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Abstract

Many problems in distributed computing systems require execution of events
shared by multiple processes. In this paper, a fair and efficient algorithm for multi-
process shared events is presented. We also present its application to distributed
implementation of generalized CSP alternative command. We show that our algo-
rithm is simpler and has lower message and time complexity than proposed imple-
mentations for generalized CSP alternative command, and distributed algorithms for
N-party interactions.

1. Introduction

Wide availability of computer networks, and low cost of hardware has made it desirable
to use distributed systems. Distributed systems, however, are difficult to design and often
need tricky synchronization between multiple processes. The synchronization is required
to coordinate multiple processes for events, which must be executed either by all, or none
of them. Some examples of such shared events are distributed transactions in databases
that require commit by either all or none of the processes, and atomic broadcasts that
require that a message be received by either all or none of the processes. Shared event,
or a multi-party interaction, is such a useful concept that it also appears in Coupled
State Machines [Bochman 80], Petri Nets [Peterson 81|, CSP [Hoare 85|, CCS [Milner
80], RADDLE [Forman 86|, and ConC|Garg 91]. Ease in specification of concurrent
systems using shared events also provides a strong motivation for the search of an efficient
algorithm for its execution.

The problem of execution of multi-process shared events can be described as follows.
There are n geographically distributed processes. Each process is either idle or executing.
Each process when idle is willing to execute any event that is enabled in its current state.
Any algorithm for this problem is required to coordinate the processes for execution of
events, such that no process is asked to participate in more than one interaction. The
algorithm should also be free from deadlock and starvation. We assume that processes
communicate with each other by means of asynchronous reliable messages. The commit-
tee coordination problem [Chandy 88| is a special case of this problem where the same
events are enabled for all waiting sessions.
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As an example of a multi-party interaction, consider the distributed players problem.
Assume that there are four players who are interested in playing chess, tennis, poker, and
bridge. Joe plays only chess, bridge and tennis. Mary plays all four games, while Jack
and Bob play only bridge and poker. There are also some constraints in the execution
of these events. Joe will play only tennis after chess. Similarly, Mary plays only poker
or tennis, if she played chess, or bridge last. Since games require cooperation between
two or more players the players may have to wait for each other. Also the players are
in different cities (i.e. on different processors), and can communicate only through mail
(asynchronous messages).

Our algorithm assumes that all messages sent by one machine to another are received
uncorrupted in FIFO order. A service can easily be provided by a communication pro-
tocol layer that detects duplicate, lost, out-of-sequence and corrupt messages. We also
assume that local and global causality as proposed by Lamport [Lamport 78] is preserved
by clocks of various machines. This can easily be provided by an extra layer of clock
synchronization that uses Lamport’s algorithm.

This paper is divided into five sections. Section 2 describes the related work in
execution of shared events. Section 3 presents the algorithm. Section 4 discusses its
correctness, and its message and time complexity. Section 5 describes some efficiency
considerations in implementation of the algorithm.

2. Related Work

The execution of shared events also arises in implementation of the generalized 1/O
command of CSP. A CSP program, as described in [Buckley 83], consists of a set of
processes that communicate with each other using synchronized message passing. Com-
munication between processes occur when two processes have matching input and output
statements. The alternative command of CSP provides non-determinism by letting a
process select one of the several statements for processing. Each statement is protected
by a guard (a boolean expression and/or one input statement) which must be enabled
for the statement to be considered for selection. A guard is enabled if the boolean ex-
pression evaluates to true and the named output process has not terminated. However,
not all algorithms are easy to express using only the constructs of CSP. Researchers have
found it useful to extend the notion of guard to include output command and many im-
plementations have been presented [Buckley 83, Bagrodia 86, Ramesh 87, Lee 87]. This
generalized CSP construct is obviously a special case of multi-process synchronous events
problem.

[Buckley 83] presented four conditions that should be satisfied by an effective imple-
mentation of the CSP I/O construct. These conditions are minimality of the processes
involved, minimality of system information at each process, low number of messages
required and the selection of a ready interaction in a bounded amount of time. They
showed that [Silberschatz 79, Snepscheut 81] did not satisfy one or more of these condi-
tions. [Back 84] improved upon this result by providing an implementation that satisfied
two more conditions: weak fairness and bounded time for a process to determine if it
can communicate with some process. [Ramesh 87] provided an improved implementation
which could be extended to allow multi-process synchronization. [Bagrodia 85, 88, Levy
88, Kumar 90] also describe algorithms for this purpose. We provide a new distributed



algorithm that satisfies all six conditions, and is extensible to the case of multi-process
synchronization. It is simpler than algorithms presented in literature. It differs from
earlier algorithms in the following ways:

e Sequential Capturing: In [Ramesh 87, Bagrodia 83, Kumar 90], a process cap-
tures all processes participating in an event sequentially to avoid any deadlock.
This can result in a substantial delay for events that is shared by a large number of
processes. The time complexity of such algorithms is dependent on the number of
participating processes. Since processes are captured for a long time it also means
that other processes may have to wait for a long time for captured processes to be
released. In our algorithm, a process tries to capture all participating processes in
parallel.

e Message Load: In [Ramesh 87, Kumar 90], each process attempts to captures
other processes involved in the desired interaction. To avoid deadlocks, processes
are required to be captured using a static ordering between them. This may result
in swamping of high-priority processes with many messages. Our algorithm can
distribute the message load more evenly as it does not depend upon any static
ordering. This aspect is discussed further in Section 5. Moreover, in the algorithm
proposed by [Kumar 89] the trying message includes a sequence of processes that the
token has visited in the current round which increases the information transferred
to each participating process. Thus, the length of the message would increase as
the number of participating processes increases.

e Fairness in Execution: In [Ramesh 87], a guard is chosen at random by each
process, thereby guaranteeing that any guard has finite probability of being chosen.
This approach, however, does not provide any bound on the number of events a
guard may have to wait before it is executed. We provide such a bound by ensuring
that no interaction is aborted in favor of some other interaction more than once.

¢ Timestamped Messages: [Ramesh 87, Bagrodia 83, Kumar 89] do not use times-
tamps in their algorithms. Our algorithm requires global causality of timestamps,
and we assume that there is a clock synchronization algorithm such as proposed
by Lamport|Lamport 78] running on the network. Since Lamport’s algorithm is
very simple to implement and does not incur high penalty, this is a not a serious
drawback of our algorithm. Due to usefulness of global causality, other algorithms
may already be using a clock synchronization algorithm.

3. Description of the Algorithm

The algorithm is event-driven and can be informally described as follows. Each in-
teraction is assigned a master. A master can execute an interaction, if all participating
processes commit to it. A process can commit to an interaction by sending a yes message
to its master. A master requests for these messages by means of request messages. A
request message may either be delayed, or be responded with a yes/no message. If all the
participating processes commit, then the master sends a success message to them. On
recelving a success message, a process can execute the interaction.



When a process is in execution state (executing some interaction), it responds to only
two kinds of messages - ready and request. On receiving a ready message, it makes a note
in its ready table, whereas a request message is replied by a no.

Once a process comes to an alternative command, it sends ready message to all the
masters for the guards it is ready to execute. Then, if any interaction is ready, it sends
out request messages. After this the process takes any action only on receiving a message.

Some of the features of this algorithm are as follows:

1. A process can send a yes message to at most one master. A process that has
committed to an interaction can not send request message for any other interaction.
Thus, a process commits to only one interaction. This way of committing resembles
two-phase commit protocol used in databases for implementing transactions. The
difference between two problems is, that in databases if two transactions t; and t,
are eligible at some state, then the protocol needs to ensure that the final execution
can be written either as t1f5 or t5t1. In this problem, once t; is executed t, may not
be valid any more. For example, initially both tennis and chess may be eligible, but
once tennis is played chess may not be eligible any more. The notion of fairness is
also not so important for database applications.

2. A process that has already committed, on receiving a request for another interac-
tion, says no to a younger process and delays the older process. If the process is
the master of its committed interaction, and the interaction has not received all
the yes messages, then it is aborted in favor of an older interaction. This way there
cannot be any deadlock between different interactions. This strategy is commonly
referred as wait-die strategy in databases[Eswaran 76].

3. The fairness is based on the principle that if there is a choice in execution of an
interaction, then the interaction which has waited for a longer time is chosen. With
each request message for an interaction, the master also sends the timestamp of its
last execution.

The algorithm as shown in Figure 1 uses the following messages:

ready sent by a process to the master of an interaction indicating its willingness to
execute the interaction This message can be sent to multiple masters. They increase
the probability that a request message succeeds.

request sent by the master to processes for the yes/no reply, With a request message,
the master also sends the time when it was executed last.

yes sent by a process to the master of an interaction indicating its willingness to execute
the interaction. This message is sent to only one master.

no sent by a process to the master of an interaction indicating that it has committed for
some other interaction

success sent by the master to processes asking them to execute the interaction
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abort sent by the master to processes asking them to abort the interaction

Background()
if (mtype = ready) update(ready_table)
else if (mtype = request) reply(currmess, no);

Initialize()
captured = 0; delayed[ |=0; initialize_guards;
send ready messages to various masters;
if any interaction is ready then sendrequest(myinteraction);

Handle Ready()
update(ready_table);
if (the interaction is ready) and
(I am not exploring any other interaction) then sendrequest;

Handle Request()

if (guard|interaction|=closed) reply(currmess, no);

else if (myinteraction = 0) /* I am not committed */
myinteraction:=interaction;
reply(currmess, yes);

else if (timestamplinteraction] > timestamp|captured])
reply(currmess, no);

else if (master[captured] = myid)
sendabort(myinteraction);
myinteraction = interaction;
reply(currmess, yes);

else delayed[currmess.sre]=interaction;

Handle_Abort()

try_another_ interaction;

Handle_Succ()
if (captured = currmess.interaction)
takeinteraction( currmess.interaction);

Handle _Yes()
checklist[currmess.src|=0;
if all_have responded _yes
takeinteraction(currmess.interaction);
sendsucc(currmess.interaction );

Handle No()

rstatus[interaction|[src] = false;



sendabort(interaction);
try_another_ interaction;

try_another_interaction()
if any process delayed respond to it;
else if any interaction ready send request
else send ready to masters which have been sent no

Figure 1: Algorithm for Ezecution of Multi-process Fvents

Some of the data structures are as follows:
ready_table: a table maintained by the master of an interaction. If a participant of a
handshake sends a ready message to the master, he is marked as ready in a table. For
performance reasons, we do not require processes to send “not-ready” messages when
they are not ready for a handshake. Thus, an entry in a ready table is only one-way
correct. If it indicates that a process is not ready for a handshake, then this is true
for the steady state of the system. However, if it says that a process is ready for some
handshake, then this must be confirmed by a request message.
guard[interaction]: Is the interaction enabled in my current state?
captured: the interaction that has captured me.

4. Correctness of the algorithm

In this section, we informally prove that the algorithm shown in Figure 1 is correct.
We show that the algorithm is safe, that is it can ask a process to participate in at most
one interaction. We also show that the algorithm is live, that is if one or more interactions
are enabled, the system will execute some interaction.

Theorem 1: Fach process can be asked to participate in at most one interaction.
Proof: A process commits for an interaction only if it has sent yes in response for the
interaction or it is master for that interaction and has sent request messages. Since a
process can have at most one outstanding yes message if it has not sent out any request
message, and none if it has sent one, a process cannot commit for two interactions. Q.E.D.
Theorem 2: If one or more interactions are eligible then the system will execute an
interaction.

Proof: Consider the master of the interaction with the oldest timestamp. When this
master sends out the request message, if all processes respond with yes, the interaction
can be executed. Since the interaction is eligible, and it has the highest priority, no
process can send no for the interaction. The only other option for them is to delay their
response.

We define the delay graph D as a directed graph D = (V, E) where V is the set of
all the processes. There is a directed edge from process vy to vy if there exists a process
that has delayed vy in favor of vy. This implies that the priority of vy is greater than v,
because we delay the older process. Global causality implies that the graph is acyclic.
We traverse the path of processes in the delay graph. Since the delay graph is acyclic, we
will reach a node which has no outgoing edge. This process being youngest will receive
answer from all the processes and therefore can send success/abort message to all its
processes in its set which then can reply to their delayed masters. If the decision was



abort then the path delay graph has less number of edges and this particular interaction

will not be explored again. If the decision was success, an interaction is executed. Q.E.D.
For example, consider the example of distributed players. Let Joe be the master of

tennis, Mary of chess, Bob of poker and Jack of bridge. Let the last time tennis was

played be 12, chess be 15, poker be 14, and bridge be 18. Assume that tennis is enabled

because all participating players are willing to play it. Also assume the Bob and Mary

are willing to play poker but Jack is not. The following event sequence describes a typical

scenario:

(1) Bob sends a request to Mary for poker who responds yes as she has not committed to

any other game.

(2) Joe sends a request for tennis to Mary who delays the response to this message.

(3) Bob sends a request for poker to Jack who responds with a no message.

(4) Bob sends an abort for poker to Mary, who now can respond to the delayed request

of Joe.

(5) Mary can now send a success message to Joe, who then can execute the interaction.

Message and Time Complexity
The Worst Case Message Complexity

We count the number of messages a process has to handle in the worst case before it is
guaranteed to succeed. We first count the number of times an interaction can abort. By
our fairness rule, an interaction can be aborted in favor of some other interaction at most
once. Thus, if there are p interactions, then an interaction of any process must succeed
after p — 1 or less number of attempts. Hence, the number of requests to a process for
a guard is less than or equal to p — 1, and correspondingly the number of aborts is less
than or equal to p — 2. There is at most one success message. Therefore, the number
of messages in the worst case for a master guard with d slaves to succeed in executing a
interaction is:
ready messages at most (p — 1)d in number
request message at most (p — 1)d in number
yes/no at most (p — 1)d in number
abort at most (p — 2)d in number
succeed at most d
Total: 4(p — 1)d messages

The Best Case Message Complezity

In the best case, there will be no aborts; therefore, a master guard will be successful
in 4d messages. A slave guard will require four messages for successful execution of an
interaction.
Time Complezity

A major advantage of the algorithm is its time complexity. This is due to the fact
that the master tries to capture all participating processes in parallel as opposed to the
sequential capturing proposed by [Ramesh 87],[Bagrodia 85] and [Kumar 89]. Let ¢ be
the average message transfer time. Assuming that the computation time is negligible in
comparison to the message transfer time, in the best case the time taken for a successful



interaction would be 4t and for the worst case it would be only 4(p — 1)t. The number of
processes participating in the interaction does not affect the performance the algorithm
which makes this algorithm more suitable for synchronizing a large number of processes
for a shared event. The performance of sequential capturing algorithms degrades as the
number of participating processes increases. Let there be d processes participating in
the interaction. Even in the best case each message would take ¢ time, and so the time
complexity for a sequential capturing algorithm would be 2dt. Therefore, for a large
number of participating processes even the best case performance would be quite slow.
Effective Implementation
Theorem 3: The algorithm satisfies the following siz criteria of effective implementation:
(1) The number of processes that are involved in the selection of a guard should be
minimuin.
(2) The amount of system information that each of these processes should be low.
(3) When an interaction is ready then it will be selected within a finite time.
(4) The number of messages exchanged for making a selection by any process is small.
(5) The time it takes for a process to determine whether it can establish communication
with some other process should be bounded.
(6) If a process has a guarded command that is infinitely often enabled, then it should
eventually succeed.
Proof: (1) and (2) are obvious from the algorithm. (3), (4) and (5) follows from Theorem
2 and the message complexity analysis. (6) follows from our fairness conditions. Q.E.D.
5. Efficiency Considerations
In the above algorithm, we did not discuss how we chose masters for each interaction.
The efficiency of the algorithm is dependent on this choice. We discuss some desirable
requirements for the choice, and strategies to assign masters based on the requirements.
The algorithm, as presented above, requires the master of the interaction to deal with
more messages than dealt by other participating processes. To prevent any machine from
getting overloaded, we may choose masters such that the maximum load on any machine
is minimized. The problem can be stated formally as follows: Let M and I represent the
set of machines and the set of interactions respectively. Let the degree of an interaction 2
be the number of machines which participate in it. Our problem is to find an assignment
of master for interactions, f : I — M, such that the maximum load on any machine is
minimized. The load of a machine is defined as the sum of degrees of all interactions for
which it acts as a master. For example, in the distributed player example, the degrees
of chess, tennis, poker, and bridge are 2, 2.3, and 4 respectively. A possible master
assignment is as follows: Mary is the master for chess and poker, Joe is the master for
tennis, and Jack is the master for bridge. The maximum load in this assignment is on
Mary who has the load of Chess (2) and Poker (3). If Bob is assigned as the master of
Poker, then Jack will have the maximum load of Bridge (4).
Theorem 4: Let there be m machines and n interactions. There exists an algorithm
with O(log(mn)m?n?) time to find the master assignment f : I — M, such that the
maximum load on any machine is minimized.
Proof: We consider a related problem which seeks the assignment of masters such that
the maximum load on any machine is less than K. Let the total load (the sum of degree



Figure 2: Minimizing the Mazimum Load

of interactions) be S.

[htbp]

This problem can be solved as feasible circulation in a network with upper as well as
lower bounds on the capacity of each edge. We add a pseudo source s and a pseudo sink
t with the following bounds:

I(s,h;) =u(s,h;) =1l(h;,m;) = u(h;,m;) = degree(h;)

I(mg,t) = 0;u(my,t) = K, I(t,s) = S,u(t,s) =S Vh €l mjeM

Figure 2 shows the assignments to various edges. Using Out-of-Kilter method[Lawler
76], this problem can be solved in O(m?n?) where m is the number of machines and n
is the number of interactions. Using the solution to decision problem, we can solve the
minimization problem in O(log(mn)) time using a binary search. Thus, the problem of
finding master assignment such that the maximum load on any machine is minimized can
be solved in O(log(mn)m?*n?).
6. Conclusions

Execution of shared events arises in many contexts in distributed systems. We have
proposed an efficient algorithm of the shared events in a distributed environment. We
have implemented this algorithm on a SUN cluster for distributed execution of decom-
posed Petri nets [Garg 88,92]. It is also applicable for implementation of the generalized
CSP I/0 command. Our algorithm is conceptually simpler and more efficient than ex-
isting algorithms.
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