Expressing and Detecting General Control Flow
Properties
of Distributed Computations

Vijay K Garg
Alex Tomlinson
Dept. of ECE
University of Texas at Austin
Austin, TX
{vijay,alext} @pine.ece.utexas.edu

Abstract

Properties of distributed computations can be ei-
ther on their global states or on their control flows.
This paper addresses control flow properties. It first
presents a simple yet powerful logic for expressing gen-
eral properties on control flows, seen as sequences of
local states. Among other properties, we can express
invariance, sequential properties (to satisfy such a
property a control flow must match a pattern described
as a word on some alphabet) and non-sequential prop-
erties (these properties are on several control flows at
the same time).

A decentralized detection algorithm for properties
described by this logic is then presented. This algo-
rithm, surprisingly simple despite the power of the
logic, observes the underlying distributed computation,
does not alter its control flows and uses message tags
to carry detection-related information.

1 Introduction

Contrary to model checking, which works at
“compile-time” on representations of all possible ex-
ecutions of a distributed program [4], run-time de-
tection of properties of distributed executions is con-
cerned by a single but real execution. Two classes
of run-time properties have been identified: ones that
are on global states and ones that are on control flows
of a distributed execution. In the first case, global
states have to be computed. If the property is stable
(once true it remains true forever), a snapshot algo-
rithm can be used to detect it [3]. When the prop-
erty is not stable, all the global states, through which
the computation could have passed, have to be con-
sidered. These states constitute a lattice [1, 15]; a
node of the lattice represents a possible global state
of the distributed computation and an edge represents
an event that changes the global state of the computa-
tion. A general method to detect such unstable prop-
erties consists in building the lattice associated with
the distributed execution [5, 6] and then in traversing
it to detect the property [2, 12]; this can be done on
the fly by pipelining the construction and the traversal

Eddy Fromentin
Michel Raynal
IRISA
Campus de Beaulieu

35042 RENNES cedex - FRANCE

{fromentin,raynal } @irisa.fr

of the lattice with the execution. The basic problem
with the detection of general (unstable) properties on
global states is that the size of the lattice can be expo-
nential with respect to the number of processes [1, 15].
However for some specific properties on global states
such as conjunction of local predicates [9], relational
global predicate [16] or inevitable global states [7, 9]
the lattice construction is not necessary.

The subject of this paper is the second class of
properties, namely the ones on control flows of a dis-
tributed computation. A control flow is a sequence
of causally related events produced by a distributed
computation or, equivalently, the sequence of local
states produced by these events. It is important to
note that, due to messages exchanges, control flows
visit processes, merge and fork. The set of all con-
trol flows can easily be determined from Lamport’s
partial order relation on events of a distributed com-
putation [13] (usually called happened before or causal
precedence). One of the first proposal to express prop-
erties on control flows was introduced in [14], under
the name linked predicates. Linked predicates describe
a causal sequence of local states where each state in
the sequence satisfies a specific local predicate. The
behavior “an occurrence of local predicate p is causally
followed by an occurrence of local predicate ¢” is an
example of a linked predicate. Algorithms for linked
predicates appear in [9, 11, 14]. A generalization of
linked predicates to a broader class called atomic se-
quences of predicates has been proposed in [11]. In this
class, occurrences of local predicates can be forbidden
between adjacent predicates in linked predicates. The
example given above for linked predicates could be ex-
panded to include: “q follows p and r never occurs in
between” (note that p,g, and 7 could all occur in dif-
ferent processes). More general reqular patterns were
introduced in [8]; a property is then specified by a reg-
ular expression of local predicates. For example pg*r
is true in a computation if there exists a sequence of
local states (sy,s2,---,s,) such that p is true in s, ¢
is true in so,---,s,_1 and r is true in s,,. Note that
the states in the sequence need not belong to the same
process. Regular patterns are sequential, which means

that they can be expressed as a set of words on some
alphabet (elements of the alphabet are local predicates
which must be satisfied by local states).

This paper introduces a simple but powerful logic
that can express general properties on control flows
of which sequential properties are a special case. A
labeled poset of local states is used to model a dis-
tributed computation. Each state in the poset has a
set of labels which represent boolean expressions (lo-
cal predicates) which are true in that state. In this
model the global past of any local state s forms a la-
beled directed acyclic graph such that s is a root in
the graph. We call these structures LRDAGs (labeled
rooted DAGs). Formulas in the logic express proper-
ties of LRDAGs. Thus a formula can be thought of
as a boolean function whose argument is an LRDAG.
Moreover in a labeled poset there is a one to one re-
lationship between states and LRDAGs, thus we can
also think of a formula as a boolean function on local
states.

The paper also presents a decentralized, yet sur-
prisingly simple, algorithm to detect the formulas ex-
pressed with this logic; so this detection algorithm in-
cludes as special cases the ones described in [14, 11, 8].
The detection algorithm is superimposed on the dis-
tributed computation. It is passive in the sense it can
only observe the computation (it can neither initiate
or inhibit the sending or receiving of messages nor al-
ter the control flow of the observed computation). The
memory and time overhead of the detection algorithm
is a function of the formula being detected, and not of
the number of processes. Typically, this overhead is
quite low.

The paper is divided into four main Sections. Sec-
tion 2 presents the model of distributed executions.
Section 3 introduces the LRDAG logic to express gen-
eral properties on control flows. Section 4 presents
some uses of this logic. Section 5 presents a decen-
tralized algorithm that detects properties expressed
as formulas of this logic.

2 Model of Distributed Execu-

tions

2.1 Distributed Programs

A distributed program consists of N processes (de-
noted Py, P,,..., Py) which can communicate with
each other only via messages. It is assumed that mes-
sages cannot be forged — that is, if process P, receives
a message that appears to be sent from state s in pro-
cess P, then P, did send that message from state s.
We assume that information can be piggybacked on
messages. Message channels need not be reliable or
FIFO.

2.2 Partial Order on States

Each process, P;, consists of a sequence of inter-

C (0 ol gl o2 o2 :

leaved states and events: (s;,e;,s;,e;,s7...). Ini-
k—1
i

tially, P is in state s?. Event e¥ transforms state s

into state s¥. (Throughout the paper we use i to index
processes, and k to index sequences of states. We use

sk to denote a specific state at a specific process, and
s to denote non-specific states.)

Let S be the set of states of all the processes. (The
term “state” always refers to a local state of a single
process). We assume that s? = s]y ifand only if z = g

and 7 = j. We define two relations on S x S as follows:

e local predecessor relation: <
si<s] <= i=j ANy=z+1

e remote predecessor relation: ~»

si~s? <= e is the sending of message m

and e

S s the reception of m

The tuple S 2 (S,<,~) models a distributed
computation. The causally precedes relation — is de-
fined as the transitive closure of < U~». This relation
is Lamport’s relation [13] applied to states. The set of
states S is partially ordered by —. Any execution of
any distributed program can be modeled by a partially
ordered set of local states.

Figure 1 shows a distributed execution and Figure 2
shows the resulting state poset. In these figures, black
circles are events and white squares are states. Arrows
represent messages in Figure 1, while they represent
the relation ~» in Figure 2.

2.3 Labeled states and Labeled Rooted

DAGs
Consider the subposet formed by taking a local
state s € S and all local states which causally precede
s. This subposet, called the past (prefix closure) of
s and denoted dag(s) forms a rooted directed acyclic
graph (DAG) whose root is s (in this DAG edges are
directed towards the root):

dag(s) 2§ restricted to {s}U{s'|s'=s}

Let A be a set of labels and let A be a function from
S to 24. Then each local state s has a set of labels
A(s) associated with it. These labels represent boolean
expressions evaluated in the local state s; presence of
a label in A(s) means that the associated boolean ex-
pression (local predicate) evaluates to true in s. For
example, an expression such as (v < 10) where v is a
variable in s can be associated with a label p; then
p € A(s) if and only if (v < 10) in state s. If a lo-
cal state s satisfies no predicate then A(s) = {}. Ac-
cording to the properties we want to express several
local predicates can be associated with the same la-
bel. Since each local state has labels, we call these
structures labeled rooted DAGs, or LRDAGsS.

3 LRDAG Logic

This logic allows one to specify, for any local state
s € S, properties as formulas on the associated labeled
dag(s). The kind of properties that can be expressed
are very general and includes invariance, existence,
sequential and non-sequential properties. Section 4
gives examples illustrating this logic. (A sequential
property can be expressed as a set of words on some

HER

3 3
€3 53
. L]
Figure 1: A distributed execution S
s st 51 si si
—] ! ! 1 1
[L
0 1 2 3
52 52 52 52
! 1
_{j L L
0 1 2 3
53 53 53 3
]
L J L J

Figure 2: State poset

alphabet, the labels; a non-sequential property is more
powerful since it can be on several paths of dag(s) at
the same time.)

3.1 Syntax
In the following syntax definition A is a set of labels

and X is a set of logic variables whose purpose will be
described later.

p € A
r € X
f=pl x| Onz | (=f) | (fAS)

This syntax can be easily understood by noticing that
a formula f is syntactically correct if and only if f is
a boolean expression over the following set:

AU{Ciz | z2eX} U {Opnx | z€X}

Define B 2 |X] and X 2 {z1,22...zp}. Then
a property is defined as a set of B equations which
define each logic variable in X (f; are formulas).

I = f1

g = fB

3.2 Semantics

The forms z; exist so that we can name formulas in
an equation. This allows recursion such as: x; :=p A
O w1. We call ;5 a logic variable (it is a variable of the
detection algorithm, not the underlying computation).
The logic variable z; is true in some state s € S if
and only if formula jzj is true in s. This can be stated
formally as follows:

skEx = s Ef

& and ©,, are temporal operators which provide
the power of this logic. In a state s, ¢; x; means that
z; is true in the local predecessor of s, and <, x;
means that x; is true in the remote predecessor of s.
Note that in an initial state, both forms are false since
there are no predecessors; and for states in which the
preceding event is not a receive event, ¢,, x; is false.

>

skE< (3s' :s'<s: 5" =xj)

>

sEOmT; (3s' : s'~s 8 = xy)

Recall that a label p represents a boolean expression
evaluated on some state in S, and that p € A(s) means
that the boolean expression is true in s.

sEp 2 pels)

The remaining semantic definitions are straightfor-
ward.

sk AL
s = (=f)

(sEAGES
(s = f)

>

3.3 Predefined predicates

It is useful to define predicates on local states whose
truth values depend on the position of the local state s
in S. These built-in predicates can be used to specify
properties which take into account the structure of
S. The predicate labeled initial is true only in initial
states, and the predicate labeled receive is true only
if the preceding event is a message receive.

s [= initial 2 —(3s’ :: s'<s)

s |= receive (Fs' :: s'~s)

Moreover, let a predicate labeled send be true only
if the immediately preceding event was the sending of
a message. We can take advantage of other boolean
operators (such as = and V) since they can be
expressed in terms of A and —. Finally, let a predicate
labeled external be defined as send or receive; in other
words:

s = external 2 (s |= send) V (s |= receive)

4 Examples

This section gives examples demonstrating the
power and flexibility of LRDAG logic.

4.1 Invariance and Existence in the Local
Past

If z; is defined as:
x1 = p A (—initial = Op)

then x is true in s¥ iff s* |= (p A (initial vV <; 21)). If
sk is an initial state, then z; is true iff p is true. If sk
is not an initial state, then x; is true iff p is true and
21 is true in the locally preceding state. It follows, by

induction, that z; is true in s¥ iff p is true in s? for
all0 <z <k.

In a similar way, existence (as opposed to invari-
ance) of p in the local past of sf is specified by the
following formula:

r1 = pV Orax

4.2 Invariance and Existence in the

Global Past
The global past of a local state s is the set {s' | s €
dag(s)}. A label p is invariant in the global past of s
iff p € A(s") for all s € dag(s). This can be expressed
in a way similar to invariance in the local past:

1 = p A (—initial = Oy x) A (receive = O, x1)

In this case, x; is true in non-initial state s iff p is true
in s, x; is true in the local predecessor, and z; is true
in the remote predecessor if a message has just been
received.

If z; is defined in the following way:

1 = p VO VOo,1

then s =z iff p is true in some state in dag(s).

4.3 Interval Abstraction

It is sometimes useful to consider a distributed ex-
ecution modeled as a poset of intervals [16] instead of
a poset of local states. Recall external is true iff the
preceding event was a send or receive. Consider the
sequence of states in process P; : (s9s}...s?). This
sequence is partitioned into subsequences by external
events. These subsequences are intervals. For exam-
ple, in Figure 1, the states of P, are partitioned into
three intervals: {s9,s3}, {s3}, and {s3}.

Consider the following pattern specification:

x1 = p V (-external A Opxy)

21 is true in s iff p is true in at least one local state
since the previous external event. The label external
resets x; each time a new interval begins.

4.4 Regular Expressions'

A sequential property is defined as a language
(set of strings) on some finite alphabet (the labels).
For a local state s, the property is satisfied if one
of labeled paths of dag(s) belongs to the language.
The set of all labeled paths of dag(s) is denoted
STRINGS(s). Formally, the string (a’at...a") is in
STRINGS(s) if and only if there exists a sequence of
states (¢%¢!...0") such that:

1. (Fi:o=s?)(ie., o0 is an initial state.)
2. for (0 <k <n),of<obtl v ghughtl
3. o"=s
4. for (0 <k <n),if A\(o¥) # {} then
ok € \(ok
else
akf =e
fi

ITwo kinds of local states are considered in this
section: those of the state machine and those of the
distributed execution. Context should clarify which
type of state we are referring to when we use the term
“state”.

We consider here sequential properties defined by
regular expressions, or equivalently, by a finite state
automaton M. Given a state s, we can specify and de-
termine if there exists a string in STRINGS(s) which
is accepted by M. Linked predicates [14], atomic se-
quences of predicates [11] an regular patterns [8] are
special cases of sequential properties that can be de-
scribed by the LRDAG logic.

A non deterministic finite state machine M
is defined by a tuple: M =(Q,A, q1,QF,d) with

set of states: Q@ = {q1,---,q8} (|Q|= B)
A: set of input symbols (labels)

a €Q (initial state)
Qr CQ (set of final states)
§:Q xAw— 29 (transition function)

Such an automaton recognizes a set of strings on A
that can be specified in LRDAG logic by a set of B
equations defining z; for 1 < j < B, such that z; is
true in s iff there exists a string in STRINGS (s) which
would place M in state g;.

Let © xj, be a short form for (O xy, V. Oy)2,
Let

T ={(aNOwxk)| g €0(gr,)N € ANk € {1,---,B}}

(T; represents all transitions of the automaton enter-
ing ¢;). The B equations are defined in the following
way':

x1 := Initial V f

V]€{2,,B}

fi=\t

tel;

fj has the form (ff Vv f7 VvV f?...). When we con-
sider a pictorial representation of the state machine
each arrow pointing to g; has a label and defines one
of the disjuncts in f;. As an example, consider an ar-
row incident on g; and suppose it defines fjl. Let g
be the state on the other end of the arrow (i.e. we are
considering the edge (gi,q;)). Let a be the label on
this edge. Then f]1 =a A ¢ zg. Thus f]1 is true in s
if the state machine could have traveled edge (g, g;)
in the previous step.

Tj = fj

with

The following example illustrates this construction
by counsidering a state machine (Figure 3) implement-
ing tl)le regular expression a + cb*c (gs is the only final
state).

First consider f;. No arrows enter ¢q;. Therefore
the disjunct list is empty and f1 = false.

Next consider f;. One incoming arrow is labeled
¢ and comes from state ¢;. Thus one disjunct is

2As we can see a sequential property does not dis-
tinguish between local and remote predecessors of lo-
cal states.

initial state

Figure 3: State machine implementing a + cb*c

c A < xy. The other incoming arrow is labeled b and
comes from ¢o. Thus another disjunct is b A < xs.
Thus fo=(c A O x1) V (b A O xy).

Next consider fs;. There is an incoming arrow from
q1 labeled a, and another one from ¢, labeled ¢. Thus
fa=(a N Sx) VvV (c A O a).

Therefore, in our logic, this regular expression can
be specified as follows:

x1 := Initial
x2 = (¢ ANOw) V (bAOx)
xz3 = (a AN Owx) V (c A Oxo)

x; is true in poset state s iff there is a string in
STRINGS(s) which would place M in state ¢;. Thus,
x3 is true in s iff there is a string which matches the
regular expression a + cb*c.

4.5 Non-sequential properties

The previous examples demonstrated how LRDAG
logic can express sequential properties of control flows.
A non-sequential property cannot be expressed as a
set of independent words on some alphabet. Such a
property is on several control flows at the same time.

A non-sequential control flow can be demonstrated
with the scatter and collect operations which are com-
monly used to distribute a workload and collect the
results. Suppose there is a matrix D partitioned into
N submatrices D;, for 1 < ¢ < N. The matrix, which
is initially owned by P, is distributed among the pro-
cesses so that P; owns D;. After process P; performs
some operation on D;, P; collects the results and then
owns the entire matrix once again. Let ¢.owns.D; and
l.owns.D be labels such that:

i.owns.Dj € \(s) <=
l.owns.D € A\(s) <

s€S; N sowns D;
s€S; A sowns D

The scatter-and-collect control flow is then character-
ized by the following pattern specification. We use y;
and z; as logic variables in addition to z;, and < is
the same short form used in section 4.4 (a local state of
P; satisfies z; just after the scattering, a local state of
P, satisfies z;1 just after the collection of the results):

y1 = l.owns.D

1 = l.oowns.D; A Oy

T2 = 2.0wns.Dy N Oy

ry = N.owns.Dy AN <Oy

z1 = lowns.D AN Vi:1<i<N:Ox)

In this pattern specification, z; is true in P, when it
owns D after the scatter-and-collect operation.

5 Decentralized Detection Al-

gorithm

In this section there are algorithm variables and
logic variables. A logic variable is still referred to as
z; and the corresponding algorithm variable is named
Xj. The variables X7" and X]l- are algorithm vari-
ables which store the values of ¢, z; and ¢ z; re-
spectively.
5.1 Description of the Algorithm

Given a property definition we want to evaluate
each logic variable z; in any state s. In the prop-
erty definition, z; := f;. Recall that f; is a boolean
expression over the set

AU{Ciz | zeX} U {Opnx | ze€X}

Recall that a label p is an element of A(s) if and only
if the local predicate which p represents evaluates to
true in state s. The form <; z; represents the value
of logic variable x; in the local predecessor. For initial
states, &g x; is false. In states where a message has
just been received, ¢, x; represents the value of logic
variable z; in the state that sent the message. If no
message has just been received, then ¢, x; is false.
Each process P; is augmented with boolean vari-
ables X, X»,...Xp; Xj is the concrete representa-
tion of the logic variable ;. In any state, the values
of z; in predecessor states must be known. Message
tags are used to carry the values of ; to the receiv-
ing process so that the forms ¢, z; can be evaluated
(their values are kept in local variables X" of the re-

ceiving process). The forms <; x; can be evaluated

easily since they are from the same process (their val-
ues are kept in local variables X]l) The algorithm uses
a macro eval; such that:
evalj(<>l L1y --- <>l B, <>m L1y --- <>m .Z'B)
expands to f;. For example, consider the logic vari-
ables z1, x5 and x3 from the regular expression a+cb*c
discussed in Section 4.4:
evaly (O z1, Q1 x2, O T3, O 71, O T, Co T3)
:= initial
evaly (O z1, Q1 x2, O T3, O 1, Om T, Oon T3)
= ANQx1) V(DA O
evalz(Or z1, Q1 x2, O T3, O 1, O T, Con T3)
=(a N Ox1) V (c N Ouw)
A formal description of the algorithm follows:

Local Variables
boolean: Xj,X]l-, Xtfor jel...B;

Initially

(S1) for j :=1 to B do
X, = eval;j(false, . . . false);

Upon sending a message
(SPyg message with (X1, Xo,...

XB);

Upon entering new local state s

(S3) if (previous event was message receive) then
(X, X5, ... XJ) := message tag

else
(X, X, X)) = (false, . . ., false)

(S4) (XL, X5, . XL) == (X1, Xo, ..., XB)

(S5) % evaluation of each f; in state s%
for j:=1to B do
X = eval; (X1, X5, .. XL, X X3 X B,

The above algorithm has storage overhead propor-
tional to B bits per process. No additional mes-
sages are introduced by the algorithm, however each
message produced by the underlying computation is
tagged with B bits. The time complexity is also pro-
portional to B operations per event per process. In an
actual implementation, only states deemed relevant to
the behavior being detected would be interrupted. In
most cases this would drastically reduce the time com-
plexity.

5.2 Correctness Proof
The proof consists in showing the following equiva-

lence, where s is any state in S. (Recall that the term
“state” always refers to a local state).

(P) s|=2; <= Local variable X; is true in state s

The implication “<” states that detection is sound
(safety) and the implication “=" states that detection
is complete (liveness).

Proof: The proof is done by induction on the

rank of the state s in the poset S. Let rank(s) be the
length of the longest path in dag(s) from some initial
state to s.

1. Base case.
For all s such that rank(s) = 0, s is an initial
state. Statement S1 ensures P is true for initial
states.

2. Induction case.
Assume P is true for all states v such that
rank(v) < k and consider a state s in P; such
that rank(s) = k + 1. First we show that X'
and X" have correct values.

e s has one local predecessor s; whose rank
is less than k. By the induction hypothesis
and by statement S4:

st Ea; < X! is true in state s

o If a message is received just before state
s then s has one remote predecessor, S,
whose rank is less than k. Thus by the
induction hypothesis and by statement S3:

sm | x; <= X]"is true in state s

If no message is received then s has no re-
mote predecessor and by S3 each variable
X7 is false in state s.

Since X! and X™ have correct values, and by
definition of eval;, we know that statement S5
computes new values for X" such that:

s | r; <= Xj is true in state s

6 Conclusion

A simple but powerful logic to express a wide class
of properties of control flows of distributed compu-
tations has been presented. This class includes se-
quential properties (of which linked predicates [14],
atomic sequences of predicates [11] and regular pat-
terns [8] are special cases) and more sophisticated non-
sequential properties. These properties, expressed as

formulas on the global past of local states, are use-
ful for analyzing, testing or debugging executions of
distributed programs.

A decentralized algorithm that detects the prop-
erties, concurrently with the underlying computation,
has been presented and proved correct. This algorithm
is surprisingly simple despite the power of the logic.
The algorithm does not alter the control flows or the
causal structure of the computation (so it does not
inhibit or initiate sending or receiving of messages)
and it is efficient in the sense it uses message tags
of B bits where B depends only on the property be-
ing detected (and so is independent on the number
of processes). Algorithms already proposed to detect
sequential properties on control flows [14, 11, 8] are
particular instances of this algorithm which addition-
ally can detect more sophisticated properties.

An implementation of this algorithm is currently
being developed in the context of a debugging facility
for distributed programs [10].

References

[1] O. Babaoglu and K. Marzullo. Consistent global
states of distributed systems: fundamental con-
cepts and mechanisms, in Distributed Systems,
chapter 4, pages 55-93. ACM Press, Frontier
Series, (S.J. Mullender Ed.), 1993.

[2] O. Babaoglu and M. Raynal. Specification and
detection of behavioral patterns in distributed
computations. In Proc. of 4th IFIP WG 10.4 Int.
Conference on Dependable Computing for Crit-
ical Applications, Springer Verlag Series in De-
pendable Computing, San Diego, January 1994.

[3] K.M. Chandy and L. Lamport. Distributed snap-
shots : determining global states of distributed
systems. ACM Transactions on Computer Sys-
tems, 3(1):63-75, February 1985.

[4] E.M. Clarke, E.A. Emerson, and A.P. Sistla. Au-
tomatic verification of finite state concurrent sys-
tems using temporal logic specifications. ACM
Toplas, 8(2):244-263, 1986.

[5] R. Cooper and K. Marzullo. Counsistent detec-
tion of global predicates. In Proc. ACM/ONR
Workshop on Parallel and Distributed Debugging,
pages 167-174, Santa Cruz, California, May 1991.

[6] C. Diehl, C. Jard, and J.X. Rampon. Reach-
ability analysis on distributed executions. In
Theory and Practice of Software Development,
pages 629-643, TAPSOFT, Springer Verlag,
LNCS 668 (Gaudel and Jouannaud editors),
April 1993.

[7] E. Fromentin and M. Raynal. Inevitable global
states: a new concept to detect unstable prop-
erties of distributed computations in an observer
independent way. In Proc. of the 6!* IEEE Sym-
posium on Parallel and Distributed Processing,
Dallas, TX, Oct. 1994.

[8] E. Fromentin, M. Raynal, V.K. Garg, and A.L
Tomlinson. On the fly testing of regular patterns
in distributed computations. In Proc. of the 23"?

International Conference on Parallel Processing,
2:73-76, St. Charles, IL, August 1994.

[9] V.K. Garg and B. Waldecker. Detection of unsta-
ble predicates in distributed programs. In Twelfth
International Conference on Foundations of Soft-
ware Technology and Theoretical Computer Sci-
ence, pages 253—264, Springer Verlag, LNCS 625,
New Delhi, India, December 1992.

[10] M. Hurfin, N. Plouzeau, and M. Raynal.
A debugging tool for distributed Estelle pro-
grams. Journal of Computer Communications,
16(5):328-333, May 1993.

[11] M. Hurfin, N. Plouzeau, and M. Raynal. Detect-
ing atomic sequences of predicates in distributed
computations. In Proc. ACM/ONR Workshop on
Parallel and Distributed Debugging, pages 32-42,
San Diego, CA, May 1993. (Reprinted in SIG-
PLAN Notices, Dec. 1993).

[12] C. Jard, T. Jeron, G.V. Jourdan, and J.X. Ram-
pon. A general approach to trace-checking in dis-
tributed computing systems. In Proc. 14th IEEE
Int. Conf. on DCS, Poznan, Poland, pp. 396-403,
June 1994.

[13] L. Lamport. Time, clocks and the ordering of
events in a distributed system. Communications
of the ACM, 21(7):558-565, July 1978.

[14] B.P. Miller and J. Choi. Breakpoints and halting

in distributed programs. In Proc. 8" IEEE Int.
Conf. on Distributed Computing Systems, San
Jose, pages 316-323, July 1988.

[15] R. Schwarz and F. Mattern. Detecting causal
relationships in distributed computations : in
search of the holy grail. Distributed Computing,
7(3):149-174, 1994.

[16] A.I Tomlinson and V.K. Garg. Detecting rela-
tional global predicates in distributed systems.
In Proc. ACM/ONR Workshop on Parallel and
Distributed Debugging, pages 21-31, San Diego,
CA, May 1993. (Reprinted in SIGPLAN Notices,
Dec. 1993).

