
Appli
ations of Latti
e Theory to DistributedComputingVijay K. GargECE DepartmentUniversity of TexasAustin, TX, USAgarg�e
e.utexas.edu Neeraj MittalCS DepartmentUniversity of Texas, DallasRi
hardson, TX, USAneerajm�utdallas.edu Alper SenECE DepartmentUniversity of TexasAustin, TX, USAsen�e
e.utexas.eduAbstra
tIn this note, we dis
uss the appli
ations of latti
e theory to solving problems in distributedsystems. The �rst problem we
onsider is that of dete
ting a predi
ate in a
omputation,i.e., determining whether there exists a
onsistent
ut of the
omputation satisfying the givenpredi
ate. The se
ond problem involves
omputing the sli
e of a
omputation with respe
t to apredi
ate. A sli
e is a
on
ise representation of all those global states of the
omputation thatsatisfy the given predi
ate. The third problem we
onsider is that of analyzing a partial ordertra
e of a distributed program to determine whether it satis�es the given temporal logi
 formula.Finally, we
onsider the problem of timestamping events and global states of a
omputation to
apture the order relationship. We dis
uss how the results from latti
e theory
an be used insolving ea
h of the above problems.1 Introdu
tionIn 1978, Lamport in a seminal paper [Lam78℄ argued that the order of events that
an be observedin a distributed
omputation is only partial. He
alled this partial order the happened-before orderand presented a me
hanism
alled logi
al
lo
ks that gave a timestamp in a totally ordered domainpreserving the happened-before order. Sin
e the theory of partial orders matured in 50's and 60'smostly due to pioneering work by Birkho� and Dilworth, it is natural to assume that the theoryof partial orders would then be applied to distributed
omputing in the next few years. However,the progress in appli
ation of the theory of partial orders to distributed
omputing has been slow.We dis
uss a few of these appli
ations in distributed
omputing espe
ially in the areas of globalproperty evaluation and timestamping events.In 1985, Chandy and Lamport [CL85℄ de�ned a
onsistent
ut, also
alled a
onsistent globalstate. Let E be the set of events of a
omputation and ! be the happened-before order on E. Asubset G of E is a
onsistent
ut if whenever it
ontains an element f then it
ontains all elements ethat happened-before f . This
on
ept is identi
al to the notion of order ideal in the latti
e theory.In that paper, they also gave a distributed algorithm to re
ord a
onsistent
utIn 1989, Mattern [Mat89℄ showed that the set of all
onsistent
uts of a distributed
omputationforms a latti
e. This result is a spe
ial
ase of the theorem in latti
e theory that the set of all idealsof a partial order forms a distributive latti
e. Note that Mattern (
on
urrently with Fidge [Fid91℄)also de�ned a ve
tor
lo
k me
hanism that
an be used to timestamp events in a distributed
omputation. Ve
tor
lo
ks have been used extensively in many distributed algorithms [Gar02b℄.

In 1991, Charron-Bost [CB91℄ gave a lower bound on the dimension of ve
tor
lo
ks usingdimension theory of partial orders. Dimension theory of partial orders was initiated by Dushnikand Miller in 1941 [DM41℄. In that paper, they also gave a family of posets Sn of width n whi
hhad dimension n.In 1995, Chase and Garg [CG95℄ de�ned linear predi
ates for eÆ
ient dete
tion of global predi-
ates. It
an be shown that a predi
ate B is linear if and only if the set of
onsistent
uts satisfyingB is
losed under the meet operation of the latti
e of
onsistent
uts. The set of linear predi
ates
an be dete
ted eÆ
iently assuming eÆ
ient advan
ement property.So far, the fa
t that the set of
onsistent
uts form a distributive latti
e was not really exploitedin distributed
omputing literature. One of the fundamental theorems of Birkho� states that every�nite distributive latti
e
an be generated by the poset formed by its join-irredu
ible elements.Sin
e the set of join-irredu
ible elements may be (exponentially) smaller than the latti
e itself, thistheorem is very useful
omputationally.In 2001, Garg and Mittal [GM01℄ introdu
ed the notion of
omputation sli
e based on thistheorem. A sli
e of a
omputation with respe
t to a predi
ate B is a
on
ise representation of all
onsistent
uts that satisfy B. Sli
e has bene�ts in terms of state spa
e redu
tion for predi
atedete
tion. These appli
ations were further explored by Mittal and Garg in [MG01, MG03℄.In 2001, Garg and Skawratananond [GS01℄ de�ned a spe
ial type of partial order
alled stringand showed that Fidge-Mattern ve
tor
lo
k
orresponds to a string realizer of a poset. They alsoapplied Dilworth's theorem for the dimension of a �nite distributive latti
e to show that any ve
tor
lo
k me
hanism that
an timestamp a
onsistent
ut of a distributed
omputation on N pro
essesmust have dimension at least N .In 2002, Sen and Garg [SG02, SG03b℄ developed algorithms to
ompute sli
es for temporallogi
 formulas. These algorithms are useful in dete
ting temporal logi
 formulas in a distributed
omputation [SG02℄. They implemented a tool
alled Partial Order Tra
e Analyzer (POTA)[SG03b℄for evaluating temporal logi
 formulas on partial order tra
es.The purpose of this note is to provide the reader with relevant
on
epts in latti
e theory and abrief survey of its appli
ations to distributed
omputing. The note is organized as follows. Se
tion 2provides the basi
 de�nitions in latti
e theory. Se
tion 3 gives appli
ations of latti
e theory in globalpredi
ate dete
tion, Se
tion 4 in
omputation sli
ing, Se
tion 5 in partial order tra
e analysis, andSe
tion 6 in timestamping events and
onsistent
uts.2 Partially Ordered Sets and Latti
esA pair (X;P) is
alled a partially ordered set or poset ifX is a set and P is a re
exive, antisymmetri
,and transitive binary relation on X. We
all X the ground set while P is a partial order on X. The6 and divides relations on the set of natural numbers are some examples of partial orders.We write x 6 y and y > x in P when (x; y) 2 P . Also, x < y and y > x in P means x 6 y inP and x 6= y. Let x; y 2 X with x 6= y. If either x < y or y < x, we say x and y are
omparable.On the other hand, if neither x < y nor x > y, then we say x and y are in
omparable.A poset (X;P) is
alled a
hain or a linear order if every distin
t pair of points from X is
omparable in P . Similarly, we
all a poset an anti
hain if every distin
t pair of points from X isin
omparable in P . The width of a poset is de�ned to be the largest anti
hain in the poset and isdenoted by width(P).Finite posets are often depi
ted graphi
ally using a Hasse diagram. To de�ne Hasse diagrams,we �rst de�ne a relation
overs as follows. For any two elements x; y, we say y
overs x if x < yand 8z 2 X : x 6 z < y implies z = x. In other words, there should not be any element z with

x < z < y. A Hasse diagram of a poset is a graph with the property that there is an edge from xto y if and only if y
overs x. Furthermore, when drawing the �gure in an Eu
lidean plane, x isdrawn lower than y when y
overs x. For example,
onsider the poset (X;6).X def= fa; b;
; d; eg; 6 def= f(a; a); (b; b); (
;
); (d; d); (a; b); (a;
); (a; d); (a; e); (b; d); (b; e); (
; e); (d; e)g:The �rst Hasse diagram in Figure 1
orresponds to this poset.An element y 2 X is
alled an upper bound for S � X if s 6 y in P , for every s 2 S. An upperbound y for S is the least upper bound for S, provided y 6 y0 in P for every upper bound y0 ofS. Lower bounds and greatest lower bounds are de�ned similarly. The greatest lower bound is alsoreferred to as in�mum or meet. Similarly, the least upper bound is also referred to as supremum orjoin. We denote the meet of fa; bg by a u b, and the join of fa; bg by a t b.In the set of natural numbers ordered by the divides relation, the join
orresponds to �ndingthe greatest
ommon divisor and the meet
orresponds to �nding the least
ommon multiple of twonatural numbers.The greatest lower bound or the least upper bound may not always exist. In the third posetin Figure 1, the set fb;
g does not have any least upper bound (although both d and e are upperbounds). fff f f
f
f

f fff ff
����Æ6��I ���7CCCC

CCCCO 6
������I�������6 6

�������I
���7 SSSo

ab
d e b
a ab
d ef

Figure 1: Only the �rst two posets are latti
es.A set of partially-ordered elements (or poset) forms a latti
e if the greatest lower bound and theleast upper bound exist and are
ontained in the set for every pair of elements. Thus, the �rst twoposets in Figure 1 are latti
es, whereas the third one is not. As another example, the power set ofa given set forms a latti
e under � relation.Example 1 For the set fx; y; zg, the power set is given by f;; fxg; fyg; fzg; fx; yg; fx; zg; fy; zg;fx; y; zgg. The meet of the two elements of a power set is given by their interse
tion. For example,the meet of fx; yg and fy; zg is fyg. Dually, the join is given by their union. For example, thejoin of fx; yg and fy; zg is fx; y; zg. In other words, the meet and join operators of the latti
e
orrespond to interse
tion (\) and union ([), respe
tively.The latti
e in Example 1 is
alled a Boolean latti
e. A subset of a latti
e is a sublatti
e ifit is
losed under the meet and join operations. For example, in the Boolean latti
e the set ofall subsets of fx; y; zg that
ontain x forms a sublatti
e. However, the set of all subsets withat most two elements does not form a sublatti
e. A latti
e is distributive if its meet operatordistributes over its join operator. For example, sin
e interse
tion distributes over union, a Boolean

latti
e is distributive. The latti
e of natural numbers with 6 de�ned as the relation divides is alsodistributive. Two important nondistributive latti
es,
alled diamond and pentagon, are shown inFigure 2.
0

1

a b c

b

a

c

1

0Figure 2: Examples of nondistributive latti
esOne of the Birkho�'s results on latti
es states that a latti
e is distributive if and only if it doesnot
ontain a pentagon or a diamond as a sublatti
e [DP90℄.Now,
onsider a (�nite) set of partially-ordered elements (not ne
essarily a latti
e). A subsetof elements forms an order ideal (or simply an ideal) if whenever an element is
ontained in thesubset then all its pre
eding elements are also
ontained in the subset. Formally, a subset S of Xis an order ideal if it satis�es8x; y 2 X : (x 2 S) ^ (y 6 x)) (y 2 S)Example 2 For the poset in Figure 3(b), some examples of ideals are fa; b;
g and fa; bg. However,fa; dg is not an ideal be
ause it
ontains d but not b, whi
h pre
edes d.It is well-known that the set of ideals of a poset forms a distributive latti
e under � relation[DP90℄. For a distributed
omputation, whi
h is essentially a poset of events ordered by Lamport'shappened-before relation [Lam78℄, the notion of order ideal
oin
ides with that of
onsistent
ut.Therefore it
an be dedu
ed that the set of
onsistent
uts of a
omputation forms a distributivelatti
e.By using the notion of ideals, we went from a poset to a distributive latti
e. Is it possibleto go in the reverse dire
tion? The answer is provided by Birkho�'s Representation Theorem[DP90℄. Intuitively, the result says that a �nite distributive latti
e
an be uniquely
hara
terizedby only a small subset of its elements known as join-irredu
ible elements An element of a latti
eis join-irredu
ible if (1) it is not the least element, and (2) it
annot be expressed as join of twoelements, both di�erent from itself. Clearly, the join-irredu
ible elements of a Boolean latti
e arethe singleton sets.Example 3 The Boolean latti
e in Example 1 has three join-irredu
ible elements, namely fxg,fyg and fzg. As expe
ted, every other element that is di�erent from ;
an be expressed as theunion of some or all of these three elements.Pi
torially, in a �nite latti
e, an element is join-irredu
ible if and only if it has exa
tly one lower
over, that is, there is exa
tly one edge
oming into the element in the Hasse diagram. Intuitively,the join-irredu
ible elements of a distributive latti
e a
t as basis elements for the latti
e. Everyelement of the latti
e, ex
ept for the least one (e.g., ; in a Boolean latti
e),
an be written as the

(b)(a)

: join−irreducible element

c d

a b

d

ba

c

Figure 3: (a) An example of a distributive latti
e (b) its partial order representation.join of some or all of these join-irredu
ible elements. The notion of meet-irredu
ible elements
anbe de�ned dually. The meet-irredu
ible elements of a Boolean latti
e are given by those subsetsof the ground set that have exa
tly one element missing. Thus, the meet-irredu
ible elements ofthe Boolean latti
e in Example 1 are fx; yg, fy; zg and fx; zg. Clearly, every other element that isdi�erent from fx; y; zg
an be expressed as the interse
tion of some or all of these three elements.Birkho�'s Theorem states that every �nite poset P is isomorphi
 to the set of join-irredu
ibleelements of the set of ideals of P . Similarly, every �nite distributive latti
e is isomorphi
 to theset of ideals of its join-irredu
ible elements. Thus, Birkho�'s Theorem establishes the dualitybetween �nite posets and �nite distributive latti
es. We
an go from a �nite poset to its dual �nitedistributive latti
e by
onstru
ting the set of its order ideals and from the �nite distributive latti
eto the poset by restri
ting it to join-irredu
ible elements. For example, Figure 3(b) gives the poset
orresponding to the latti
e in Figure 3(a).3 Dete
ting Global Predi
atesA predi
ate is simply a boolean fun
tion from the set of all
onsistent
uts to f0; 1g. Equivalently,a predi
ate spe
i�es a subset of
onsistent
uts in whi
h the boolean fun
tion evaluates to 1.We now de�ne various
lasses of predi
ates. The
lass of meet-
losed predi
ates are usefulbe
ause they allow us to
ompute the least
onsistent
ut that satis�es a given predi
ate.De�nition 1 (Meet-Closed Predi
ates) A predi
ate B is meet-
losed if for all
onsistent
utsG;H: B(G) ^B(H)) B(G uH)The predi
ate \does not
ontain x" in the Boolean latti
e is meet-
losed whereas the predi
ate\has size k" is not.In a distributed
omputation, we de�ne a predi
ate to be lo
al if its truth value depends onlyon the state of a single pro
ess. Any global predi
ate that
an be expressed as a
onjun
tion oflo
al predi
ates is meet-
losed.It follows from the de�nition that if there exists any
onsistent
ut that satis�es a meet-
losedpredi
ate B, then there exists the least one. Note that the predi
ate false whi
h
orresponds tothe empty subset and the predi
ate true whi
h
orresponds to the entire set of
onsistent
uts are

meet-
losed predi
ates. We now give another
hara
terization of meet-
losed predi
ates that willbe useful for
omputing the least
onsistent
ut that satis�es the predi
ate. To this end, we �rstde�ne the notion of a
ru
ial event for a
onsistent
ut.De�nition 2 (Cru
ial Element) For a
onsistent
ut G $ E and a predi
ate B, we de�ne e 2E �G to be
ru
ial for G as:
ru
ial(G; e;B) def= 8H � G : (e 2 H) _ :B(H):De�nition 3 (Linear Predi
ates) A predi
ate B is linear if for all
onsistent
uts G $ E,:B(G)) 9e 2 E �G :
ru
ial(G; e;B):Intuitively, this means that any
onsistent
ut H, that is at least G,
annot satisfy the predi
ateunless it
ontains e. Now, we haveTheorem 1 ([CG95℄) A predi
ate B is linear if and only if it is meet-
losed.Proof: First assume that B is not
losed under meet. We show that B is not linear. Sin
e B isnot
losed under meets, there exist two
onsistent
uts H and K su
h that B(H) and B(K) butnot B(H uK). De�ne G to be H uK. G is a stri
t subset of H � E be
ause B(H) but not B(G).Therefore, G
annot be equal to E. We show that B is not linear by showing that there does notexist any
ru
ial element for G. A
ru
ial element e, if it exists,
annot be in H � G be
ause Kdoes not
ontain e and still B(K) holds. Similarly, it
annot be in K � G be
ause H does not
ontain e and still B(H) holds. It also
annot be in E � (H [K) be
ause of the same reason. We
on
lude that there does not exist any
ru
ial event for G.Now assume that B is not linear. This implies that there exists G $ E su
h that :B(G) andnone of the elements in E�G is
ru
ial. We �rst
laim that E�G
annot be a singleton. Assumeif possible E � G
ontains only one element e. Then, any
onsistent
ut H that
ontains G anddoes not
ontain e must be equal to G itself. This implies that :B(H) be
ause we assumed :B(G).Therefore, e is
ru
ial
ontradi
ting our assumption that none of the elements in E �G is
ru
ial.Let W = E � G. For ea
h e 2 W , we de�ne He as the
onsistent
ut that
ontains G, does not
ontain e and still satis�es B. It is easy to see that G is the meet of all He. Therefore, B is notmeet-
losed be
ause all He satisfy B, but not their meets. 2Example 4 Consider the Boolean Latti
e generated by all subsets of f1; :::; ng. Let the predi
ateB de�ned to be true on a
onsistent
ut G as \If G
ontains any odd i < n, then it also
ontainsi + 1." It is easy to verify that B is meet-
losed. Given any G for whi
h B does not hold, the
ru
ial elements
onsist of fiji is even; 2 6 i 6 n; i� 1 2 G; i 62 GgExample 5 Consider a distributed
omputation on two pro
esses P1 and P2 and the predi
ate Bto be true on a
onsistent
ut if both the pro
esses are in the
riti
al se
tion. Given any
onsistent
ut G for whi
h B does not hold, either P1 is not in the
riti
al se
tion, or P2 is not in the
riti
alse
tion. In the former
ase, the next event of P1 after G, entering the
riti
al se
tion is
ru
ialand in the latter
ase the event of P2 entering the
riti
al se
tion is
ru
ial. This example
an beeasily generalized to any global boolean predi
ate that
an be expressed as a
onjun
tion of lo
alpredi
ates.

Our interest is in dete
ting whether there exists an
onsistent
ut that satis�es a given pred-i
ate B. We assume that given a
onsistent
ut, G, it is eÆ
ient to determine whether B istrue for G or not. On a

ount of linearity of B, if B is evaluated to be false in some
onsistent
ut G, then we know that there exists a
ru
ial event in E�G. We make an additional assumption:(EÆ
ient Advan
ement Property) There exists an eÆ
ient (polynomial time) fun
tion todetermine the
ru
ial event.We now haveTheorem 2 ([CG95℄) If B is a linear predi
ate with the eÆ
ient advan
ement property, thenthere exists an eÆ
ient algorithm to determine the least
onsistent
ut that satis�es B (if any).Proof: An eÆ
ient algorithm to �nd the least
ut in whi
h B is true is given in Figure 4. Wesear
h for the least
onsistent
ut starting from the empty
onsistent
ut. If the predi
ate is falsein the
onsistent
ut, then we �nd the
ru
ial element using the eÆ
ient advan
ement propertyand then repeat the pro
edure. If this is the last state on the pro
ess, then we return false else weadvan
e along the pro
ess that has the
ru
ial event. 2boolean fun
tion dete
t(B:boolean predi
ate, P :poset)var G:
onsistent
ut initially G := fg;while (:B(G) ^ (G 6= P)) doLet e be su
h that
ru
ial(G; e;B) in P ;G := G [feg.endwhile;if B(G) return true;else return false;Figure 4: An eÆ
ient algorithm to dete
t a linear predi
ateAssuming that
ru
ial(G; e;B)
an be evaluated eÆ
iently for a given poset, we
an determinethe least
onsistent
ut that satis�es B eÆ
iently even though the number of
onsistent
uts may beexponentially larger than the size of the poset. In pra
ti
e, most meet-
losed predi
ates B satisfythe eÆ
ient advan
ement property. All the examples in this paper do.So far we have fo
used on meet-
losed predi
ates. All the de�nitions and ideas
arry overto join-
losed predi
ates. If the predi
ate B is join-
losed, then one
an sear
h for the largest
onsistent
ut that satis�es B in a fashion analogous to �nding the least
onsistent
ut when it ismeet-
losed.Predi
ates that are both meet-
losed and join-
losed are
alled regular predi
ates.De�nition 4 (Regular Predi
ates [GM01℄) A predi
ate is regular if the set of
onsistent
utsthat satisfy the predi
ate forms a sublatti
e of the latti
e of
onsistent
uts. Equivalently, a predi
ateB is regular with respe
t to P if it is
losed under t and u, i.e., for all
onsistent
uts G;H of theposet P : B(G) ^B(H)) B(G tH) ^B(G uH)

The set of
onsistent
uts that satisfy a regular predi
ate forms a sublatti
e of the latti
e of all
onsistent
uts. Some examples of regular predi
ates are:� Consider the predi
ate B as \there is no outstanding message in the
hannel." We show thatthis predi
ate is regular. Observe that B holds on a
onsistent
ut G if only if for all sendevents in G the
orresponding re
eive events are also in G. It is easy to see that if B(G) andB(H), then B(G[H). To see that it holds for G\H, let e be any send event in G\H. Letf be the re
eive event
orresponding to e. From B(G), we get that f 2 G and from B(H),we get that f 2 H. Thus f 2 G \H. Hen
e, B(G \H). Similarly, the following predi
atesare also regular.{ There is no token message in transit.{ No token message is in transit between pro
esses P1 and P5.{ Every \request" message has been \a
knowledged" in the system.� Any lo
al predi
ate is regular. Thus the following predi
ates are regular.{ The leader has sent all \prepare to
ommit" messages.{ Pro
ess Pi is in a \red" state.� Channel predi
ates su
h as \there are at most k messages in transit from Pi to Pj" and \thereare at least k messages in transit from Pi to Pj" are also regular.It is easy to verify that the
lass of regular predi
ates is
losed under
onjun
tion. The
losureunder
onjun
tion implies that the following predi
ates are also regular:� No pro
ess has the token, and no
hannel has the token.� Any
onjun
tion of lo
al predi
ates.4 Sli
ing Distributed ComputationsSuppose we are not interested in all
onsistent
uts of a
omputation but in only a subset ofthem, namely those that satisfy some property of interest to us expressed as a predi
ate mappinga
onsistent
ut to a boolean value. Further, suppose the set of
onsistent
uts for whi
h thepredi
ate evaluates to true forms a sublatti
e of the latti
e of
onsistent
uts. A sublatti
e of adistributive latti
e is also a distributive latti
e [DP90℄. Therefore, using Birkho�'s Theorem, thesublatti
e generated by the
onsistent
uts satisfying the predi
ate is
ompletely
hara
terized bythe join-irredu
ible elements of the sublatti
e.Example 6 The distributed
omputation shown in Figure 5(a)
onsists of two pro
esses P1 andP2. Pro
ess P1 exe
utes events a and b, whereas pro
ess P2 exe
utes events
 and d. On exe
utingb, P1 sends a message to P2, whi
h is re
eived by P2 at d. The set of
onsistent
uts of the
omputation are shown in Figure 5(b). Suppose we are interested in only those
onsistent
uts forwhi
h no messages are in transit|also known as strongly
onsistent
uts. They have been shadedin Figure 5(b) and are shown separately in Figure 5(
). The set of strongly
onsistent
uts formsa sublatti
e and its join-irredu
ible elements have been drawn with thi
k boundaries. The posetindu
ed on the set of join-irredu
ible elements of the sublatti
e is shown in Figure 5(d).

X
Y

Z
Z

X Y
(d)

(a)

(b)

(
)

fg
fag f
g

fa;
g

fa; b;
; dg

fa; bg
fa; b;
g

fa; b;
; dg
fa;
g

f
gfag
fg

P1
P2

a b
d

Figure 5: (a) A distributed
omputation, (b) the distributive latti
e generated by its
onsistent
uts, (
) the sublatti
e
ontaining all
onsistent
uts for whi
h no messages are in transit, and(d) the poset indu
ed on the set of join-irredu
ible elements of the sublatti
e.In
ase the set of
onsistent
uts that satisfy the predi
ate does not form a sublatti
e, we addone or more other
onsistent
uts|that do not satisfy the predi
ate|to
omplete the sublatti
e.The
onsistent
uts are added in su
h a way so as to minimize the total number of
onsistent
utsin the resulting sublatti
e. The sublatti
e is then represented using the set of its join-irredu
ibleelements. This su

in
t representation of a possibly large set of
onsistent
uts satisfying someproperty is referred to as a sli
e [GM01, MG01℄.Theorem 3 The sli
e of a distributed
omputation is uniquely de�ned for all predi
ates.Proof: Let D denote the set of all
onsistent
uts that satisfy the predi
ate. We show that thesublatti
e with the least number of
onsistent
uts that satisfy D is uniquely de�ned. Assumethe
ontrary. Let X and Y be two distin
t sublatti
es with the least number of
onsistent
utssu
h that (1)
ardinality(X) =
ardinality(Y), and (2) both X and Y
ontain D. Consider Z =X \ Y . Clearly, Z also
ontains D. Also, sin
e X 6= Y ,
ardinality(Z) <
ardinality(X) and
ardinality(Z) <
ardinality(Y). It
an be proved that interse
tion of two sublatti
es is also asublatti
e. This implies that Z is a sublatti
e that
ontains D and has fewer number of
onsistent
uts than either X or Y|a
ontradi
tion. 2The sli
e for a predi
ate may
ontain
onsistent
uts that do not satisfy the predi
ate|namelythose that are added to
omplete the sublatti
e. A sli
e is lean if it
ontains only those
onsistent
uts that satisfy the predi
ate [MG01℄. Clearly, the sli
e of a
omputation for a predi
ate is lean ifand only if the predi
ate is regular.Another way of looking at sli
e is that it spe
i�es whi
h events should be exe
uted in an atomi
fashion and the order in whi
h they should be exe
uted. For example, the sli
e shown in Figure 5(d)and redrawn in Figure 6(a) spe
i�es that events b and d should be exe
uted atomi
ally after events

fag
f
g

fb; dg
d

a

b

(a) (b)
? >

Figure 6: (a) A sli
e depi
ting the events that are to exe
uted atomi
ally, and (b) the graphrepresentation of the sli
e in (a).a and
 have been exe
uted. This is expe
ted be
ause any
onsistent
ut whi
h in
ludes the sendevent of a message but not its re
eive will have at least one message in transit.For algorithmi
 purposes, it is more
onvenient to represent a sli
e using a dire
ted graph onevents possibly
ontaining
y
les; all events that are to be exe
uted atomi
ally form a strongly
onne
ted
omponent. The notion of
onsistent
ut, of
ourse, has to be extended appropriately.We de�ne a
onsistent
ut (global state) on dire
ted graphs as a subset of verti
es su
h that ifthe subset
ontains a vertex then it
ontains all its in
oming neighbours. Observe that the emptyset ; and the set of all verti
es are trivial
onsistent
uts.We introdu
e a �
titious global initial and a global �nal event, denoted by ? and >, respe
tively.The global initial event o

urs before any other event on the pro
esses and initializes the state ofthe pro
esses. The global �nal event o

urs after all other events on the pro
esses. Any non-trivial
onsistent
ut will
ontain the global initial event and not the global �nal event. Therefore, every
onsistent
ut of a
omputation in the model without ? and > is a non-trivial
onsistent
ut ofthe
omputation in the model with ? and > and vi
e versa. Note that the empty
onsistent
ut,; and the �nal
onsistent
ut E, in the model without ? and >
orrespond to f?g and E � f>gin our model, respe
tively.We denote the sli
e of a
omputation hE;!i with respe
t to a predi
ate p by sli
e(hE;!i; p).Note that hE;!i = sli
e(hE;!i; true). Every sli
e derived from the
omputation hE;!i has thetrivial
onsistent
uts (; and E) among its set of
onsistent
uts. A sli
e is empty if it has nonon-trivial
onsistent
uts [MG01℄. In the rest of the paper, unless otherwise stated, a
onsistent
ut refers to a non-trivial
onsistent
ut. In general, a sli
e will
ontain
onsistent
uts that do notsatisfy the predi
ate (besides trivial
onsistent
uts).The graph representation of the sli
e shown in Figure 6(a) is depi
ted in Figure 6(b). Everysublatti
e of the latti
e of
onsistent
uts (of a
omputation)
an be generated by a graph obtainedby simply adding zero or more edges to the
omputation [Gar02a℄.Now, the sli
e of a
omputation for a predi
ate
an be
omputed as follows. For every pair ofevents e and f , dete
t whether there is a
onsistent
ut of the
omputation satisfying the predi
atethat
ontains f but does not
ontain e. An edge is added from e to f if and only if the dete
tionalgorithm returns \no" as the answer. The reason is that, on adding an edge from e to f in agraph, the resulting graph retains all
onsistent
uts of the original graph ex
ept those that
ontainf but not e. Therefore if no
onsistent
ut satisfying the predi
ate that
ontains f but not e exists,then an edge from e to f
an be safely added to the graph without eliminating any of the desired
onsistent
uts. Also, note that given a sli
e of a
omputation for a predi
ate, we
an dete
t thepredi
ate in the
omputation easily by simply testing the sli
e for emptiness. Therefore it followsthat:Theorem 4 There exists an eÆ
ient algorithm for
omputing the sli
e for a predi
ate if and onlyif there exists an eÆ
ient algorithm for dete
ting the predi
ate.

More eÆ
ient algorithms for
omputing the sli
e for spe
ial
lasses of predi
ates in
luding linear(and regular) predi
ates,
omplement of regular predi
ates, and k-lo
al predi
ates for
onstant k
an be found elsewhere [GM01, MG01, MG03℄.A useful operation on sli
es is
omposition [MG01℄. Given two sli
es, sli
e
omposition
an beused, for example, to
ompute a graph whose
onsistent
uts are exa
tly those that belong to boththe sli
es. This is referred to as
omposition with respe
t to
onjun
tion. Dually, sli
es
an alsobe
omposed with respe
t to disjun
tion. Sli
es
an be
omposed by simply manipulating edgesin their graph representation. Spe
i�
ally, to
ompose sli
es with respe
t to
onjun
tion, we addan edge from an event e to an event f if and only if the edge is present in the (transitively-
losed)graph representation of at least one of the sli
es [MG01℄. Similarly, to
ompose sli
es with respe
tto disjun
tion, we add an edge from an event e to an event f if and only if the edge is present inthe graph representation of both the sli
es [MG01℄. Also, an algorithm to
ompute the sli
e withrespe
t to the negation of a regular predi
ate has been given in [MG01℄.Sli
ing
an be used to fa
ilitate predi
ate dete
tion as illustrated by the following s
enario.Consider a predi
ate B that is a
onjun
tion of two
lauses B1 and B2. Now, assume that B1 issu
h that it
an be dete
ted eÆ
iently but B2 has no stru
tural property that
an be exploitedfor eÆ
ient dete
tion. An eÆ
ient algorithm for lo
ating some
onsistent
ut satisfying B1
annotguarantee that the
ut also satis�es B2. Therefore, to dete
t B, without
omputation sli
ing, weare for
ed to use te
hniques su
h as breadth �rst sear
h [CM91℄, depth �rst sear
h [AV01℄, andpartial-order methods (a model-
he
king te
hnique) [SUL00℄, whi
h do not take advantage of thefa
t that B1
an be dete
ted eÆ
iently. With
omputation sli
ing, however, we
an �rst
omputethe sli
e for B1. If only a small fra
tion of
onsistent
uts satisfy B1, then instead of dete
tingB in the
omputation, it is mu
h more eÆ
ient to dete
t B in the sli
e. Therefore by spendingonly polynomial amount of time in
omputing the sli
e we
an throw away exponential number of
onsistent
uts, thereby obtaining an exponential speedup overall. In fa
t, our experimental resultsindi
ate that sli
ing
an indeed lead to an exponential improvement over existing te
hniques forpredi
ate dete
tion in terms of time and spa
e [MG03, SG03b℄.5 Analyzing Partial Order Tra
esTraditional te
hniques for eliminating bugs in
on
urrent programs (message-passing or shared-memory based) in
lude testing and formal methods. Testing te
hniques are ad-ho
 and do not allowfor formal spe
i�
ation and veri�
ation of logi
al properties that a program needs to satisfy. Formalmethods su
h as model
he
king and theorem proving do not s
ale well and need
onsiderablemanual e�ort. Given that formal methods, in general, work on an abstra
t model of a programand make assumptions on the environment, even if a program has been formally veri�ed, we still
annot be sure of the
orre
tness of a parti
ular implementation. However, for highly dependablesystems su
h as avioni
s or automobiles, it is
ru
ial to reason on the parti
ular implementation.We fo
us on a te
hnique
alled runtime veri�
ation that addresses some of the problems intesting and formal methods. This te
hnique enables automati
 veri�
ation of implementations oflarge programs using temporal logi
 spe
i�
ations. The s
alability in runtime veri�
ation
omesfrom examining only a single exe
ution tra
e of a program like in testing.Next we show how to use
omputation sli
ing with respe
t to temporal logi
 predi
ates forpartial order tra
e analysis.We model a �nite tra
e of a program as a partial order between events, for example Lamport'shappened-before relation [Lam78℄. Most runtime veri�
ation tools su
h as MaC tool [KKL+01℄ andNASA's JPaX tool [HR01℄ model a tra
e as a total order (interleaving) of events. Using a partial

order model, we
an
apture exponential number of possible total order tra
es su

in
tly. Thistranslates into �nding bugs that are not found with MaC or JPaX tools. Also, a partial ordermodel is a more faithful representation of
on
urren
y [Lam78℄ and this model enables us to applyour theory to distributed programs as well as shared memory programs.5.1 Computation Sli
es for Temporal Logi
 Predi
atesMany spe
i�
ations of distributed programs are temporal in nature be
ause we are interested inproperties related to the sequen
e of states during an exe
ution rather than just the initial and�nal states. For example, the liveness property in dining philosophers problem, \a philosopher,whenever gets hungry, eventually gets to eat", is a temporal property. The
on
ept of sli
ing isuseful for dete
ting temporal logi
 predi
ates sin
e it enables us to reason only on the part of theglobal state spa
e that
ould potentially a�e
t the predi
ate.We show in [SG02℄ that temporal predi
ates EF(p), EG(p), and AG(p) are regular when p isregular and we
all su
h predi
ates as temporal regular predi
ates. We say that a
onsistent
utC satis�es EF(p) if p holds for some
onsistent
ut on some path from C to the �nal
onsistent
ut. We say that a
onsistent
ut C satis�es EG(p) (resp. AG(p)) if p holds for all
uts onsome (resp. all) path from C to the �nal
onsistent
ut, Algorithms in [GM01, MG01℄ for regularpredi
ates assume the eÆ
ient advan
ement property and the property that given a
onsistent
ut,it is eÆ
ient to determine whether the predi
ate holds for the
ut or not. However, these propertiesdo not hold for temporal regular predi
ates. With the results of [SG02℄, we
an eÆ
iently use
omputation sli
ing for analyzing tra
es in the subset of well-known temporal logi
 CTL [CE81℄with the following properties.� Atomi
 propositions are regular predi
ates and their negations.� Temporal operators are EF, EG, and AG.We
all this logi
 Regular CTL plus (RCTL+), where plus denotes that the disjun
tion and negationoperators are in
luded in the logi
. The predi
ate dete
tion problem is to de
ide whether the initial
ut of the
omputation satis�es a given predi
ate. In RCTL+, we use a restri
ted set of temporalpredi
ates be
ause we do not yet have eÆ
ient algorithms to
ompute sli
es for temporal predi
atessu
h as AF(p) or AX(p) in CTL. However, our experimental results suggest that RCTL+
ontainsa widely used subset of CTL.Examples of temporal predi
ates are the
omplement of the liveness property in dining philoso-phers su
h as EF(hungry^EG(:eat)) or the reset state is eventually rea
hable su
h asAG(EF reset).Next, we brie
y des
ribe our
omputation sli
ing algorithms for RCTL+ predi
ates presented in[SG02℄.Sin
e the
onsistent
uts of the sli
e of a
omputation is a subset of
onsistent
uts of the
omputation, the sli
e
an be obtained by adding edges to the
omputation. In other words, thesli
e
ontains additional edges that do not exist in the
omputation. Below, we will show whi
hedges we should add to a
omputation for
omputing sli
es.Now we explain Algorithm A1 in Figure 7 for generating the sli
e of a
omputation with respe
tto EF(p). From the de�nition of EF(p), all
onsistent
uts of the
omputation that
an rea
h thegreatest
onsistent
ut that satis�es p,
all this
utW , also satis�es EF(p). Furthermore, these
utsare the only ones that satisfy EF(p). We
an �nd W using sli
e(hE;!i; p) when it is nonempty.To ensure that all
uts that
annot rea
h W do not belong to sli
e(hE;!i;EF(p)), we add edgesfrom > to the su

essors of events in the frontier of W in hE;!i. A frontier of a
onsistent
utis the set of those events of the
ut whose su

essors, if they exist, are not
ontained in the
ut.Adding an edge from > to an event makes any
ut that
ontains that event trivial.

Algorithm A1Input: A
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;EF(p))1. Let G be hE;!i and let W be the �nal
ut of sli
e(hE;!i; p)2. If W exists then3. 8 e 2 frontier(W): add an edge from the vertex > to su

(e) in G4. return G5. else return empty sli
eAlgorithm A2Input: A
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;AG(p))1. Let G be sli
e(hE;!i; p)2. For ea
h pair of verti
es (e; f) in G su
h that,(i) :(e! f) in hE;!i, and(ii) (e! f) in Gadd an edge from vertex e to the vertex ?3. return GAlgorithm A3Input: A
omputation hE;!i and sli
e(hE;!i; p)Output: sli
e(hE;!i;EG(p))1. Let G be sli
e(hE;!i; p)2. For ea
h pair of verti
es (e; f) in G su
h that,(i) :(e! f) in hE;!i, and(ii) (e! f) and (f ! e) in Gadd an edge from vertex e to the vertex ?3. return GFigure 7: Algorithm for generating a sli
e with respe
t to EF(p), AG(p) and EG(p)The following theorem is
ru
ial in obtaining Algorithm A2 in Figure 7 that generates the sli
efor AG(p).Theorem 5 ([SG02℄) Given a
omputation hE;!i and sli
e(hE;!i; p), a
onsistent
ut D inhE;!i satis�es AG(p) i� it in
ludes vertex e of every additional edge (e; f) in sli
e(hE;!i; p).Proof Sket
h:If a
onsistent
ut D does not in
lude vertex e then there exists a
onsistent
ut H that
an berea
hed from D in the
omputation su
h that H does not in
lude e but in
ludes f . In this
ase, itis
lear that H does not satisfy p sin
e (e; f) is an edge in the sli
e(hE;!i; p) and every
onsistent
ut of sli
e(hE;!i; p) that in
ludes f must in
lude e. Therefore from the de�nition of AG(p), Ddoes not satisfy AG(p).Now we prove the other dire
tion. If a
onsistent
ut D does not satisfy AG(p) then thereexists a
onsistent
ut H rea
hable from D su
h that H does not satisfy p. We know that only the
onsistent
uts that in
lude f but not e do not satisfy p. Sin
e H is rea
hable from D and H doesnot in
lude e, we have that D also does not in
lude e. 2Sin
e the
onsistent
uts that satisfy AG(p) is a subset of
onsistent
uts that satisfy p, the sli
efor AG(p)
an be obtained by adding edges to the sli
e for p. Using the above Theorem, we add anedge from e to ? for any additional edge (e; f) in sli
e(hE;!i; p) to obtain sli
e(hE;!i;AG(p)).

This ensures that
onsistent
uts that do not in
lude vertex e of any additional edge (e; f) aredisallowed, whereas the rest belongs to sli
e(hE;!i;AG(p)).The algorithm for EG(p) sli
ing displayed in Figure 7 is similar to the AG(p) sli
ing algorithm.However in this
ase, for ea
h additional edge (e; f) that generates a non-trivial strongly
onne
ted
omponent in sli
e(hE;!i; p), we add an edge from the vertex e to the vertex ?. Intuitively, ifa
ut C does not in
lude su
h a
omponent then, as in the
ase of AG(p), there exists a
ut Drea
hable from C su
h that D does not satisfy p. However, di�erent from AG(p)
ase, now thereexists su
h a
ut D on all paths from C to the �nal state. Using the de�nition of EG(p), it is
learthat C does not satisfy EG(p).5.2 Experimental Study: Partial Order Tra
e Analyzer (POTA)We implemented our temporal logi
 sli
ing algorithms in a prototype tool
alled Partial Order Tra
eAnalyzer (POTA) [SG03b, SG03a℄ that is used for
he
king exe
ution tra
es of distributed programswith temporal logi
 predi
ates. POTA
onsists of an instrumentation module for generating partialorder exe
ution tra
es, a translator module that translates exe
ution tra
es into a well-known model
he
ker SPIN's input language Promela [Hol97℄ and an analyzer module. The use of
omputationsli
ing for temporal logi
 veri�
ation is the most signi�
ant aspe
t of POTA and
onstitutes theanalyzer module.Figure 8 displays our predi
ate dete
tion algorithm in POTA that uses sli
ing algorithms. The
omplexity of predi
ate dete
tion for RCTL+ is dominated by the
omplexity of
omputing thesli
e with respe
t to a non-temporal regular predi
ate, whi
h has O(n2jEj)
omplexity [GM01,MG01℄. Therefore, the overall
omplexity of predi
ate dete
tion for RCTL+ without negation anddisjun
tion operators is O(jpj �n2jEj), where jpj is the number of boolean and temporal operators inp. When the predi
ate
ontains disjun
tion or negation operators the sli
e may not be lean. In this
ase, we may have to take an extra step. This is be
ause the initial state of the sli
e may in fa
tnot satisfy the predi
ate. Therefore, we employ the translator module of POTA and translate thesli
e into Promela then we use SPIN to
he
k the tra
e. This approa
h may lead to exponential-time
omplexity for RCTL+ predi
ates. However, the sli
e is in general mu
h smaller than the
omputation whi
h we validate with experimental studies.Input: A
omputation hE;!i and a predi
ate pOutput: Predi
ate is satis�ed or not1. Re
ursively pro
ess p from inside to outside while applying temporal and boolean operatorsto
ompute sli
e(hE;!i; p)2. If initialCut(hE;!i) 6= initialCut(sli
e(hE;!i; p) then3. return false and
ounterexampleelse4. if p does not
ontain : or _ then5. return true6. else translate sli
e(hE;!i; p) into Promela and run SPINFigure 8: Predi
ate Dete
tion using Sli
ingIn order to evaluate the e�e
tiveness of POTA, we performed experiments with s
alable pro-to
ols,
omparing our
omputation sli
ing based approa
h with partial order redu
tion basedapproa
h of SPIN [Hol97℄. We performed experiments on several proto
ols su
h as the Asyn-
hronous Transfer Mode Ring (ATMR) [ISO93℄, General Inter-ORB Proto
ol (GIOP) [OMG97℄,dining philosophers and leader ele
tion. We
ould model almost all temporal logi
 spe
i�
ations ofthe pro
otols in RCTL+. We veri�ed
on�gurations with 250 pro
esses using POTA, whereas SPIN

s s

a b

c d

b

a

d

c

Poset Chain Realizer

L2L1

a

c

b

d

String Realizer

a

d

b d

b

1

c

2

c

a

Figure 9: (X;P)failed to verify
on�gurations with more than 10 pro
esses due to state explosion. Detailed resultsof our experiments are available from POTA web site [SG03a℄. The experimental work proves thatfor large problem sizes,
omputation sli
ing is an e�e
tive te
hnique.6 Timestamping Events and Global StatesIn this se
tion, we show appli
ations of dimension theory of partial orders to timestamping eventsand global states of a
omputation. We also provide the ne
essary ba
kground in the dimensiontheory.6.1 DimensionA family R = fL1; L2; : : : ; Ltg of linear orders on X is
alled a
hain realizer of a poset (X;P) ifP = \R. x < y 2 Li \ Lj if x < y in both Li and Lj . We also say that R realizes P . Figure 9shows a poset P in whi
h fL1; L2g realizes P .It
an be shown [Tro92℄ that R is a realizer of P if and only if for every x; y 2 X with x k y(x in
omparable to y) in P , there exist distin
t integers i; j with 1 6 i; j 6 t for whi
h x < y in Liand y < x in Lj .De�nition 5 ([Tro92℄) For any poset (X;P), the dimension of (X;P), denoted by dim(X;P), isthe least positive integer t for whi
h there exists a family R = fL1; L2; : : : ; Ltg of linear extensionsof P so that P = \R = \ti=1Li.The dimension of the poset in Figure 9 is 2. The
on
ept of dimension provides us a way toen
ode a partial order. The elements of a partial order with dimension t
an be en
oded with at-dimensional ve
tor as follows. For any element x, the ve
tor vx is de�ned as follows: vx[i℄ =number of elements less than x in Li, for 1 6 i 6 t. Given
ode for two elements vx and vy, wehave the following order: vx < vy () 8i : vx[i℄ < vy[i℄ (5.1)For example, the
ode for a and b in the poset in Figure 9 is (2; 3) and (3; 1) based on the realizer.Based on the
ode and (5.1), it
an be easily determined that a and b are
on
urrent. We
all theorder given by (5.1) the
hain order.The dimension of a poset
an be arbitrarily large. Consider a poset (X;P) where X =fa1; a2; : : : ; ang [fb1; b2; : : : ; bng, and ai < bj in P if and only if i 6= j, for i; j = 1; 2; : : : ; n.This
lass of posets is known as the standard example and denoted by Sm. Figure 10 shows thediagram for S5. The following Theorem is due to Dushnik and Miller [DM41℄.

b1 b2 b3 b4 b5

a1 a2 a3 a4 a5Figure 10: S5Theorem 6 ([DM41℄) dim(Sm) = m.Let Li = [a1; : : : ; ai�1; ai+1; : : : ; am; bi; ai; b1; : : : ; bi�1; bi+1; : : : ; bm℄, where a1 is the lowest element,and bm is the highest element in
hain Li Then R = fL1; L2; : : : ; Lmg is a realizer of Sm.We saw that
lassi
al dimension theory provides lower bounds on the dimension of ve
tors whenthe
omparison is based on the
hain order. On the other hand, the ve
tor
lo
ks in distributed
omputing use ve
tor ordering given by the following (6.2) whi
h we
all ve
tor order.u < v � 8k : 1 6 k 6 N : u[k℄ 6 v[k℄^9j : 1 6 j 6 N : u[j℄ < v[j℄ (6.2)We generalize the
on
epts in dimension theory so that the ordering used between
odes is identi
alto (6.2). We �rst give the de�nition of a string.De�nition 6 (string) A poset (X;P) is a string if and only if 9f : X ! N (the set of naturalnumbers) su
h that 8x; y 2 X : x < y i� f(x) < f(y)The set of elements in a string whi
h have the same f value is
alled a knot. For example, aposet (X;P) where X = fa; b;
; dg and P = f(a; b); (a;
); (a; d); (b; d); (
; d)g is a string be
ausewe
an assign f(a) = 0; f(b) = f(
) = 1, and f(d) = 2. Here, b and
 are in the same knot. Thedi�eren
e between a
hain and a string is that a
hain requires existen
e of a one-to-one mappingsu
h that x < y i� f(x) < f(y). For strings, we drop the requirement of the fun
tion to be one-to-one. We represent a �nite string by the sequen
e of knots in the string. Thus, P is equivalent tothe string f(a); (b;
); (d)g.A
hain is a string in whi
h every knot is of size 1. An anti-
hain is also a string with exa
tlyone knot.We write x 6s y if x 6 y in string s, and x <s y if x < y in string s.De�nition 7 (String Realizer) For any poset (X;P), a set of strings S is
alled a string realizeri� 8x; y 2 X : x < y in P if and only if (1) 8s 2 S : x 6s y, and (2) 9t 2 S : x <t y.The de�nition of less-than relation between two elements in the poset based on the strings isidenti
al to the less-than relation as used in ve
tor
lo
ks. This is one of the motivation for de�ningstring realizer in the above manner. A string realizer for the poset in Fig. 9 is given by two stringss1 = f(
); (d; a); (b)g s2 = f(d; b); (
; a)gNow, analogous to the dimension we de�neDe�nition 8 (String Dimension) For any poset (X;P), the string dimension of (X;P), denotedby sdim(X;P), is the size of the set S with the least number of strings su
h that S is a string realizerfor (X;P).

Example 7 Consider the poset (X;P) as follows. X = f;; fag; fbg; fa; bg; fa;
g; fa; b;
gg, P =f(A;B) 2 X �X : A � Bg. A string realizer for the poset
an be obtained as follows. For ea
h setA 2 X, we use a bit ve
tor representation of the set A. Thus, fa;
g is represented by (1; 0; 1) andthe set fa; bg is represented by (1; 1; 0). This representation gives us a string realizer with threestrings su
h that every string has exa
tly two knots.It may appear, at �rst, that the string dimension of a poset may be mu
h smaller than the
hain dimension. However, this is not the
ase as shown by the following result.Theorem 7 ([GS01℄) For any poset (X;P) su
h that sdim(P) > 2; sdim(P) = dim(P)6.2 Lower Bound on Dimension of Ve
tor Clo
ksAs we have mentioned before, the de�nition of a string realizer is identi
al to the de�nition forve
tor
lo
ks in distributed systems. A distributed
omputation on N pro
esses
an be modeled asa poset of events (E;!) of width N . Fidge and Mattern's ve
tor
lo
ks are simply string realizersof the poset (E;!).We �rst
onsider lower bounds on the (string) dimension of ve
tor
lo
ks. The following resultis due to Charron-Bost[CB91℄. The proof shown here is di�erent and taken from [GS01℄.Theorem 8 For every N , there exists a distributed
omputation (E;!) on N pro
esses su
h thatany assignment from E to N k that
aptures
on
urren
y relation on E has k > N .Proof: The result is trivially true for N equal to 1. For any N > 2,
onsider the standard exampleSN shown in Figure 10. De�ne ai and b(i mod N)+1 to be on pro
ess Pi. This
omputation is on Npro
esses. By Dushnik and Miller's Theorem, this poset has dimension N . From Theorem 7, the
omputation has string dimension also equal to N . Any assignment from E to N k that
aptures
on
urren
y relation, results in a string realizer with k strings. Sin
e the string dimension is N , itfollows that k > N . 2Next we show that N -dimensional ve
tor
lo
ks of Fidge and Mattern (FM ve
tors for short)have an additional property that makes it ne
essary to have dimension N for all
omputations. Inparti
ular, FM ve
tors satisfy the following property. If f and g are two distin
t events su
h thatevent f is on pro
ess Pi, then f:v[i℄ 6 g:v[i℄) f ! g (8.3)where e:v[i℄ denotes the ith
omponent of the ve
tor
lo
k assigned to the event e. As a result ofthis property FM ve
tors
an also be used to timestamp elements of another poset - the latti
e of
onsistent
uts of the
omputation (E;!).For a
onsistent
ut F , we de�ne its timestamp asF:v[i℄ = maxfe:v[i℄ j e 2 Fg (8.4)It
an be shown that any ve
tor
lo
k me
hanism based on 8.4 that satis�es 8.3
aptures therelation � between
onsistent
uts, i.e., F � G () F:v 6 G:v.We have earlier mentioned that the set of all
onsistent
uts under the relation � forms adistributive latti
e. A result due to Dilworth tells us the dimension of a distributive latti
e.Theorem 9 ([Dil50℄) Let L be a distributive latti
e generated by a poset (X;P). Then dim(L) =width(P).Therefore, we haveTheorem 10 ([GS01℄) Any ve
tor
lo
k me
hanism that
aptures � relation on the set of
on-sistent
uts in a distributed
omputation of width N must have at least N
oordinates.

7 Con
lusionsThe theory of posets and latti
es has many pra
ti
al appli
ations in distributed
omputing. Be-sides the appli
ations in predi
ate dete
tion, latti
e theory is also useful in predi
ate
ontrol[TG99, MG00℄. We believe that the future will bring even more appli
ations of the theory oforder to distributed
omputing. For example, the
on
epts of M�obius fun
tions, Zeta polynomialand Generating fun
tions (see the book on Enumerative Combinatori
s, Vol 1, by R.Stanley Chap-ter 3 [Sta86℄) in posets, or modular latti
es, geometri
 latti
es et
. (see the book on General Latti
eTheory by Gr�atzer [Gra78℄) have not yet found appli
ations in distributed
omputing.We also expe
t, enri
hment of the poset and latti
e theory from distributed
omputing appli
a-tions. The
on
epts of linear predi
ates, eÆ
ient advan
ement property, algorithms for
omputingsli
es et
.
an be viewed as
omputational latti
e theory.In addition to bene�ts in distributed
omputing, te
hniques in sli
ing have appli
ations in
ombinatori
s. A
ombinatorial problem usually requires enumerating,
ounting or as
ertainingexisten
e of stru
tures that satisfy a given property B. We
ast the
ombinatorial problem as adistributed
omputation su
h that there is a bije
tion between
ombinatorial stru
tures satisfyingB and the global states that satisfy a property equivalent to B. We then apply results in sli
ing a
omputation with respe
t to a predi
ate to obtain a sli
e of only those global states that satisfy B.This gives us an eÆ
ient (polynomial time) algorithm to enumerate,
ount or dete
t stru
tures thatsatisfy B when the total set of stru
tures is large but the set of stru
tures satisfying B is small. In[Gar02a℄, we illustrate this te
hnique by analyzing problems in integer partitions, set families, andset of permutations.Referen
es[AV01℄ S. Alagar and S. Venkatesan. Te
hniques to Ta
kle State Explosion in GlobalPredi
ate Dete
tion. IEEE Transa
tions on Software Engineering, 27(8):704{714,August 2001.[CB91℄ B. Charron-Bost. Con
erning the Size of Logi
al Clo
ks in Distributed Systems.Information Pro
essing Letters (IPL), 39:11{16, July 1991.[CE81℄ E. M. Clarke and E. A. Emerson. Design and Synthesis of Syn
hronization Skeletonsusing Bran
hing Time Temporal Logi
. In Pro
eedings of the Workshop on Logi
s ofPrograms, volume 131 of Le
ture Notes in Computer S
ien
e (LNCS), YorktownHeights, New York, May 1981.[CG95℄ C. Chase and V. K. Garg. On Te
hniques and their Limitations for the GlobalPredi
ate Dete
tion Problem. In Pro
eedings of the Workshop on DistributedAlgorithms (WDAG), pages 303{317, Fran
e, September 1995.[CL85℄ K. M. Chandy and L. Lamport. Distributed Snapshots: Determining Global States ofDistributed Systems. ACM Transa
tions on Computer Systems, 3(1):63{75, February1985.[CM91℄ R. Cooper and K. Marzullo. Consistent Dete
tion of Global Predi
ates. In Pro
eedingsof the ACM/ONR Workshop on Parallel and Distributed Debugging, pages 163{173,Santa Cruz, California, 1991.

[Dil50℄ R. P. Dilworth. A De
omposition Theorem for Partially Ordered Sets. Annals ofMathemati
s, 51:161{166, 1950.[DM41℄ B. Dushnik and E. W. Miller. Partially Ordered Sets. Ameri
an Journal ofMathemati
s, 63:600{610, 1941.[DP90℄ B. A. Davey and H. A. Priestley. Introdu
tion to Latti
es and Order. CambridgeUniversity Press, Cambridge, UK, 1990.[Fid91℄ C. Fidge. Logi
al Time in Distributed Computing Systems. IEEE Computer,24(8):28{33, August 1991.[Gar02a℄ V. K. Garg. Algorithmi
 Combinatori
s based on Sli
ing Posets. In Pro
eedings of the22nd Conferen
e on the Foundations of Software Te
hnology and Theoreti
al ComputerS
ien
e (FSTTCS), pages 169{181. Springer-Verlag, De
ember 2002. Le
ture Notes inComputer S
ien
e (LNCS).[Gar02b℄ V. K. Garg. Elements of Distributed Computing. Wiley & Sons, 2002.[GM01℄ V. K. Garg and N. Mittal. On Sli
ing a Distributed Computation. In Pro
eedings ofthe 21st IEEE International Conferen
e on Distributed Computing Systems (ICDCS),pages 322{329, Phoenix, Arizona, April 2001.[Gra78℄ G. Gratzer. General Latti
e Theory. A
ademi
 Press, New York, NY, 1978.[GS01℄ V. K. Garg and C. Skawratananond. String Realizers of Posets with Appli
ations toDistributed Computing. In Pro
eedings of the 20th ACM Symposium on Prin
iples ofDistributed Computing (PODC), pages 72{80, Newport, Rhode Island, August 2001.[Hol97℄ G. Holzmann. The Model Che
ker SPIN. IEEE Transa
tions on Software Engineering,23(5):279{295, May 1997.[HR01℄ K. Havelund and G. Rosu. Monitoring Java Programs with Java PathExplorer. InRuntime Veri�
ation 2001, volume 55 of ENTCS, 2001.[ISO93℄ ISO. Spe
i�
ation of the Asyn
hronous Transfer Mode Ring (ATMR) Proto
ol,January 1993.[KKL+01℄ M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a Run-timeAssuran
e Tool for Java Programs. In Runtime Veri�
ation 2001, volume 55 ofENTCS, 2001.[Lam78℄ L. Lamport. Time, Clo
ks, and the Ordering of Events in a Distributed System.Communi
ations of the ACM (CACM), 21(7):558{565, July 1978.[Mat89℄ F. Mattern. Virtual Time and Global States of Distributed Systems. In Parallel andDistributed Algorithms: Pro
eedings of the Workshop on Distributed Algorithms(WDAG), pages 215{226. Elsevier S
ien
e Publishers B. V. (North-Holland), 1989.[MG00℄ N. Mittal and V. K. Garg. Debugging Distributed Programs Using ControlledRe-exe
ution. In Pro
eedings of the 19th ACM Symposium on Prin
iples of DistributedComputing (PODC), pages 239{248, Portland, Oregon, July 2000.

[MG01℄ N. Mittal and V. K. Garg. Computation Sli
ing: Te
hniques and Theory. InPro
eedings of the Symposium on Distributed Computing (DISC), pages 78{92, Lisbon,Portugal, O
tober 2001.[MG03℄ N. Mittal and V. K. Garg. Software Fault Toleran
e of Distributed Programs usingComputation Sli
ing. In Pro
eedings of the 23rd IEEE International Conferen
e onDistributed Computing Systems (ICDCS), pages 105{113, Providen
e, Rhode Island,May 2003.[OMG97℄ OMG. The Common Obje
t Request Broker: Ar
hite
ture and Spe
i�
ation, August1997.[SG02℄ A. Sen and V. K. Garg. Automati
 Generation of Computation Sli
es for Dete
tingTemporal Logi
 Predi
ates. Te
hni
al Report TR-PDS-2002-001, The Parallel andDistributed Systems Laboratory, Department of Ele
tri
al and Computer Engineering,The University of Texas at Austin, 2002.[SG03a℄ A. Sen and V. K. Garg. Partial Order Tra
e Analyzer (POTA).http://maple.e
e.utexas.edu/~sen/POTA.html, 2003.[SG03b℄ A. Sen and V. K. Garg. Partial Order Tra
e Analyzer (POTA) for DistributedPrograms. In Runtime Veri�
ation 2003, volume 89 of ENTCS, 2003.[Sta86℄ R. Stanley. Enumerative Combinatori
s Volume 1. Wadsworth and Brookes/Cole,Monterey, California, 1986.[SUL00℄ S. D. Stoller, L. Unnikrishnan, and Y. A. Liu. EÆ
ient Dete
tion of Global Propertiesin Distributed Systems Using Partial-Order Methods. In Pro
eedings of the 12thInternational Conferen
e on Computer-Aided Veri�
ation (CAV), volume 1855 ofLe
ture Notes in Computer S
ien
e (LNCS), pages 264{279. Springer-Verlag, July2000.[TG99℄ A. Tarafdar and V. K. Garg. Software Fault Toleran
e of Con
urrent Programs UsingControlled Re-exe
ution. In Pro
eedings of the 13th Symposium on DistributedComputing (DISC), pages 210{224, Bratislava, Slovak Republi
, September 1999.[Tro92℄ W. T. Trotter. Combinatori
s and Partially Ordered Sets: Dimension Theory. TheJohns Hopkins University Press, Baltimore, MD, 1992.

