
An E�cient Algorithm for Multi-Process Shared Events 1Vijay K. Garg2Department of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084email: vijay@pine.ece.utexas.eduAbstractMany problems in distributed computing systems require execution of eventsshared by multiple processes. In this paper, a fair and e�cient algorithm for multi-process shared events is presented. We also present its application to distributedimplementation of generalized CSP alternative command. We show that our algo-rithm is simpler and has lower message and time complexity than proposed imple-mentations for generalized CSP alternative command, and distributed algorithms forN-party interactions.1. IntroductionWide availability of computer networks, and low cost of hardware has made it desirableto use distributed systems. Distributed systems, however, are di�cult to design and oftenneed tricky synchronization between multiple processes. The synchronization is requiredto coordinate multiple processes for events, which must be executed either by all, or noneof them. Some examples of such shared events are distributed transactions in databasesthat require commit by either all or none of the processes, and atomic broadcasts thatrequire that a message be received by either all or none of the processes. Shared event,or a multi-party interaction, is such a useful concept that it also appears in CoupledState Machines [Bochman 80], Petri Nets [Peterson 81], CSP [Hoare 85], CCS [Milner80], RADDLE [Forman 86], and ConC[Garg 91]. Ease in speci�cation of concurrentsystems using shared events also provides a strong motivation for the search of an e�cientalgorithm for its execution.The problem of execution of multi-process shared events can be described as follows.There are n geographically distributed processes. Each process is either idle or executing.Each process when idle is willing to execute any event that is enabled in its current state.Any algorithm for this problem is required to coordinate the processes for execution ofevents, such that no process is asked to participate in more than one interaction. Thealgorithm should also be free from deadlock and starvation. We assume that processescommunicate with each other by means of asynchronous reliable messages. The commit-tee coordination problem [Chandy 88] is a special case of this problem where the sameevents are enabled for all waiting sessions.1A preliminary version of this paper was presented in Proc. 2nd IEEE Symposium on Parallel andDistributed Processing, Dallas, TX 19902research supported in part by NSF Grant CCR 9110605, TRW faculty development award, and IBMAgreement 153. 1



As an example of a multi-party interaction, consider the distributed players problem.Assume that there are four players who are interested in playing chess, tennis, poker, andbridge. Joe plays only chess, bridge and tennis. Mary plays all four games, while Jackand Bob play only bridge and poker. There are also some constraints in the executionof these events. Joe will play only tennis after chess. Similarly, Mary plays only pokeror tennis, if she played chess, or bridge last. Since games require cooperation betweentwo or more players the players may have to wait for each other. Also the players arein di�erent cities (i.e. on di�erent processors), and can communicate only through mail(asynchronous messages).Our algorithm assumes that all messages sent by one machine to another are receiveduncorrupted in FIFO order. A service can easily be provided by a communication pro-tocol layer that detects duplicate, lost, out-of-sequence and corrupt messages. We alsoassume that local and global causality as proposed by Lamport [Lamport 78] is preservedby clocks of various machines. This can easily be provided by an extra layer of clocksynchronization that uses Lamport's algorithm.This paper is divided into �ve sections. Section 2 describes the related work inexecution of shared events. Section 3 presents the algorithm. Section 4 discusses itscorrectness, and its message and time complexity. Section 5 describes some e�ciencyconsiderations in implementation of the algorithm.2. Related WorkThe execution of shared events also arises in implementation of the generalized I/Ocommand of CSP. A CSP program, as described in [Buckley 83], consists of a set ofprocesses that communicate with each other using synchronized message passing. Com-munication between processes occur when two processes have matching input and outputstatements. The alternative command of CSP provides non-determinism by letting aprocess select one of the several statements for processing. Each statement is protectedby a guard (a boolean expression and/or one input statement) which must be enabledfor the statement to be considered for selection. A guard is enabled if the boolean ex-pression evaluates to true and the named output process has not terminated. However,not all algorithms are easy to express using only the constructs of CSP. Researchers havefound it useful to extend the notion of guard to include output command and many im-plementations have been presented [Buckley 83, Bagrodia 86, Ramesh 87, Lee 87]. Thisgeneralized CSP construct is obviously a special case of multi-process synchronous eventsproblem.[Buckley 83] presented four conditions that should be satis�ed by an e�ective imple-mentation of the CSP I/O construct. These conditions are minimality of the processesinvolved, minimality of system information at each process, low number of messagesrequired and the selection of a ready interaction in a bounded amount of time. Theyshowed that [Silberschatz 79, Snepscheut 81] did not satisfy one or more of these condi-tions. [Back 84] improved upon this result by providing an implementation that satis�edtwo more conditions: weak fairness and bounded time for a process to determine if itcan communicate with some process. [Ramesh 87] provided an improved implementationwhich could be extended to allow multi-process synchronization. [Bagrodia 85, 88, Levy88, Kumar 90] also describe algorithms for this purpose. We provide a new distributed2



algorithm that satis�es all six conditions, and is extensible to the case of multi-processsynchronization. It is simpler than algorithms presented in literature. It di�ers fromearlier algorithms in the following ways:� Sequential Capturing: In [Ramesh 87, Bagrodia 88, Kumar 90], a process cap-tures all processes participating in an event sequentially to avoid any deadlock.This can result in a substantial delay for events that is shared by a large number ofprocesses. The time complexity of such algorithms is dependent on the number ofparticipating processes. Since processes are captured for a long time it also meansthat other processes may have to wait for a long time for captured processes to bereleased. In our algorithm, a process tries to capture all participating processes inparallel.� Message Load: In [Ramesh 87, Kumar 90], each process attempts to capturesother processes involved in the desired interaction. To avoid deadlocks, processesare required to be captured using a static ordering between them. This may resultin swamping of high-priority processes with many messages. Our algorithm candistribute the message load more evenly as it does not depend upon any staticordering. This aspect is discussed further in Section 5. Moreover, in the algorithmproposed by [Kumar 89] the tryingmessage includes a sequence of processes that thetoken has visited in the current round which increases the information transferredto each participating process. Thus, the length of the message would increase asthe number of participating processes increases.� Fairness in Execution: In [Ramesh 87], a guard is chosen at random by eachprocess, thereby guaranteeing that any guard has �nite probability of being chosen.This approach, however, does not provide any bound on the number of events aguard may have to wait before it is executed. We provide such a bound by ensuringthat no interaction is aborted in favor of some other interaction more than once.� TimestampedMessages: [Ramesh 87, Bagrodia 88, Kumar 89] do not use times-tamps in their algorithms. Our algorithm requires global causality of timestamps,and we assume that there is a clock synchronization algorithm such as proposedby Lamport[Lamport 78] running on the network. Since Lamport's algorithm isvery simple to implement and does not incur high penalty, this is a not a seriousdrawback of our algorithm. Due to usefulness of global causality, other algorithmsmay already be using a clock synchronization algorithm.3. Description of the AlgorithmThe algorithm is event-driven and can be informally described as follows. Each in-teraction is assigned a master. A master can execute an interaction, if all participatingprocesses commit to it. A process can commit to an interaction by sending a yes messageto its master. A master requests for these messages by means of request messages. Arequest message may either be delayed, or be responded with a yes/no message. If all theparticipating processes commit, then the master sends a success message to them. Onreceiving a success message, a process can execute the interaction.3



When a process is in execution state (executing some interaction), it responds to onlytwo kinds of messages - ready and request. On receiving a ready message, it makes a notein its ready table, whereas a request message is replied by a no.Once a process comes to an alternative command, it sends ready message to all themasters for the guards it is ready to execute. Then, if any interaction is ready, it sendsout request messages. After this the process takes any action only on receiving a message.Some of the features of this algorithm are as follows:1. A process can send a yes message to at most one master. A process that hascommitted to an interaction can not send request message for any other interaction.Thus, a process commits to only one interaction. This way of committing resemblestwo-phase commit protocol used in databases for implementing transactions. Thedi�erence between two problems is, that in databases if two transactions t1 and t2are eligible at some state, then the protocol needs to ensure that the �nal executioncan be written either as t1t2 or t2t1. In this problem, once t1 is executed t2 may notbe valid any more. For example, initially both tennis and chess may be eligible, butonce tennis is played chess may not be eligible any more. The notion of fairness isalso not so important for database applications.2. A process that has already committed, on receiving a request for another interac-tion, says no to a younger process and delays the older process. If the process isthe master of its committed interaction, and the interaction has not received allthe yes messages, then it is aborted in favor of an older interaction. This way therecannot be any deadlock between di�erent interactions. This strategy is commonlyreferred as wait-die strategy in databases[Eswaran 76].3. The fairness is based on the principle that if there is a choice in execution of aninteraction, then the interaction which has waited for a longer time is chosen. Witheach request message for an interaction, the master also sends the timestamp of itslast execution.The algorithm as shown in Figure 1 uses the following messages:ready sent by a process to the master of an interaction indicating its willingness toexecute the interaction This message can be sent to multiple masters. They increasethe probability that a request message succeeds.request sent by the master to processes for the yes/no reply, With a request message,the master also sends the time when it was executed last.yes sent by a process to the master of an interaction indicating its willingness to executethe interaction. This message is sent to only one master.no sent by a process to the master of an interaction indicating that it has committed forsome other interactionsuccess sent by the master to processes asking them to execute the interaction4



abort sent by the master to processes asking them to abort the interactionBackground()if (mtype = ready) update(ready table)else if (mtype = request) reply(currmess, no);Initialize()captured = 0; delayed[ ]=0; initialize guards;send ready messages to various masters;if any interaction is ready then sendrequest(myinteraction);Handle Ready()update(ready table);if (the interaction is ready) and(I am not exploring any other interaction) then sendrequest;Handle Request()if (guard[interaction]=closed) reply(currmess, no);else if (myinteraction = 0) /* I am not committed */myinteraction:=interaction;reply(currmess, yes);else if (timestamp[interaction] > timestamp[captured])reply(currmess, no);else if (master[captured] = myid)sendabort(myinteraction);myinteraction = interaction;reply(currmess, yes);else delayed[currmess.src]=interaction;Handle Abort()try another interaction;Handle Succ()if (captured = currmess.interaction)takeinteraction( currmess.interaction);Handle Yes()checklist[currmess.src]=0;if all have responded yestakeinteraction(currmess.interaction);sendsucc(currmess.interaction);Handle No()rstatus[interaction][src] = false; 5



sendabort(interaction);try another interaction;try another interaction()if any process delayed respond to it;else if any interaction ready send requestelse send ready to masters which have been sent noFigure 1: Algorithm for Execution of Multi-process EventsSome of the data structures are as follows:ready table: a table maintained by the master of an interaction. If a participant of ahandshake sends a ready message to the master, he is marked as ready in a table. Forperformance reasons, we do not require processes to send \not-ready" messages whenthey are not ready for a handshake. Thus, an entry in a ready table is only one-waycorrect. If it indicates that a process is not ready for a handshake, then this is truefor the steady state of the system. However, if it says that a process is ready for somehandshake, then this must be con�rmed by a request message.guard[interaction]: Is the interaction enabled in my current state?captured: the interaction that has captured me.4. Correctness of the algorithmIn this section, we informally prove that the algorithm shown in Figure 1 is correct.We show that the algorithm is safe, that is it can ask a process to participate in at mostone interaction. We also show that the algorithm is live, that is if one or more interactionsare enabled, the system will execute some interaction.Theorem 1: Each process can be asked to participate in at most one interaction.Proof: A process commits for an interaction only if it has sent yes in response for theinteraction or it is master for that interaction and has sent request messages. Since aprocess can have at most one outstanding yes message if it has not sent out any requestmessage, and none if it has sent one, a process cannot commit for two interactions. Q.E.D.Theorem 2: If one or more interactions are eligible then the system will execute aninteraction.Proof: Consider the master of the interaction with the oldest timestamp. When thismaster sends out the request message, if all processes respond with yes, the interactioncan be executed. Since the interaction is eligible, and it has the highest priority, noprocess can send no for the interaction. The only other option for them is to delay theirresponse.We de�ne the delay graph D as a directed graph D = (V;E) where V is the set ofall the processes. There is a directed edge from process v1 to v2 if there exists a processthat has delayed v1 in favor of v2. This implies that the priority of v1 is greater than v2because we delay the older process. Global causality implies that the graph is acyclic.We traverse the path of processes in the delay graph. Since the delay graph is acyclic, wewill reach a node which has no outgoing edge. This process being youngest will receiveanswer from all the processes and therefore can send success=abort message to all itsprocesses in its set which then can reply to their delayed masters. If the decision was6



abort then the path delay graph has less number of edges and this particular interactionwill not be explored again. If the decision was success, an interaction is executed. Q.E.D.For example, consider the example of distributed players. Let Joe be the master oftennis, Mary of chess, Bob of poker and Jack of bridge. Let the last time tennis wasplayed be 12, chess be 15, poker be 14, and bridge be 18. Assume that tennis is enabledbecause all participating players are willing to play it. Also assume the Bob and Maryare willing to play poker but Jack is not. The following event sequence describes a typicalscenario:(1) Bob sends a request to Mary for poker who responds yes as she has not committed toany other game.(2) Joe sends a request for tennis to Mary who delays the response to this message.(3) Bob sends a request for poker to Jack who responds with a no message.(4) Bob sends an abort for poker to Mary, who now can respond to the delayed requestof Joe.(5) Mary can now send a success message to Joe, who then can execute the interaction.Message and Time ComplexityThe Worst Case Message ComplexityWe count the number of messages a process has to handle in the worst case before it isguaranteed to succeed. We �rst count the number of times an interaction can abort. Byour fairness rule, an interaction can be aborted in favor of some other interaction at mostonce. Thus, if there are p interactions, then an interaction of any process must succeedafter p � 1 or less number of attempts. Hence, the number of requests to a process fora guard is less than or equal to p � 1, and correspondingly the number of aborts is lessthan or equal to p � 2. There is at most one success message. Therefore, the numberof messages in the worst case for a master guard with d slaves to succeed in executing ainteraction is:ready messages at most (p� 1)d in numberrequest message at most (p � 1)d in numberyes/no at most (p� 1)d in numberabort at most (p � 2)d in numbersucceed at most dTotal: 4(p� 1)d messagesThe Best Case Message ComplexityIn the best case, there will be no aborts; therefore, a master guard will be successfulin 4d messages. A slave guard will require four messages for successful execution of aninteraction.Time ComplexityA major advantage of the algorithm is its time complexity. This is due to the factthat the master tries to capture all participating processes in parallel as opposed to thesequential capturing proposed by [Ramesh 87],[Bagrodia 85] and [Kumar 89]. Let t bethe average message transfer time. Assuming that the computation time is negligible incomparison to the message transfer time, in the best case the time taken for a successful7



interaction would be 4t and for the worst case it would be only 4(p� 1)t. The number ofprocesses participating in the interaction does not a�ect the performance the algorithmwhich makes this algorithm more suitable for synchronizing a large number of processesfor a shared event. The performance of sequential capturing algorithms degrades as thenumber of participating processes increases. Let there be d processes participating inthe interaction. Even in the best case each message would take t time, and so the timecomplexity for a sequential capturing algorithm would be 2dt. Therefore, for a largenumber of participating processes even the best case performance would be quite slow.E�ective ImplementationTheorem 3: The algorithm satis�es the following six criteria of e�ective implementation:(1) The number of processes that are involved in the selection of a guard should beminimum.(2) The amount of system information that each of these processes should be low.(3) When an interaction is ready then it will be selected within a �nite time.(4) The number of messages exchanged for making a selection by any process is small.(5) The time it takes for a process to determine whether it can establish communicationwith some other process should be bounded.(6) If a process has a guarded command that is in�nitely often enabled, then it shouldeventually succeed.Proof: (1) and (2) are obvious from the algorithm. (3), (4) and (5) follows from Theorem2 and the message complexity analysis. (6) follows from our fairness conditions. Q.E.D.5. E�ciency ConsiderationsIn the above algorithm, we did not discuss how we chose masters for each interaction.The e�ciency of the algorithm is dependent on this choice. We discuss some desirablerequirements for the choice, and strategies to assign masters based on the requirements.The algorithm, as presented above, requires the master of the interaction to deal withmore messages than dealt by other participating processes. To prevent any machine fromgetting overloaded, we may choose masters such that the maximum load on any machineis minimized. The problem can be stated formally as follows: Let M and I represent theset of machines and the set of interactions respectively. Let the degree of an interaction ibe the number of machines which participate in it. Our problem is to �nd an assignmentof master for interactions, f : I ! M , such that the maximum load on any machine isminimized. The load of a machine is de�ned as the sum of degrees of all interactions forwhich it acts as a master. For example, in the distributed player example, the degreesof chess, tennis, poker, and bridge are 2, 2,3, and 4 respectively. A possible masterassignment is as follows: Mary is the master for chess and poker, Joe is the master fortennis, and Jack is the master for bridge. The maximum load in this assignment is onMary who has the load of Chess (2) and Poker (3). If Bob is assigned as the master ofPoker, then Jack will have the maximum load of Bridge (4).Theorem 4: Let there be m machines and n interactions. There exists an algorithmwith O(log(mn)m2n2) time to �nd the master assignment f : I ! M , such that themaximum load on any machine is minimized.Proof: We consider a related problem which seeks the assignment of masters such thatthe maximum load on any machine is less than K. Let the total load (the sum of degree8



Figure 2: Minimizing the Maximum Loadof interactions) be S.[htbp]This problem can be solved as feasible circulation in a network with upper as well aslower bounds on the capacity of each edge. We add a pseudo source s and a pseudo sinkt with the following bounds:l(s; hi) = u(s; hi) = l(hi;mj) = u(hi;mj) = degree(hi)l(mi; t) = 0;u(mi; t) = K; l(t; s) = S; u(t; s) = S 8 hi 2 I; mj 2MFigure 2 shows the assignments to various edges. Using Out-of-Kilter method[Lawler76], this problem can be solved in O(m2n2) where m is the number of machines and nis the number of interactions. Using the solution to decision problem, we can solve theminimization problem in O(log(mn)) time using a binary search. Thus, the problem of�nding master assignment such that the maximum load on any machine is minimized canbe solved in O(log(mn)m2n2).6. ConclusionsExecution of shared events arises in many contexts in distributed systems. We haveproposed an e�cient algorithm of the shared events in a distributed environment. Wehave implemented this algorithm on a SUN cluster for distributed execution of decom-posed Petri nets [Garg 88,92]. It is also applicable for implementation of the generalizedCSP I/O command. Our algorithm is conceptually simpler and more e�cient than ex-isting algorithms.7. References[Back 84] R.J.R. Back, P. Eklund, and R. Kurki-Suonia, \A fair and e�cient implemen-tation of CSP with output guards", Tech. Report No. 38, Abo Akademi, Finland, 1984.9
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