
Using Order in Distributed Computing

Fault-Tolerant Services in Distributed Systems Using

Vijay K. Garg

email: garg@ece.utexas.edu

(includes joint work with Bharath Balasubramanian and Vinit

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Modeling Services in Distributed Systems

• Server: a Deterministic State Machine: not necessarily finite

• Clients: Interact with Servers using events/messages

• Crash Fault: Server’s state is unavailable

• Byzantine Fault: Server’s state is corrupted

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Example: Resource Allocation

user: int initially 0;
waiting: queue of int initially null;

On receiving acquire from client pid
if (user == 0) {

send(OK) to client pid; user = pid;}
else append(waiting, pid);

On receiving release
if (waiting.isEmpty())

user = 0;
else { user = waiting.head();

send(OK) to user;
waiting.removeHead(); }

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Tolerating Faults: Using Replication

f : maximum number of faults in the system
Crash faults: Keep identical f + 1 replicas of the server

• Use Determinism If an event applied, the resulting state

• Agreement on the order Ensure that servers agree on the
events

Byzantine faults: Keep identical 2f + 1 replicas of the server

• Use Voting If response is different, choose the response
votes

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Our Setup

N different servers
Motivation:

• Multiple instances of state machine for different
departments/stores/regions

• Partitioning the state machine for scalability

Replication

• Crash faults: (f + 1)N states machines

• Byzantine faults: (2f + 1)N states machines

Our Algorithms

• Crash faults: N + f states machines

• Byzantine faults: (f + 1)N + f states machines

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Event Counter Example, f = 1

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

P (i) :: i = 1..n
int counti = 0;

On event entry(v):
if (v == i) counti = counti + 1;

On event exit(v):
if (v == i) counti = counti − 1;

F (1) ::
int fCount1 = 0;

On event entry(i), for any i
fCount1 = fCount1 + 1;

On event exit(i) for any i
fCount1 = fCount1 − 1;

Figure 1: Fusion of Counter State Machines

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Issues

• Multiple faults

• More complex data structures

• Overflows

• Byzantine faults

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Multiple Faults

F (j) :: j = 1..f
int fCountj = 0;

On event entry(i), for any i
fCountj = fCountj + ij−1;

On event exit(i) for any i
fCountj = fCountj − ij−1;

Figure 2: Fusion of Counter State Machines

•

fCount2 =
∑

i

i ∗ counti

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

•

fCountj =
∑

i

ij−1 ∗ counti for all j = 1

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Recovery from Crash Faults

Theorem 1 Suppose x = (count1, count2, , countn) is the state

primary state machines. Assume

fCountj =
∑

i

ij−1 ∗ counti for all j = 1..f

Given any n values out of y

= (count1, count2, ..countn,fCount1, fCount2, ..fCountf) the

values in x can be uniquely determined.

Proof Sketch:

• y = xG where G is n × (n + f) matrix = [IV]
V [i, j] = ij−1, i = 1..N ; j = 1..f

• y′ = y, suppressing the indices corresponding to the lost

• M = Delete corresponding columns in G

• y′ = xM .

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

• M is a nonsingular matrix for all choices of the columns
G)

• x = y′M−1.

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Tolerating Byzantine Faults

Assume one Byzantine fault: need two fused copies Suppose
changed by value v. Both c and v are unknown.

• fcount1 differs from sum by v

• fcount2 differs from
∑

i counti by c ∗ v.

f/2 errors can be located and corrected using f fused copies.

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

State Machines vs Servers

Replication: N primary state machines, fN backup state mac

(1) Distinction between state machines and physical servers
Can run N backup state machines on one server.

Advantage of Fused Machines: Savings in storage. Disadvan
Machines: Recovery harder

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Aggregation of Events

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

P (i) :: i = 1..n
int counti = 0;

On event entry(v):
if (v == i)||(v == 0) counti = counti + 1;

On event exit(v):
if (v == i)||(v == 0) counti = counti − 1;

F (j) :: j = 1..f
int fCountj = 0;

On event entry(i), for any i = 1..N
fCountj = fCountj + ij−1;

On event entry(0)
fCountj = fCountj +

∑
i ij−1;

On event exit(i) for any i = 1..N
fCountj = fCountj − ij−1; On even

exit(0)
fCountj = fCountj −

∑
i ij−1;

Figure 3: Fusion of Counter State Machines

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Fused Data Structures

Algorithms for Fusing arrays, linked lists, queues, hash tables,
and Ogale 07, Balasubramanian and Garg 10]]

• Use partial replication with coding theory

• Ensure efficient updates of backup data structures

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

// Fused queue at F (j)
fQueue: array[0..M − 1] of int initially 0;
head, tail, size: array[1..n] of int initially 0;

append(i, v);
if (size[i] == M)

throw Exception(”Full Queue”);
fQueue[tail[i]] = fQueue[tail[i]] + ij−1 ∗ v;
tail[i] = (tail[i] + 1)%M ;
size[i] = size[i] + 1;

deleteH
if (siz

thro
fQueue
head[
size[

isEmpty
return

Figure 4: Fused Queue Implementation

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

P (i) :: i = 1..n
On receiving acquire from client pid

if (user == 0) { send(OK) to client pid;
user = pid;
send(USER, i, user) to F (j)’s;}

else { append(waiting, pid);
send(ADD-WAITING, i, pid) to F (j)’s;}

On receiving release
if (waiting.isEmpty()) { olduser = user;

user = 0;
send(USER, i, user − olduser) to F (j)’s

else { olduser = user;
user = waiting.head();
send(OK) to waiting.head();
waiting.removeHead();
send(USER, i, user − olduser) to F (j)’s
send(DEL-WAITING, i, user) to F (j)’s

}

F (j) :: j = 1..f
fuser:int initially 0;
fwaiting:fused queue initially 0;

On receiving (USER, i, val)
fuser = fuser + ij−1 ∗ val;

On receiving (ADD-WAITING, i, pid)
fwaiting.append(i, pid);

On receiving (DEL-WAITING, ,)

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Ricart and Agrawala’s Algorithm

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Pi::i = 1..n
var

pending: array[1..n] of {0,1} init 0;
myts: integer initially 0;
numOkay: integer initially 0;
wantCS: integer initially 0;
inCS: integer initially 0;

receive(”requestCS”) from client:
wantsCS := 1;
myts := logical clock;
send (”request”, myts) to all (and F (1));

receive(”request”, d) from Pq:
pending[q] = 1;
if (wantCS == 0)||(d < myts) then

send okay to process Pq (and F (1));
pending[q] = 0;

receive(”okay”):
numOkay := numOkay + 1;
if (numOkay = n − 1) then

send(”grantedCS”) to client, F (1);
inCS := 1;

receive(”releaseCS”) from client:
send(”releasedCS”, myts) to F (1);
myts, numOkay, wantCS, inCS := 0, 0, 0, 0;
for q ∈ {1..n} do

if (pending[q]) {
send okay to the process q;

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Byzantine Faults

Theorem 2 Let there be n primary state machines, each with

structures. There exists an algorithm with additional n + 1
that can tolerate a single Byzantine fault and has the same

the RSM approach during normal operation and additional

overhead during recovery.

Proof Sketch:

• one replica Q(i) for every P (i)

• a single fused state machine F (1)

• Normal Operation: Output by P (i) and Q(i) identical

• Byzantine Fault Detection: P (i) and Q(i) differ for any

• Byzantine Fault Correction: Use liar detection

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Liar Detection

• O(m) time to determine O(1) size data different in P (i)

• Use F (1) to determine who is correct

• No need to decode F (1): Simply encode using value from

• Kill the liar

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Byzantine Faults: f > 1

Theorem 3 There exists an algorithm with fn + f backup

machines that can tolerate f Byzantine faults and has the same

as the RSM approach during normal operation and additional

overhead during recovery.

• Algorithm: f copies for each primary state machine and
fused machines.

• Normal Operation: all f + 1 unfused copies result in the

• Case 1: single mismatched primary state machine
Use liar detection algorithm

• Case 2: multiple mismatched primary state machine
Can show that the copy with largest number of votes is

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Other Fusion Related Work in PDSLAB

• Automatic Generation of Fused Finite State Machines
[Balasubramanian, Ogale and Garg, IPDPS 09]
[Balasubramanian and Garg, in progress]

• Efficient Algorithms for Fusion of Data Structures [Garg
ICDCS 07]
[Balasubramanian and Garg, in progress]

ECE Dept., Univ. Texas at Austin

Using Order in Distributed Computing

Future Work

• Implementation of Algorithms for a Practical Server

• Different Fusion Operators

ECE Dept., Univ. Texas at Austin

