
Expressing and Detecting General Control FlowPropertiesof Distributed ComputationsVijay K Garg Eddy FromentinAlex Tomlinson Michel RaynalDept. of ECE IRISAUniversity of Texas at Austin Campus de BeaulieuAustin, TX 35042 RENNES cedex { FRANCEfvijay,alextg@pine.ece.utexas.edu ffromentin,raynalg@irisa.frAbstractProperties of distributed computations can be ei-ther on their global states or on their control 
ows.This paper addresses control 
ow properties. It �rstpresents a simple yet powerful logic for expressing gen-eral properties on control 
ows, seen as sequences oflocal states. Among other properties, we can expressinvariance, sequential properties (to satisfy such aproperty a control 
ow must match a pattern describedas a word on some alphabet) and non-sequential prop-erties (these properties are on several control 
ows atthe same time).A decentralized detection algorithm for propertiesdescribed by this logic is then presented. This algo-rithm, surprisingly simple despite the power of thelogic, observes the underlying distributed computation,does not alter its control 
ows and uses message tagsto carry detection-related information.1 IntroductionContrary to model checking, which works at\compile-time" on representations of all possible ex-ecutions of a distributed program [4], run-time de-tection of properties of distributed executions is con-cerned by a single but real execution. Two classesof run-time properties have been identi�ed: ones thatare on global states and ones that are on control 
owsof a distributed execution. In the �rst case, globalstates have to be computed. If the property is stable(once true it remains true forever), a snapshot algo-rithm can be used to detect it [3]. When the prop-erty is not stable, all the global states, through whichthe computation could have passed, have to be con-sidered. These states constitute a lattice [1, 15]; anode of the lattice represents a possible global stateof the distributed computation and an edge representsan event that changes the global state of the computa-tion. A general method to detect such unstable prop-erties consists in building the lattice associated withthe distributed execution [5, 6] and then in traversingit to detect the property [2, 12]; this can be done onthe 
y by pipelining the construction and the traversal

of the lattice with the execution. The basic problemwith the detection of general (unstable) properties onglobal states is that the size of the lattice can be expo-nential with respect to the number of processes [1, 15].However for some speci�c properties on global statessuch as conjunction of local predicates [9], relationalglobal predicate [16] or inevitable global states [7, 9]the lattice construction is not necessary.The subject of this paper is the second class ofproperties, namely the ones on control 
ows of a dis-tributed computation. A control 
ow is a sequenceof causally related events produced by a distributedcomputation or, equivalently, the sequence of localstates produced by these events. It is important tonote that, due to messages exchanges, control 
owsvisit processes, merge and fork. The set of all con-trol 
ows can easily be determined from Lamport'spartial order relation on events of a distributed com-putation [13] (usually called happened before or causalprecedence). One of the �rst proposal to express prop-erties on control 
ows was introduced in [14], underthe name linked predicates. Linked predicates describea causal sequence of local states where each state inthe sequence satis�es a speci�c local predicate. Thebehavior \an occurrence of local predicate p is causallyfollowed by an occurrence of local predicate q" is anexample of a linked predicate. Algorithms for linkedpredicates appear in [9, 11, 14]. A generalization oflinked predicates to a broader class called atomic se-quences of predicates has been proposed in [11]. In thisclass, occurrences of local predicates can be forbiddenbetween adjacent predicates in linked predicates. Theexample given above for linked predicates could be ex-panded to include: \q follows p and r never occurs inbetween" (note that p,q, and r could all occur in dif-ferent processes). More general regular patterns wereintroduced in [8]; a property is then speci�ed by a reg-ular expression of local predicates. For example pq?ris true in a computation if there exists a sequence oflocal states (s1; s2; � � � ; sn) such that p is true in s1, qis true in s2; � � � ; sn�1 and r is true in sn. Note thatthe states in the sequence need not belong to the sameprocess. Regular patterns are sequential, which means



that they can be expressed as a set of words on somealphabet (elements of the alphabet are local predicateswhich must be satis�ed by local states).This paper introduces a simple but powerful logicthat can express general properties on control 
owsof which sequential properties are a special case. Alabeled poset of local states is used to model a dis-tributed computation. Each state in the poset has aset of labels which represent boolean expressions (lo-cal predicates) which are true in that state. In thismodel the global past of any local state s forms a la-beled directed acyclic graph such that s is a root inthe graph. We call these structures LRDAGs (labeledrooted DAGs). Formulas in the logic express proper-ties of LRDAGs. Thus a formula can be thought ofas a boolean function whose argument is an LRDAG.Moreover in a labeled poset there is a one to one re-lationship between states and LRDAGs, thus we canalso think of a formula as a boolean function on localstates.The paper also presents a decentralized, yet sur-prisingly simple, algorithm to detect the formulas ex-pressed with this logic; so this detection algorithm in-cludes as special cases the ones described in [14, 11, 8].The detection algorithm is superimposed on the dis-tributed computation. It is passive in the sense it canonly observe the computation (it can neither initiateor inhibit the sending or receiving of messages nor al-ter the control 
ow of the observed computation). Thememory and time overhead of the detection algorithmis a function of the formula being detected, and not ofthe number of processes. Typically, this overhead isquite low.The paper is divided into four main Sections. Sec-tion 2 presents the model of distributed executions.Section 3 introduces the LRDAG logic to express gen-eral properties on control 
ows. Section 4 presentssome uses of this logic. Section 5 presents a decen-tralized algorithm that detects properties expressedas formulas of this logic.2 Model of Distributed Execu-tions2.1 Distributed ProgramsA distributed program consists of N processes (de-noted P1; P2; : : : ; PN ) which can communicate witheach other only via messages. It is assumed that mes-sages cannot be forged | that is, if process P1 receivesa message that appears to be sent from state s in pro-cess P2, then P2 did send that message from state s.We assume that information can be piggybacked onmessages. Message channels need not be reliable orFIFO.2.2 Partial Order on StatesEach process, Pi, consists of a sequence of inter-leaved states and events: (s0i ; e1i ; s1i ; e2i ; s2i : : :). Ini-tially, Pi is in state s0i . Event eki transforms state sk�1iinto state ski . (Throughout the paper we use i to indexprocesses, and k to index sequences of states. We use

ski to denote a speci�c state at a speci�c process, ands to denote non-speci�c states.)Let S be the set of states of all the processes. (Theterm \state" always refers to a local state of a singleprocess). We assume that sxi = syj if and only if x = yand i = j. We de�ne two relations on S�S as follows:� local predecessor relation: �sxi�syj () i = j ^ y = x+ 1� remote predecessor relation: ;sxi;syj () exi is the sending of message mand eyj is the reception of mThe tuple ~S 4= (S;�;;) models a distributedcomputation. The causally precedes relation ! is de-�ned as the transitive closure of �[;. This relationis Lamport's relation [13] applied to states. The set ofstates S is partially ordered by !. Any execution ofany distributed program can be modeled by a partiallyordered set of local states.Figure 1 shows a distributed execution and Figure 2shows the resulting state poset. In these �gures, blackcircles are events and white squares are states. Arrowsrepresent messages in Figure 1, while they representthe relation ; in Figure 2.2.3 Labeled states and Labeled RootedDAGsConsider the subposet formed by taking a localstate s 2 S and all local states which causally precedes. This subposet, called the past (pre�x closure) ofs and denoted dag(s) forms a rooted directed acyclicgraph (DAG) whose root is s (in this DAG edges aredirected towards the root):dag(s) 4= ~S restricted to fs g [ fs0 j s0!s gLet A be a set of labels and let � be a function fromS to 2A. Then each local state s has a set of labels�(s) associated with it. These labels represent booleanexpressions evaluated in the local state s; presence ofa label in �(s) means that the associated boolean ex-pression (local predicate) evaluates to true in s. Forexample, an expression such as (v � 10) where v is avariable in s can be associated with a label p; thenp 2 �(s) if and only if (v � 10) in state s. If a lo-cal state s satis�es no predicate then �(s) = fg. Ac-cording to the properties we want to express severallocal predicates can be associated with the same la-bel. Since each local state has labels, we call thesestructures labeled rooted DAGs, or LRDAGs.3 LRDAG LogicThis logic allows one to specify, for any local states 2 S, properties as formulas on the associated labeleddag(s). The kind of properties that can be expressedare very general and includes invariance, existence,sequential and non-sequential properties. Section 4gives examples illustrating this logic. (A sequentialproperty can be expressed as a set of words on some



s01 s11 s21 s41e11 e21 e31s02 s32e12 e32s03 s23 s33e13 e23 e33e22 s22s13
s31 e41s12

Figure 1: A distributed execution ~S

s01 s11 s21 s41s02 s32s03 s23 s33s22s13
s31s12

Figure 2: State poset



alphabet, the labels; a non-sequential property is morepowerful since it can be on several paths of dag(s) atthe same time.)3.1 SyntaxIn the following syntax de�nition A is a set of labelsand X is a set of logic variables whose purpose will bedescribed later.p 2 Ax 2 Xf = p j 3l x j 3m x j (:f) j (f ^ f)This syntax can be easily understood by noticing thata formula f is syntactically correct if and only if f isa boolean expression over the following set:A [ f3l x j x 2 Xg [ f3m x j x 2 XgDe�ne B 4= j X j and X 4= fx1; x2 : : : xBg. Thena property is de�ned as a set of B equations whichde�ne each logic variable in X (fi are formulas).x1 := f1...xB := fB3.2 SemanticsThe forms xj exist so that we can name formulas inan equation. This allows recursion such as: x1 := p ^3l x1. We call xj a logic variable (it is a variable of thedetection algorithm, not the underlying computation).The logic variable xj is true in some state s 2 S ifand only if formula fj is true in s. This can be statedformally as follows:s j= xj 4= s j= fj3l and 3m are temporal operators which providethe power of this logic. In a state s, 3l xj means thatxj is true in the local predecessor of s, and 3m xjmeans that xj is true in the remote predecessor of s.Note that in an initial state, both forms are false sincethere are no predecessors; and for states in which thepreceding event is not a receive event, 3m xj is false.s j= 3l xj 4= (9s0 : s0�s : s0 j= xj)s j= 3m xj 4= (9s0 : s0;s : s0 j= xj)Recall that a label p represents a boolean expressionevaluated on some state in S, and that p 2 �(s) meansthat the boolean expression is true in s.s j= p 4= p 2 �(s)

The remaining semantic de�nitions are straightfor-ward.s j= (f ^ f 0) 4= (s j= f) ^ (s j= f 0)s j= (:f) 4= :(s j= f)3.3 Prede�ned predicatesIt is useful to de�ne predicates on local states whosetruth values depend on the position of the local state sin ~S. These built-in predicates can be used to specifyproperties which take into account the structure of~S. The predicate labeled initial is true only in initialstates, and the predicate labeled receive is true onlyif the preceding event is a message receive.s j= initial 4= :(9s0 :: s0�s)s j= receive 4= (9s0 :: s0;s)Moreover, let a predicate labeled send be true onlyif the immediately preceding event was the sending ofa message. We can take advantage of other booleanoperators (such as ) and _ ) since they can beexpressed in terms of ^ and :. Finally, let a predicatelabeled external be de�ned as send or receive; in otherwords:s j= external 4= (s j= send) _ (s j= receive)4 ExamplesThis section gives examples demonstrating thepower and 
exibility of LRDAG logic.4.1 Invariance and Existence in the LocalPastIf x1 is de�ned as:x1 := p ^ (:initial ) 3l x1)then x1 is true in ski i� ski j= (p ^ (initial _ 3l x1)). Ifski is an initial state, then x1 is true i� p is true. If skiis not an initial state, then x1 is true i� p is true andx1 is true in the locally preceding state. It follows, byinduction, that x1 is true in ski i� p is true in sxi forall 0 � x � k.In a similar way, existence (as opposed to invari-ance) of p in the local past of ski is speci�ed by thefollowing formula:x1 := p _ 3l x1



4.2 Invariance and Existence in theGlobal PastThe global past of a local state s is the set fs0 j s0 2dag(s)g. A label p is invariant in the global past of si� p 2 �(s0) for all s0 2 dag(s). This can be expressedin a way similar to invariance in the local past:x1 := p ^ (:initial ) 3l x1) ^ (receive ) 3m x1)In this case, x1 is true in non-initial state s i� p is truein s, x1 is true in the local predecessor, and x1 is truein the remote predecessor if a message has just beenreceived.If x1 is de�ned in the following way:x1 := p _ 3l x1 _ 3m x1then s j= x1 i� p is true in some state in dag(s).4.3 Interval AbstractionIt is sometimes useful to consider a distributed ex-ecution modeled as a poset of intervals [16] instead ofa poset of local states. Recall external is true i� thepreceding event was a send or receive. Consider thesequence of states in process Pi : (s0i s1i : : : sni ). Thissequence is partitioned into subsequences by externalevents. These subsequences are intervals. For exam-ple, in Figure 1, the states of P2 are partitioned intothree intervals: fs02; s12g, fs22g, and fs32g.Consider the following pattern speci�cation:x1 := p _ (:external ^ 3l x1)x1 is true in s i� p is true in at least one local statesince the previous external event. The label externalresets x1 each time a new interval begins.4.4 Regular Expressions1A sequential property is de�ned as a language(set of strings) on some �nite alphabet (the labels).For a local state s, the property is satis�ed if oneof labeled paths of dag(s) belongs to the language.The set of all labeled paths of dag(s) is denotedSTRINGS(s). Formally, the string (�0�1 : : : �n) is inSTRINGS(s) if and only if there exists a sequence ofstates (�0�1 : : : �n) such that:1: (9i :: �0 = s0i )(i.e., �0 is an initial state.)2: for (0 � k < n); �k��k+1 _ �k;�k+13: �n = s4: for (0 � k � n); if �(�k) 6= fg then�k 2 �(�k)else �k = ��1Two kinds of local states are considered in thissection: those of the state machine and those of thedistributed execution. Context should clarify whichtype of state we are referring to when we use the term\state".

We consider here sequential properties de�ned byregular expressions, or equivalently, by a �nite stateautomatonM . Given a state s, we can specify and de-termine if there exists a string in STRINGS(s) whichis accepted by M . Linked predicates [14], atomic se-quences of predicates [11] an regular patterns [8] arespecial cases of sequential properties that can be de-scribed by the LRDAG logic.A non deterministic �nite state machine Mis de�ned by a tuple: M = (Q;A; q1; QF ; �) with8>>><>>>: set of states: Q = fq1; � � � ; qBg (jQ j= B)A: set of input symbols (labels)q1 2 Q (initial state)QF � Q (set of �nal states)� : Q�A 7! 2Q (transition function)Such an automaton recognizes a set of strings on Athat can be speci�ed in LRDAG logic by a set of Bequations de�ning xj for 1 � j � B, such that xj istrue in s i� there exists a string in STRINGS(s) whichwould place M in state qj .Let 3 xk be a short form for (3l xk _ 3m xk)2.LetTj = f(� ^ 3 xk) j qj 2 �(qk; �)^� 2 A^k 2 f1; � � � ; Bgg(Tj represents all transitions of the automaton enter-ing qj). The B equations are de�ned in the followingway: x1 := initial _ f1xj := fj 8j 2 f2; � � � ; Bgwith fj = _t2Tj tfj has the form (f1j _ f2j _ f3j : : :). When we con-sider a pictorial representation of the state machineeach arrow pointing to qj has a label and de�nes oneof the disjuncts in fj . As an example, consider an ar-row incident on qj and suppose it de�nes f1j . Let qkbe the state on the other end of the arrow (i.e. we areconsidering the edge (qk ; qj)). Let � be the label onthis edge. Then f1j = � ^ 3 xk. Thus f1j is true in sif the state machine could have traveled edge (qk; qj)in the previous step.The following example illustrates this constructionby considering a state machine (Figure 3) implement-ing the regular expression a+ cb�c (q3 is the only �nalstate).First consider f1. No arrows enter q1. Thereforethe disjunct list is empty and f1 = false.Next consider f2. One incoming arrow is labeledc and comes from state q1. Thus one disjunct is2As we can see a sequential property does not dis-tinguish between local and remote predecessors of lo-cal states.



q3q2q1 cb
acinitial state

Figure 3: State machine implementing a+ cb�cc ^ 3 x1. The other incoming arrow is labeled b andcomes from q2. Thus another disjunct is b ^ 3 x2.Thus f2 = (c ^ 3 x1) _ (b ^ 3 x2).Next consider f3. There is an incoming arrow fromq1 labeled a, and another one from q2 labeled c. Thusf3 = (a ^ 3 x1) _ (c ^ 3 x2).Therefore, in our logic, this regular expression canbe speci�ed as follows:x1 := initialx2 := (c ^ 3 x1) _ (b ^ 3 x2)x3 := (a ^ 3 x1) _ (c ^ 3 x2)xj is true in poset state s i� there is a string inSTRINGS(s) which would place M in state qj . Thus,x3 is true in s i� there is a string which matches theregular expression a+ cb�c.4.5 Non-sequential propertiesThe previous examples demonstrated how LRDAGlogic can express sequential properties of control 
ows.A non-sequential property cannot be expressed as aset of independent words on some alphabet. Such aproperty is on several control 
ows at the same time.A non-sequential control 
ow can be demonstratedwith the scatter and collect operations which are com-monly used to distribute a workload and collect theresults. Suppose there is a matrix D partitioned intoN submatrices Di, for 1 � i � N . The matrix, whichis initially owned by P1, is distributed among the pro-cesses so that Pi owns Di. After process Pi performssome operation on Di, P1 collects the results and thenowns the entire matrix once again. Let i:owns:Dj and1:owns:D be labels such that:i:owns:Dj 2 �(s) () s 2 Si ^ s owns Dj1:owns:D 2 �(s) () s 2 S1 ^ s owns DThe scatter-and-collect control 
ow is then character-ized by the following pattern speci�cation. We use y1and z1 as logic variables in addition to xi, and 3 isthe same short form used in section 4.4 (a local state ofPi satis�es xi just after the scattering, a local state ofP1 satis�es z1 just after the collection of the results):y1 := 1:owns:D

x1 := 1:owns:D1 ^ 3 y1x2 := 2:owns:D2 ^ 3 y1...xN := N:owns:DN ^ 3 y1z1 := 1:owns:D ^ (8i : 1 � i � N : 3 xl)In this pattern speci�cation, z1 is true in P1 when itowns D after the scatter-and-collect operation.5 Decentralized Detection Al-gorithmIn this section there are algorithm variables andlogic variables. A logic variable is still referred to asxj and the corresponding algorithm variable is namedXj . The variables Xmj and X lj are algorithm vari-ables which store the values of 3m xj and 3l xj re-spectively.5.1 Description of the AlgorithmGiven a property de�nition we want to evaluateeach logic variable xj in any state s. In the prop-erty de�nition, xj := fj . Recall that fj is a booleanexpression over the setA [ f3l x j x 2 Xg [ f3m x j x 2 XgRecall that a label p is an element of �(s) if and onlyif the local predicate which p represents evaluates totrue in state s. The form 3l xj represents the valueof logic variable xj in the local predecessor. For initialstates, 3l xj is false. In states where a message hasjust been received, 3m xj represents the value of logicvariable xj in the state that sent the message. If nomessage has just been received, then 3m xj is false.Each process Pi is augmented with boolean vari-ables X1; X2; : : : XB; Xj is the concrete representa-tion of the logic variable xj . In any state, the valuesof xj in predecessor states must be known. Messagetags are used to carry the values of xj to the receiv-ing process so that the forms 3m xj can be evaluated(their values are kept in local variables Xmj of the re-ceiving process). The forms 3l xj can be evaluated



easily since they are from the same process (their val-ues are kept in local variablesX lj). The algorithm usesa macro evalj such that:evalj(3l x1; : : : 3l xB ; 3m x1; : : : 3m xB)expands to fj . For example, consider the logic vari-ables x1, x2 and x3 from the regular expression a+cb�cdiscussed in Section 4.4:eval1(3l x1;3l x2;3l x3;3m x1;3m x2;3m x3):= initialeval2(3l x1;3l x2;3l x3;3m x1;3m x2;3m x3):= (c ^ 3 x1) _ (b ^ 3 x2)eval3(3l x1;3l x2;3l x3;3m x1;3m x2;3m x3):= (a ^ 3 x1) _ (c ^ 3 x2)A formal description of the algorithm follows:Local Variablesboolean: Xj ; X lj , Xmj for j 2 1 : : : B;Initially(S1) for j := 1 to B doXj := evalj(false; : : : false);Upon sending a message(S2)Tag message with (X1; X2; : : :XB);Upon entering new local state s(S3) if (previous event was message receive) then(Xm1 ; Xm2 ; : : : XmB ) := message tagelse(Xm1 ; Xm2 ; : : : XmB ) := (false; : : : ; false)�;(S4) (X l1; X l2; : : :X lB) := (X1; X2; : : : ; XB)(S5) % evaluation of each fj in state s%for j := 1 to B doXj := evalj(X l1; X l2; : : :X lB ; Xm1 ; Xm2 ; : : :XmB );The above algorithm has storage overhead propor-tional to B bits per process. No additional mes-sages are introduced by the algorithm, however eachmessage produced by the underlying computation istagged with B bits. The time complexity is also pro-portional to B operations per event per process. In anactual implementation, only states deemed relevant tothe behavior being detected would be interrupted. Inmost cases this would drastically reduce the time com-plexity.

5.2 Correctness ProofThe proof consists in showing the following equiva-lence, where s is any state in ~S. (Recall that the term\state" always refers to a local state).(P) s j= xj () Local variable Xj is true in state sThe implication \(" states that detection is sound(safety) and the implication \)" states that detectionis complete (liveness).Proof: The proof is done by induction on therank of the state s in the poset ~S. Let rank(s) be thelength of the longest path in dag(s) from some initialstate to s.1. Base case.For all s such that rank(s) = 0, s is an initialstate. Statement S1 ensures P is true for initialstates.2. Induction case.Assume P is true for all states v such thatrank(v) � k and consider a state s in Pi suchthat rank(s) = k + 1. First we show that X land Xm have correct values.� s has one local predecessor sl whose rankis less than k. By the induction hypothesisand by statement S4:sl j= xj () X lj is true in state s� If a message is received just before states then s has one remote predecessor, smwhose rank is less than k. Thus by theinduction hypothesis and by statement S3:sm j= xj () Xmj is true in state sIf no message is received then s has no re-mote predecessor and by S3 each variableXmj is false in state s.Since X l and Xm have correct values, and byde�nition of evalj , we know that statement S5computes new values for Xmj such that:s j= xj () Xj is true in state s6 ConclusionA simple but powerful logic to express a wide classof properties of control 
ows of distributed compu-tations has been presented. This class includes se-quential properties (of which linked predicates [14],atomic sequences of predicates [11] and regular pat-terns [8] are special cases) and more sophisticated non-sequential properties. These properties, expressed as



formulas on the global past of local states, are use-ful for analyzing, testing or debugging executions ofdistributed programs.A decentralized algorithm that detects the prop-erties, concurrently with the underlying computation,has been presented and proved correct. This algorithmis surprisingly simple despite the power of the logic.The algorithm does not alter the control 
ows or thecausal structure of the computation (so it does notinhibit or initiate sending or receiving of messages)and it is e�cient in the sense it uses message tagsof B bits where B depends only on the property be-ing detected (and so is independent on the numberof processes). Algorithms already proposed to detectsequential properties on control 
ows [14, 11, 8] areparticular instances of this algorithm which addition-ally can detect more sophisticated properties.An implementation of this algorithm is currentlybeing developed in the context of a debugging facilityfor distributed programs [10].References[1] �O. Babao�glu and K. Marzullo. Consistent globalstates of distributed systems: fundamental con-cepts and mechanisms, in Distributed Systems,chapter 4, pages 55{93. ACM Press, FrontierSeries, (S.J. Mullender Ed.), 1993.[2] �O. Babao�glu and M. Raynal. Speci�cation anddetection of behavioral patterns in distributedcomputations. In Proc. of 4th IFIP WG 10.4 Int.Conference on Dependable Computing for Crit-ical Applications, Springer Verlag Series in De-pendable Computing, San Diego, January 1994.[3] K.M. Chandy and L. Lamport. Distributed snap-shots : determining global states of distributedsystems. ACM Transactions on Computer Sys-tems, 3(1):63{75, February 1985.[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Au-tomatic veri�cation of �nite state concurrent sys-tems using temporal logic speci�cations. ACMToplas, 8(2):244{263, 1986.[5] R. Cooper and K. Marzullo. Consistent detec-tion of global predicates. In Proc. ACM/ONRWorkshop on Parallel and Distributed Debugging,pages 167{174, Santa Cruz, California, May 1991.[6] C. Diehl, C. Jard, and J.X. Rampon. Reach-ability analysis on distributed executions. InTheory and Practice of Software Development,pages 629{643, TAPSOFT, Springer Verlag,LNCS 668 (Gaudel and Jouannaud editors),April 1993.[7] E. Fromentin and M. Raynal. Inevitable globalstates: a new concept to detect unstable prop-erties of distributed computations in an observerindependent way. In Proc. of the 6th IEEE Sym-posium on Parallel and Distributed Processing,Dallas, TX, Oct. 1994.

[8] E. Fromentin, M. Raynal, V.K. Garg, and A.I.Tomlinson. On the 
y testing of regular patternsin distributed computations. In Proc. of the 23rdInternational Conference on Parallel Processing,2:73{76, St. Charles, IL, August 1994.[9] V.K. Garg and B. Waldecker. Detection of unsta-ble predicates in distributed programs. In TwelfthInternational Conference on Foundations of Soft-ware Technology and Theoretical Computer Sci-ence, pages 253{264, Springer Verlag, LNCS 625,New Delhi, India, December 1992.[10] M. Hur�n, N. Plouzeau, and M. Raynal.A debugging tool for distributed Estelle pro-grams. Journal of Computer Communications,16(5):328{333, May 1993.[11] M. Hur�n, N. Plouzeau, and M. Raynal. Detect-ing atomic sequences of predicates in distributedcomputations. In Proc. ACM/ONR Workshop onParallel and Distributed Debugging, pages 32{42,San Diego, CA, May 1993. (Reprinted in SIG-PLAN Notices, Dec. 1993).[12] C. Jard, T. Jeron, G.V. Jourdan, and J.X. Ram-pon. A general approach to trace-checking in dis-tributed computing systems. In Proc. 14th IEEEInt. Conf. on DCS, Poznan, Poland, pp. 396{403,June 1994.[13] L. Lamport. Time, clocks and the ordering ofevents in a distributed system. Communicationsof the ACM, 21(7):558{565, July 1978.[14] B.P. Miller and J. Choi. Breakpoints and haltingin distributed programs. In Proc. 8th IEEE Int.Conf. on Distributed Computing Systems, SanJose, pages 316{323, July 1988.[15] R. Schwarz and F. Mattern. Detecting causalrelationships in distributed computations : insearch of the holy grail. Distributed Computing,7(3):149{174, 1994.[16] A.I. Tomlinson and V.K. Garg. Detecting rela-tional global predicates in distributed systems.In Proc. ACM/ONR Workshop on Parallel andDistributed Debugging, pages 21{31, San Diego,CA, May 1993. (Reprinted in SIGPLAN Notices,Dec. 1993).


