed. Given any G for whi
h B does not hold, the
ru
ial elements 
onsist of fiji is even; 2 6 i 6 n; i� 1 2 G; i 62 GgExample 5 Consider a distributed 
omputation on two pro
esses P1 and P2 and the predi
ate Bto be true on a 
onsistent 
ut if both the pro
esses are in the 
riti
al se
tion. Given any 
onsistent
ut G for whi
h B does not hold, either P1 is not in the 
riti
al se
tion, or P2 is not in the 
riti
alse
tion. In the former 
ase, the next event of P1 after G, entering the 
riti
al se
tion is 
ru
ialand in the latter 
ase the event of P2 entering the 
riti
al se
tion is 
ru
ial. This example 
an beeasily generalized to any global boolean predi
ate that 
an be expressed as a 
onjun
tion of lo
alpredi
ates.



Our interest is in dete
ting whether there exists an 
onsistent 
ut that satis�es a given pred-i
ate B. We assume that given a 
onsistent 
ut, G, it is eÆ
ient to determine whether B istrue for G or not. On a

ount of linearity of B, if B is evaluated to be false in some 
onsistent
ut G, then we know that there exists a 
ru
ial event in E�G. We make an additional assumption:(EÆ
ient Advan
ement Property) There exists an eÆ
ient (polynomial time) fun
tion todetermine the 
ru
ial event.We now haveTheorem 2 ([CG95℄) If B is a linear predi
ate with the eÆ
ient advan
ement property, thenthere exists an eÆ
ient algorithm to determine the least 
onsistent 
ut that satis�es B (if any).Proof: An eÆ
ient algorithm to �nd the least 
ut in whi
h B is true is given in Figure 4. Wesear
h for the least 
onsistent 
ut starting from the empty 
onsistent 
ut. If the predi
ate is falsein the 
onsistent 
ut, then we �nd the 
ru
ial element using the eÆ
ient advan
ement propertyand then repeat the pro
edure. If this is the last state on the pro
ess, then we return false else weadvan
e along the pro
ess that has the 
ru
ial event. 2boolean fun
tion dete
t(B:boolean predi
ate, P :poset)var G: 
onsistent 
ut initially G := fg;while (:B(G) ^ (G 6= P )) doLet e be su
h that 
ru
ial(G; e;B) in P ;G := G [ feg.endwhile;if B(G) return true;else return false;Figure 4: An eÆ
ient algorithm to dete
t a linear predi
ateAssuming that 
ru
ial(G; e;B) 
an be evaluated eÆ
iently for a given poset, we 
an determinethe least 
onsistent 
ut that satis�es B eÆ
iently even though the number of 
onsistent 
uts may beexponentially larger than the size of the poset. In pra
ti
e, most meet-
losed predi
ates B satisfythe eÆ
ient advan
ement property. All the examples in this paper do.So far we have fo
used on meet-
losed predi
ates. All the de�nitions and ideas 
arry overto join-
losed predi
ates. If the predi
ate B is join-
losed, then one 
an sear
h for the largest
onsistent 
ut that satis�es B in a fashion analogous to �nding the least 
onsistent 
ut when it ismeet-
losed.Predi
ates that are both meet-
losed and join-
losed are 
alled regular predi
ates.De�nition 4 (Regular Predi
ates [GM01℄) A predi
ate is regular if the set of 
onsistent 
utsthat satisfy the predi
ate forms a sublatti
e of the latti
e of 
onsistent 
uts. Equivalently, a predi
ateB is regular with respe
t to P if it is 
losed under t and u, i.e., for all 
onsistent 
uts G;H of theposet P : B(G) ^B(H)) B(G tH) ^B(G uH)



The set of 
onsistent 
uts that satisfy a regular predi
ate forms a sublatti
e of the latti
e of all
onsistent 
uts. Some examples of regular predi
ates are:� Consider the predi
ate B as \there is no outstanding message in the 
hannel." We show thatthis predi
ate is regular. Observe that B holds on a 
onsistent 
ut G if only if for all sendevents in G the 
orresponding re
eive events are also in G. It is easy to see that if B(G) andB(H), then B(G[H). To see that it holds for G\H, let e be any send event in G\H. Letf be the re
eive event 
orresponding to e. From B(G), we get that f 2 G and from B(H),we get that f 2 H. Thus f 2 G \H. Hen
e, B(G \H). Similarly, the following predi
atesare also regular.{ There is no token message in transit.{ No token message is in transit between pro
esses P1 and P5.{ Every \request" message has been \a
knowledged" in the system.� Any lo
al predi
ate is regular. Thus the following predi
ates are regular.{ The leader has sent all \prepare to 
ommit" messages.{ Pro
ess Pi is in a \red" state.� Channel predi
ates su
h as \there are at most k messages in transit from Pi to Pj" and \thereare at least k messages in transit from Pi to Pj" are also regular.It is easy to verify that the 
lass of regular predi
ates is 
losed under 
onjun
tion. The 
losureunder 
onjun
tion implies that the following predi
ates are also regular:� No pro
ess has the token, and no 
hannel has the token.� Any 
onjun
tion of lo
al predi
ates.4 Sli
ing Distributed ComputationsSuppose we are not interested in all 
onsistent 
uts of a 
omputation but in only a subset ofthem, namely those that satisfy some property of interest to us expressed as a predi
ate mappinga 
onsistent 
ut to a boolean value. Further, suppose the set of 
onsistent 
uts for whi
h thepredi
ate evaluates to true forms a sublatti
e of the latti
e of 
onsistent 
uts. A sublatti
e of adistributive latti
e is also a distributive latti
e [DP90℄. Therefore, using Birkho�'s Theorem, thesublatti
e generated by the 
onsistent 
uts satisfying the predi
ate is 
ompletely 
hara
terized bythe join-irredu
ible elements of the sublatti
e.Example 6 The distributed 
omputation shown in Figure 5(a) 
onsists of two pro
esses P1 andP2. Pro
ess P1 exe
utes events a and b, whereas pro
ess P2 exe
utes events 
 and d. On exe
utingb, P1 sends a message to P2, whi
h is re
eived by P2 at d. The set of 
onsistent 
uts of the
omputation are shown in Figure 5(b). Suppose we are interested in only those 
onsistent 
uts forwhi
h no messages are in transit|also known as strongly 
onsistent 
uts. They have been shadedin Figure 5(b) and are shown separately in Figure 5(
). The set of strongly 
onsistent 
uts formsa sublatti
e and its join-irredu
ible elements have been drawn with thi
k boundaries. The posetindu
ed on the set of join-irredu
ible elements of the sublatti
e is shown in Figure 5(d).
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Figure 5: (a) A distributed 
omputation, (b) the distributive latti
e generated by its 
onsistent
uts, (
) the sublatti
e 
ontaining all 
onsistent 
uts for whi
h no messages are in transit, and(d) the poset indu
ed on the set of join-irredu
ible elements of the sublatti
e.In 
ase the set of 
onsistent 
uts that satisfy the predi
ate does not form a sublatti
e, we addone or more other 
onsistent 
uts|that do not satisfy the predi
ate|to 
omplete the sublatti
e.The 
onsistent 
uts are added in su
h a way so as to minimize the total number of 
onsistent 
utsin the resulting sublatti
e. The sublatti
e is then represented using the set of its join-irredu
ibleelements. This su

in
t representation of a possibly large set of 
onsistent 
uts satisfying someproperty is referred to as a sli
e [GM01, MG01℄.Theorem 3 The sli
e of a distributed 
omputation is uniquely de�ned for all predi
ates.Proof: Let D denote the set of all 
onsistent 
uts that satisfy the predi
ate. We show that thesublatti
e with the least number of 
onsistent 
uts that satisfy D is uniquely de�ned. Assumethe 
ontrary. Let X and Y be two distin
t sublatti
es with the least number of 
onsistent 
utssu
h that (1) 
ardinality(X) = 
ardinality(Y ), and (2) both X and Y 
ontain D. Consider Z =X \ Y . Clearly, Z also 
ontains D. Also, sin
e X 6= Y , 
ardinality(Z) < 
ardinality(X) and
ardinality(Z) < 
ardinality(Y ). It 
an be proved that interse
tion of two sublatti
es is also asublatti
e. This implies that Z is a sublatti
e that 
ontains D and has fewer number of 
onsistent
uts than either X or Y|a 
ontradi
tion. 2The sli
e for a predi
ate may 
ontain 
onsistent 
uts that do not satisfy the predi
ate|namelythose that are added to 
omplete the sublatti
e. A sli
e is lean if it 
ontains only those 
onsistent
uts that satisfy the predi
ate [MG01℄. Clearly, the sli
e of a 
omputation for a predi
ate is lean ifand only if the predi
ate is regular.Another way of looking at sli
e is that it spe
i�es whi
h events should be exe
uted in an atomi
fashion and the order in whi
h they should be exe
uted. For example, the sli
e shown in Figure 5(d)and redrawn in Figure 6(a) spe
i�es that events b and d should be exe
uted atomi
ally after events
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Figure 6: (a) A sli
e depi
ting the events that are to exe
uted atomi
ally, and (b) the graphrepresentation of the sli
e in (a).a and 
 have been exe
uted. This is expe
ted be
ause any 
onsistent 
ut whi
h in
ludes the sendevent of a message but not its re
eive will have at least one message in transit.For algorithmi
 purposes, it is more 
onvenient to represent a sli
e using a dire
ted graph onevents possibly 
ontaining 
y
les; all events that are to be exe
uted atomi
ally form a strongly
onne
ted 
omponent. The notion of 
onsistent 
ut, of 
ourse, has to be extended appropriately.We de�ne a 
onsistent 
ut (global state) on dire
ted graphs as a subset of verti
es su
h that ifthe subset 
ontains a vertex then it 
ontains all its in
oming neighbours. Observe that the emptyset ; and the set of all verti
es are trivial 
onsistent 
uts.We introdu
e a �
titious global initial and a global �nal event, denoted by ? and >, respe
tively.The global initial event o

urs before any other event on the pro
esses and initializes the state ofthe pro
esses. The global �nal event o

urs after all other events on the pro
esses. Any non-trivial
onsistent 
ut will 
ontain the global initial event and not the global �nal event. Therefore, every
onsistent 
ut of a 
omputation in the model without ? and > is a non-trivial 
onsistent 
ut ofthe 
omputation in the model with ? and > and vi
e versa. Note that the empty 
onsistent 
ut,; and the �nal 
onsistent 
ut E, in the model without ? and > 
orrespond to f?g and E � f>gin our model, respe
tively.We denote the sli
e of a 
omputation hE;!i with respe
t to a predi
ate p by sli
e(hE;!i; p).Note that hE;!i = sli
e(hE;!i; true). Every sli
e derived from the 
omputation hE;!i has thetrivial 
onsistent 
uts (; and E) among its set of 
onsistent 
uts. A sli
e is empty if it has nonon-trivial 
onsistent 
uts [MG01℄. In the rest of the paper, unless otherwise stated, a 
onsistent
ut refers to a non-trivial 
onsistent 
ut. In general, a sli
e will 
ontain 
onsistent 
uts that do notsatisfy the predi
ate (besides trivial 
onsistent 
uts).The graph representation of the sli
e shown in Figure 6(a) is depi
ted in Figure 6(b). Everysublatti
e of the latti
e of 
onsistent 
uts (of a 
omputation) 
an be generated by a graph obtainedby simply adding zero or more edges to the 
omputation [Gar02a℄.Now, the sli
e of a 
omputation for a predi
ate 
an be 
omputed as follows. For every pair ofevents e and f , dete
t whether there is a 
onsistent 
ut of the 
omputation satisfying the predi
atethat 
ontains f but does not 
ontain e. An edge is added from e to f if and only if the dete
tionalgorithm returns \no" as the answer. The reason is that, on adding an edge from e to f in agraph, the resulting graph retains all 
onsistent 
uts of the original graph ex
ept those that 
ontainf but not e. Therefore if no 
onsistent 
ut satisfying the predi
ate that 
ontains f but not e exists,then an edge from e to f 
an be safely added to the graph without eliminating any of the desired
onsistent 
uts. Also, note that given a sli
e of a 
omputation for a predi
ate, we 
an dete
t thepredi
ate in the 
omputation easily by simply testing the sli
e for emptiness. Therefore it followsthat:Theorem 4 There exists an eÆ
ient algorithm for 
omputing the sli
e for a predi
ate if and onlyif there exists an eÆ
ient algorithm for dete
ting the predi
ate.



More eÆ
ient algorithms for 
omputing the sli
e for spe
ial 
lasses of predi
ates in
luding linear(and regular) predi
ates, 
omplement of regular predi
ates, and k-lo
al predi
ates for 
onstant k
an be found elsewhere [GM01, MG01, MG03℄.A useful operation on sli
es is 
omposition [MG01℄. Given two sli
es, sli
e 
omposition 
an beused, for example, to 
ompute a graph whose 
onsistent 
uts are exa
tly those that belong to boththe sli
es. This is referred to as 
omposition with respe
t to 
onjun
tion. Dually, sli
es 
an alsobe 
omposed with respe
t to disjun
tion. Sli
es 
an be 
omposed by simply manipulating edgesin their graph representation. Spe
i�
ally, to 
ompose sli
es with respe
t to 
onjun
tion, we addan edge from an event e to an event f if and only if the edge is present in the (transitively-
losed)graph representation of at least one of the sli
es [MG01℄. Similarly, to 
ompose sli
es with respe
tto disjun
tion, we add an edge from an event e to an event f if and only if the edge is present inthe graph representation of both the sli
es [MG01℄. Also, an algorithm to 
ompute the sli
e withrespe
t to the negation of a regular predi
ate has been given in [MG01℄.Sli
ing 
an be used to fa
ilitate predi
ate dete
tion as illustrated by the following s
enario.Consider a predi
ate B that is a 
onjun
tion of two 
lauses B1 and B2. Now, assume that B1 issu
h that it 
an be dete
ted eÆ
iently but B2 has no stru
tural property that 
an be exploitedfor eÆ
ient dete
tion. An eÆ
ient algorithm for lo
ating some 
onsistent 
ut satisfying B1 
annotguarantee that the 
ut also satis�es B2. Therefore, to dete
t B, without 
omputation sli
ing, weare for
ed to use te
hniques su
h as breadth �rst sear
h [CM91℄, depth �rst sear
h [AV01℄, andpartial-order methods (a model-
he
king te
hnique) [SUL00℄, whi
h do not take advantage of thefa
t that B1 
an be dete
ted eÆ
iently. With 
omputation sli
ing, however, we 
an �rst 
omputethe sli
e for B1. If only a small fra
tion of 
onsistent 
uts satisfy B1, then instead of dete
tingB in the 
omputation, it is mu
h more eÆ
ient to dete
t B in the sli
e. Therefore by spendingonly polynomial amount of time in 
omputing the sli
e we 
an throw away exponential number of
onsistent 
uts, thereby obtaining an exponential speedup overall. In fa
t, our experimental resultsindi
ate that sli
ing 
an indeed lead to an exponential improvement over existing te
hniques forpredi
ate dete
tion in terms of time and spa
e [MG03, SG03b℄.5 Analyzing Partial Order Tra
esTraditional te
hniques for eliminating bugs in 
on
urrent programs (message-passing or shared-memory based) in
lude testing and formal methods. Testing te
hniques are ad-ho
 and do not allowfor formal spe
i�
ation and veri�
ation of logi
al properties that a program needs to satisfy. Formalmethods su
h as model 
he
king and theorem proving do not s
ale well and need 
onsiderablemanual e�ort. Given that formal methods, in general, work on an abstra
t model of a programand make assumptions on the environment, even if a program has been formally veri�ed, we still
annot be sure of the 
orre
tness of a parti
ular implementation. However, for highly dependablesystems su
h as avioni
s or automobiles, it is 
ru
ial to reason on the parti
ular implementation.We fo
us on a te
hnique 
alled runtime veri�
ation that addresses some of the problems intesting and formal methods. This te
hnique enables automati
 veri�
ation of implementations oflarge programs using temporal logi
 spe
i�
ations. The s
alability in runtime veri�
ation 
omesfrom examining only a single exe
ution tra
e of a program like in testing.Next we show how to use 
omputation sli
ing with respe
t to temporal logi
 predi
ates forpartial order tra
e analysis.We model a �nite tra
e of a program as a partial order between events, for example Lamport'shappened-before relation [Lam78℄. Most runtime veri�
ation tools su
h as MaC tool [KKL+01℄ andNASA's JPaX tool [HR01℄ model a tra
e as a total order (interleaving) of events. Using a partial



order model, we 
an 
apture exponential number of possible total order tra
es su

in
tly. Thistranslates into �nding bugs that are not found with MaC or JPaX tools. Also, a partial ordermodel is a more faithful representation of 
on
urren
y [Lam78℄ and this model enables us to applyour theory to distributed programs as well as shared memory programs.5.1 Computation Sli
es for Temporal Logi
 Predi
atesMany spe
i�
ations of distributed programs are temporal in nature be
ause we are interested inproperties related to the sequen
e of states during an exe
ution rather than just the initial and�nal states. For example, the liveness property in dining philosophers problem, \a philosopher,whenever gets hungry, eventually gets to eat", is a temporal property. The 
on
ept of sli
ing isuseful for dete
ting temporal logi
 predi
ates sin
e it enables us to reason only on the part of theglobal state spa
e that 
ould potentially a�e
t the predi
ate.We show in [SG02℄ that temporal predi
ates EF(p), EG(p), and AG(p) are regular when p isregular and we 
all su
h predi
ates as temporal regular predi
ates. We say that a 
onsistent 
utC satis�es EF(p) if p holds for some 
onsistent 
ut on some path from C to the �nal 
onsistent
ut. We say that a 
onsistent 
ut C satis�es EG(p) (resp. AG(p)) if p holds for all 
uts onsome (resp. all) path from C to the �nal 
onsistent 
ut, Algorithms in [GM01, MG01℄ for regularpredi
ates assume the eÆ
ient advan
ement property and the property that given a 
onsistent 
ut,it is eÆ
ient to determine whether the predi
ate holds for the 
ut or not. However, these propertiesdo not hold for temporal regular predi
ates. With the results of [SG02℄, we 
an eÆ
iently use
omputation sli
ing for analyzing tra
es in the subset of well-known temporal logi
 CTL [CE81℄with the following properties.� Atomi
 propositions are regular predi
ates and their negations.� Temporal operators are EF, EG, and AG.We 
all this logi
 Regular CTL plus (RCTL+), where plus denotes that the disjun
tion and negationoperators are in
luded in the logi
. The predi
ate dete
tion problem is to de
ide whether the initial
ut of the 
omputation satis�es a given predi
ate. In RCTL+, we use a restri
ted set of temporalpredi
ates be
ause we do not yet have eÆ
ient algorithms to 
ompute sli
es for temporal predi
atessu
h as AF(p) or AX(p) in CTL. However, our experimental results suggest that RCTL+ 
ontainsa widely used subset of CTL.Examples of temporal predi
ates are the 
omplement of the liveness property in dining philoso-phers su
h as EF(hungry^EG(:eat)) or the reset state is eventually rea
hable su
h asAG(EF reset).Next, we brie
y des
ribe our 
omputation sli
ing algorithms for RCTL+ predi
ates presented in[SG02℄.Sin
e the 
onsistent 
uts of the sli
e of a 
omputation is a subset of 
onsistent 
uts of the
omputation, the sli
e 
an be obtained by adding edges to the 
omputation. In other words, thesli
e 
ontains additional edges that do not exist in the 
omputation. Below, we will show whi
hedges we should add to a 
omputation for 
omputing sli
es.Now we explain Algorithm A1 in Figure 7 for generating the sli
e of a 
omputation with respe
tto EF(p). From the de�nition of EF(p), all 
onsistent 
uts of the 
omputation that 
an rea
h thegreatest 
onsistent 
ut that satis�es p, 
all this 
utW , also satis�es EF(p). Furthermore, these 
utsare the only ones that satisfy EF(p). We 
an �nd W using sli
e(hE;!i; p) when it is nonempty.To ensure that all 
uts that 
annot rea
h W do not belong to sli
e(hE;!i;EF(p)), we add edgesfrom > to the su

essors of events in the frontier of W in hE;!i. A frontier of a 
onsistent 
utis the set of those events of the 
ut whose su

essors, if they exist, are not 
ontained in the 
ut.Adding an edge from > to an event makes any 
ut that 
ontains that event trivial.



Algorithm A1Input: A 
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;EF(p))1. Let G be hE;!i and let W be the �nal 
ut of sli
e(hE;!i; p)2. If W exists then3. 8 e 2 frontier(W ): add an edge from the vertex > to su

(e) in G4. return G5. else return empty sli
eAlgorithm A2Input: A 
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;AG(p))1. Let G be sli
e(hE;!i; p)2. For ea
h pair of verti
es (e; f) in G su
h that,(i) :(e! f) in hE;!i, and(ii) (e! f) in Gadd an edge from vertex e to the vertex ?3. return GAlgorithm A3Input: A 
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;EG(p))1. Let G be sli
e(hE;!i; p)2. For ea
h pair of verti
es (e; f) in G su
h that,(i) :(e! f) in hE;!i, and(ii) (e! f) and (f ! e) in Gadd an edge from vertex e to the vertex ?3. return GFigure 7: Algorithm for generating a sli
e with respe
t to EF(p), AG(p) and EG(p)The following theorem is 
ru
ial in obtaining Algorithm A2 in Figure 7 that generates the sli
efor AG(p).Theorem 5 ([SG02℄) Given a 
omputation hE;!i and sli
e(hE;!i; p), a 
onsistent 
ut D inhE;!i satis�es AG(p) i� it in
ludes vertex e of every additional edge (e; f) in sli
e(hE;!i; p).Proof Sket
h:If a 
onsistent 
ut D does not in
lude vertex e then there exists a 
onsistent 
ut H that 
an berea
hed from D in the 
omputation su
h that H does not in
lude e but in
ludes f . In this 
ase, itis 
lear that H does not satisfy p sin
e (e; f) is an edge in the sli
e(hE;!i; p) and every 
onsistent
ut of sli
e(hE;!i; p) that in
ludes f must in
lude e. Therefore from the de�nition of AG(p), Ddoes not satisfy AG(p).Now we prove the other dire
tion. If a 
onsistent 
ut D does not satisfy AG(p) then thereexists a 
onsistent 
ut H rea
hable from D su
h that H does not satisfy p. We know that only the
onsistent 
uts that in
lude f but not e do not satisfy p. Sin
e H is rea
hable from D and H doesnot in
lude e, we have that D also does not in
lude e. 2Sin
e the 
onsistent 
uts that satisfy AG(p) is a subset of 
onsistent 
uts that satisfy p, the sli
efor AG(p) 
an be obtained by adding edges to the sli
e for p. Using the above Theorem, we add anedge from e to ? for any additional edge (e; f) in sli
e(hE;!i; p) to obtain sli
e(hE;!i;AG(p)).



This ensures that 
onsistent 
uts that do not in
lude vertex e of any additional edge (e; f) aredisallowed, whereas the rest belongs to sli
e(hE;!i;AG(p)).The algorithm for EG(p) sli
ing displayed in Figure 7 is similar to the AG(p) sli
ing algorithm.However in this 
ase, for ea
h additional edge (e; f) that generates a non-trivial strongly 
onne
ted
omponent in sli
e(hE;!i; p), we add an edge from the vertex e to the vertex ?. Intuitively, ifa 
ut C does not in
lude su
h a 
omponent then, as in the 
ase of AG(p), there exists a 
ut Drea
hable from C su
h that D does not satisfy p. However, di�erent from AG(p) 
ase, now thereexists su
h a 
ut D on all paths from C to the �nal state. Using the de�nition of EG(p), it is 
learthat C does not satisfy EG(p).5.2 Experimental Study: Partial Order Tra
e Analyzer (POTA)We implemented our temporal logi
 sli
ing algorithms in a prototype tool 
alled Partial Order Tra
eAnalyzer (POTA) [SG03b, SG03a℄ that is used for 
he
king exe
ution tra
es of distributed programswith temporal logi
 predi
ates. POTA 
onsists of an instrumentation module for generating partialorder exe
ution tra
es, a translator module that translates exe
ution tra
es into a well-known model
he
ker SPIN's input language Promela [Hol97℄ and an analyzer module. The use of 
omputationsli
ing for temporal logi
 veri�
ation is the most signi�
ant aspe
t of POTA and 
onstitutes theanalyzer module.Figure 8 displays our predi
ate dete
tion algorithm in POTA that uses sli
ing algorithms. The
omplexity of predi
ate dete
tion for RCTL+ is dominated by the 
omplexity of 
omputing thesli
e with respe
t to a non-temporal regular predi
ate, whi
h has O(n2jEj) 
omplexity [GM01,MG01℄. Therefore, the overall 
omplexity of predi
ate dete
tion for RCTL+ without negation anddisjun
tion operators is O(jpj �n2jEj), where jpj is the number of boolean and temporal operators inp. When the predi
ate 
ontains disjun
tion or negation operators the sli
e may not be lean. In this
ase, we may have to take an extra step. This is be
ause the initial state of the sli
e may in fa
tnot satisfy the predi
ate. Therefore, we employ the translator module of POTA and translate thesli
e into Promela then we use SPIN to 
he
k the tra
e. This approa
h may lead to exponential-time 
omplexity for RCTL+ predi
ates. However, the sli
e is in general mu
h smaller than the
omputation whi
h we validate with experimental studies.Input: A 
omputation hE;!i and a predi
ate pOutput: Predi
ate is satis�ed or not1. Re
ursively pro
ess p from inside to outside while applying temporal and boolean operatorsto 
ompute sli
e(hE;!i; p)2. If initialCut(hE;!i) 6= initialCut(sli
e(hE;!i; p) then3. return false and 
ounterexampleelse4. if p does not 
ontain : or _ then5. return true6. else translate sli
e(hE;!i; p) into Promela and run SPINFigure 8: Predi
ate Dete
tion using Sli
ingIn order to evaluate the e�e
tiveness of POTA, we performed experiments with s
alable pro-to
ols, 
omparing our 
omputation sli
ing based approa
h with partial order redu
tion basedapproa
h of SPIN [Hol97℄. We performed experiments on several proto
ols su
h as the Asyn-
hronous Transfer Mode Ring (ATMR) [ISO93℄, General Inter-ORB Proto
ol (GIOP) [OMG97℄,dining philosophers and leader ele
tion. We 
ould model almost all temporal logi
 spe
i�
ations ofthe pro
otols in RCTL+. We veri�ed 
on�gurations with 250 pro
esses using POTA, whereas SPIN
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Figure 9: (X;P )failed to verify 
on�gurations with more than 10 pro
esses due to state explosion. Detailed resultsof our experiments are available from POTA web site [SG03a℄. The experimental work proves thatfor large problem sizes, 
omputation sli
ing is an e�e
tive te
hnique.6 Timestamping Events and Global StatesIn this se
tion, we show appli
ations of dimension theory of partial orders to timestamping eventsand global states of a 
omputation. We also provide the ne
essary ba
kground in the dimensiontheory.6.1 DimensionA family R = fL1; L2; : : : ; Ltg of linear orders on X is 
alled a 
hain realizer of a poset (X;P ) ifP = \R. x < y 2 Li \ Lj if x < y in both Li and Lj . We also say that R realizes P . Figure 9shows a poset P in whi
h fL1; L2g realizes P .It 
an be shown [Tro92℄ that R is a realizer of P if and only if for every x; y 2 X with x k y(x in
omparable to y) in P , there exist distin
t integers i; j with 1 6 i; j 6 t for whi
h x < y in Liand y < x in Lj .De�nition 5 ([Tro92℄) For any poset (X;P ), the dimension of (X;P ), denoted by dim(X;P ), isthe least positive integer t for whi
h there exists a family R = fL1; L2; : : : ; Ltg of linear extensionsof P so that P = \R = \ti=1Li.The dimension of the poset in Figure 9 is 2. The 
on
ept of dimension provides us a way toen
ode a partial order. The elements of a partial order with dimension t 
an be en
oded with at-dimensional ve
tor as follows. For any element x, the ve
tor vx is de�ned as follows: vx[i℄ =number of elements less than x in Li, for 1 6 i 6 t. Given 
ode for two elements vx and vy, wehave the following order: vx < vy () 8i : vx[i℄ < vy[i℄ (5.1)For example, the 
ode for a and b in the poset in Figure 9 is (2; 3) and (3; 1) based on the realizer.Based on the 
ode and (5.1), it 
an be easily determined that a and b are 
on
urrent. We 
all theorder given by (5.1) the 
hain order.The dimension of a poset 
an be arbitrarily large. Consider a poset (X;P ) where X =fa1; a2; : : : ; ang [ fb1; b2; : : : ; bng, and ai < bj in P if and only if i 6= j, for i; j = 1; 2; : : : ; n.This 
lass of posets is known as the standard example and denoted by Sm. Figure 10 shows thediagram for S5. The following Theorem is due to Dushnik and Miller [DM41℄.
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a1 a2 a3 a4 a5Figure 10: S5Theorem 6 ([DM41℄) dim(Sm) = m.Let Li = [a1; : : : ; ai�1; ai+1; : : : ; am; bi; ai; b1; : : : ; bi�1; bi+1; : : : ; bm℄, where a1 is the lowest element,and bm is the highest element in 
hain Li Then R = fL1; L2; : : : ; Lmg is a realizer of Sm.We saw that 
lassi
al dimension theory provides lower bounds on the dimension of ve
tors whenthe 
omparison is based on the 
hain order. On the other hand, the ve
tor 
lo
ks in distributed
omputing use ve
tor ordering given by the following (6.2) whi
h we 
all ve
tor order.u < v � 8k : 1 6 k 6 N : u[k℄ 6 v[k℄^9j : 1 6 j 6 N : u[j℄ < v[j℄ (6.2)We generalize the 
on
epts in dimension theory so that the ordering used between 
odes is identi
alto (6.2). We �rst give the de�nition of a string.De�nition 6 (string) A poset (X;P ) is a string if and only if 9f : X ! N (the set of naturalnumbers) su
h that 8x; y 2 X : x < y i� f(x) < f(y)The set of elements in a string whi
h have the same f value is 
alled a knot. For example, aposet (X;P ) where X = fa; b; 
; dg and P = f(a; b); (a; 
); (a; d); (b; d); (
; d)g is a string be
ausewe 
an assign f(a) = 0; f(b) = f(
) = 1, and f(d) = 2. Here, b and 
 are in the same knot. Thedi�eren
e between a 
hain and a string is that a 
hain requires existen
e of a one-to-one mappingsu
h that x < y i� f(x) < f(y). For strings, we drop the requirement of the fun
tion to be one-to-one. We represent a �nite string by the sequen
e of knots in the string. Thus, P is equivalent tothe string f(a); (b; 
); (d)g.A 
hain is a string in whi
h every knot is of size 1. An anti-
hain is also a string with exa
tlyone knot.We write x 6s y if x 6 y in string s, and x <s y if x < y in string s.De�nition 7 (String Realizer) For any poset (X;P ), a set of strings S is 
alled a string realizeri� 8x; y 2 X : x < y in P if and only if (1) 8s 2 S : x 6s y, and (2) 9t 2 S : x <t y.The de�nition of less-than relation between two elements in the poset based on the strings isidenti
al to the less-than relation as used in ve
tor 
lo
ks. This is one of the motivation for de�ningstring realizer in the above manner. A string realizer for the poset in Fig. 9 is given by two stringss1 = f(
); (d; a); (b)g s2 = f(d; b); (
; a)gNow, analogous to the dimension we de�neDe�nition 8 (String Dimension) For any poset (X;P ), the string dimension of (X;P ), denotedby sdim(X;P ), is the size of the set S with the least number of strings su
h that S is a string realizerfor (X;P ).



Example 7 Consider the poset (X;P ) as follows. X = f;; fag; fbg; fa; bg; fa; 
g; fa; b; 
gg, P =f(A;B) 2 X �X : A � Bg. A string realizer for the poset 
an be obtained as follows. For ea
h setA 2 X, we use a bit ve
tor representation of the set A. Thus, fa; 
g is represented by (1; 0; 1) andthe set fa; bg is represented by (1; 1; 0). This representation gives us a string realizer with threestrings su
h that every string has exa
tly two knots.It may appear, at �rst, that the string dimension of a poset may be mu
h smaller than the
hain dimension. However, this is not the 
ase as shown by the following result.Theorem 7 ([GS01℄) For any poset (X;P ) su
h that sdim(P ) > 2; sdim(P ) = dim(P )6.2 Lower Bound on Dimension of Ve
tor Clo
ksAs we have mentioned before, the de�nition of a string realizer is identi
al to the de�nition forve
tor 
lo
ks in distributed systems. A distributed 
omputation on N pro
esses 
an be modeled asa poset of events (E;!) of width N . Fidge and Mattern's ve
tor 
lo
ks are simply string realizersof the poset (E;!).We �rst 
onsider lower bounds on the (string) dimension of ve
tor 
lo
ks. The following resultis due to Charron-Bost[CB91℄. The proof shown here is di�erent and taken from [GS01℄.Theorem 8 For every N , there exists a distributed 
omputation (E;!) on N pro
esses su
h thatany assignment from E to N k that 
aptures 
on
urren
y relation on E has k > N .Proof: The result is trivially true for N equal to 1. For any N > 2, 
onsider the standard exampleSN shown in Figure 10. De�ne ai and b(i mod N)+1 to be on pro
ess Pi. This 
omputation is on Npro
esses. By Dushnik and Miller's Theorem, this poset has dimension N . From Theorem 7, the
omputation has string dimension also equal to N . Any assignment from E to N k that 
aptures
on
urren
y relation, results in a string realizer with k strings. Sin
e the string dimension is N , itfollows that k > N . 2Next we show that N -dimensional ve
tor 
lo
ks of Fidge and Mattern (FM ve
tors for short)have an additional property that makes it ne
essary to have dimension N for all 
omputations. Inparti
ular, FM ve
tors satisfy the following property. If f and g are two distin
t events su
h thatevent f is on pro
ess Pi, then f:v[i℄ 6 g:v[i℄) f ! g (8.3)where e:v[i℄ denotes the ith 
omponent of the ve
tor 
lo
k assigned to the event e. As a result ofthis property FM ve
tors 
an also be used to timestamp elements of another poset - the latti
e of
onsistent 
uts of the 
omputation (E;!).For a 
onsistent 
ut F , we de�ne its timestamp asF:v[i℄ = maxfe:v[i℄ j e 2 Fg (8.4)It 
an be shown that any ve
tor 
lo
k me
hanism based on 8.4 that satis�es 8.3 
aptures therelation � between 
onsistent 
uts, i.e., F � G () F:v 6 G:v.We have earlier mentioned that the set of all 
onsistent 
uts under the relation � forms adistributive latti
e. A result due to Dilworth tells us the dimension of a distributive latti
e.Theorem 9 ([Dil50℄) Let L be a distributive latti
e generated by a poset (X;P ). Then dim(L) =width(P ).Therefore, we haveTheorem 10 ([GS01℄) Any ve
tor 
lo
k me
hanism that 
aptures � relation on the set of 
on-sistent 
uts in a distributed 
omputation of width N must have at least N 
oordinates.



7 Con
lusionsThe theory of posets and latti
es has many pra
ti
al appli
ations in distributed 
omputing. Be-sides the appli
ations in predi
ate dete
tion, latti
e theory is also useful in predi
ate 
ontrol[TG99, MG00℄. We believe that the future will bring even more appli
ations of the theory oforder to distributed 
omputing. For example, the 
on
epts of M�obius fun
tions, Zeta polynomialand Generating fun
tions (see the book on Enumerative Combinatori
s, Vol 1, by R.Stanley Chap-ter 3 [Sta86℄) in posets, or modular latti
es, geometri
 latti
es et
. (see the book on General Latti
eTheory by Gr�atzer [Gra78℄) have not yet found appli
ations in distributed 
omputing.We also expe
t, enri
hment of the poset and latti
e theory from distributed 
omputing appli
a-tions. The 
on
epts of linear predi
ates, eÆ
ient advan
ement property, algorithms for 
omputingsli
es et
. 
an be viewed as 
omputational latti
e theory.In addition to bene�ts in distributed 
omputing, te
hniques in sli
ing have appli
ations in
ombinatori
s. A 
ombinatorial problem usually requires enumerating, 
ounting or as
ertainingexisten
e of stru
tures that satisfy a given property B. We 
ast the 
ombinatorial problem as adistributed 
omputation su
h that there is a bije
tion between 
ombinatorial stru
tures satisfyingB and the global states that satisfy a property equivalent to B. We then apply results in sli
ing a
omputation with respe
t to a predi
ate to obtain a sli
e of only those global states that satisfy B.This gives us an eÆ
ient (polynomial time) algorithm to enumerate, 
ount or dete
t stru
tures thatsatisfy B when the total set of stru
tures is large but the set of stru
tures satisfying B is small. In[Gar02a℄, we illustrate this te
hnique by analyzing problems in integer partitions, set families, andset of permutations.Referen
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