Predicate Control for Active Debugging of Distributed Programs

Ashis Tarafdar Vijay K. Gargf
Department of Computer Sciences Department of Electrical and Computer Engineering
The University of Texas at Austin The University of Texas at Austin
Austin, TX 78712-1188, USA Austin, TX 78712-1084, USA
ashis@cs.utexas.edu garg@ece.utexas.edu
Abstract sider the cycle of observation and controlled replaying of

computations. We first detect a global bug while observing
Existing approachesto debugging distributed systems in-a certain computation. Next, we try to replay the compu-
volve a cycle of passive observation followed by computa-tation with some added control, to determine if it would be
tion replaying. We propose predicate control as agtive sufficient to eliminate the bug. This control is in the form of
approach to debugging such systems. The predicate controbdded causal dependencies to the existing trace of the com-
approach involves a cycle of observation followedcby- putation. Since the computation is knowarpriori, we call
trolled replaying of computations, based on observation. this form of predicate contraiff-line predicate controlWe
We formalize the predicate control problem for both off- may vary the added control and observe the resulting be-
line and on-line scenarios. We prove that off-line predicat havior of the computation to help us in localizing the bug.
control for general boolean predicates is NP-hard. How- Once we have found a form of control that is effective for
ever, we provide an efficient solution for off-line prede&at one computation, we may apply the same control to a new
control for the class of disjunctive predicates. We further computation. Here we don't haeepriori knowledge of the
solve on-line predicate control for disjunctive predicate computation. Therefore, we call this contai-line predi-
under certain restrictions on the system. cate control Section 7 illustrates the active debugging pro-
Lastly, we demonstrate how both off-line and on-line cess with an example.
predicate control facilitate distributed debugging byl In this paper, we formally define off-line and on-line
ing the programmer to control computations to maintain predicate control in an asynchronous message-passing sys-
global safety properties. tem. We show that solving predicate control for safety
properties based on general boolean predicates is NP-hard.
However, for the useful class of disjunctive boolean predi-
1. Introduction cates, we present an efficient algorithm for solving ofelin
predicate control, and an efficient algorithm for solving on
line predicate control under certain system restrictiofs.
then illustrate, with an example, the active debugging ap-
proach in which both forms of predicate control are ap-
plied.

In distributed systems, a cycle of observation followed
by replaying computations is the basis for locating bugs.
The debugging process would be greatly facilitated if we
add the ability tactivelycontrol the replayed computations
based on the observations. This leads to a cycle of obser-
vation andcontrolledreplaying which may, if used wisely, 2. Related Work
greatly accelerate the discovery of bugs. We focus on con-
trolling a computation based on the specification of safety ~Our contributions are two-fold: a new active approach to
properties on global states. We call this firedicate con- distributed debugging, and a solution of the predicate con-
trol problem. trol problem. We present related work in both areas.

There are two important scenarios in which predicate ~ Research in distributed debugging has focussed on two
control is useful for debugging distributed programs. Con- problems: detecting bugs in a distributed computation and
- T D Felloshi replaying a traced distributed computation. Researchén th

fzﬂggg:ted in F:Jar‘[gy the NSF Grants E%S-9414780, CCR-952054 q§tectlon of bu.gs mamly. dlﬁe.rs n th.e types of bugs spec-
TRW faculty assistantship award, a General Motors Fellgwsand an ified. The seminal work in this area is the global snapshot
IBM grant algorithm [3] which is used to detect stable bugs (which re-

main true once they become true). Since then, detection(decomposed partially-ordered set) provided tttgt—) is
algorithms have been designed for many different classesan irreflexive partial order and it satisfies three reasamabl
of bugs such as: race conditions [11], predicates on singleconstraints:
global states [1], predicates based on sequences of global D1: No messages are received before the initial state,
states [5]. Research in replaying trace computations have D2: No messages are sent after the final state, and
focussed on reducing the size of the trace by determining D3: A single event does not both send and receive.
which events are necessary for successful replaying [9]. Ou |n a distributed computation modeled as a deposet,
approach focusses on adding a control mechanism to the(sl, .. Sn,~, <), we define aglobal stateto be a sub-
debugging process to allow computations to be run underset of S containing exactly one state from each Set Let
safety constraints. G be the set of all global states in the deposet. We de-
We are aware of two previous studies of controlling dis- fine an ordering relatior< on G as: For two global states
tributed systems to maintain classes of global predicates.G, H € G : G < H iff Vi : G[i] < H[i] whereGJi] € S;
One study [7] allows global properties within the class of andH[i] € S; are the states fror®; in global state€y and
conditional elementary restrictions [7]. Unlike ourmodél H respectively. It has been established tat<) is a lat-
a distributed system, their model uses an off-line speeifica tice [8].
tion of pair-wise mutually exclusive states and does notuse A global state, G, is said to beonsistentf Vz,y €

causality. [1_3] studies the on-line maintenance of a classp G : z|ly. A consistent global state captures the notion of
global predicates based on ensuring that a sum expressiog global state that could possibly occur in the distributed
on local variables does not exceed a threshold. In contrastomputation. 1fG¢ is the set of all consistent global states
to these approaches, our focus will be on general globaljy the deposet, thefge, <) is also a lattice. It is easy to
boolean predicates and the class of disjunctive predicatesshow usingD1 and D2 that the initial global statel. =

We also study both the on-line and off-line variants of the (;, . 1) and the final global staté = (T1,...,T,)

control problem. are consistent.
An actual execution of a distributed system would take it
3. Model and Problem Specification from the initial consistent global state to the final consis-

tent global statél through a sequence of consistent global

The distributed system consistsio§equential processes States (a path in the lattidg, <)). We model the global
Pi, P, ..., P, which can send messages to one anotherexecution as global sequence a sequenceg of consistent
over reliable channels. The system is asynchronous and ha§lobal states ordered by such that restricting the sequence
no shared memory. No constraints are placed on messagé® any one process; produces the sequendg of states
ordering. ordered by< or the sequenc#; with some states consec-
Thelocal executiorof P; consists of a sequencesifites utively repeated (called stutterof S;). Note that this does
andeventsstarting at a special start state and endingata ~ Not enforce an interleaving of events since in a global se-
special final statd ;. An event takes the process from one duence multiple local events can take place simultaneously
state to another. An event may be a local event, a message Thecontrol systents a distinct distributed system whose
send event, or a message receive event. A state correspondgocesses areontrollers C1, . .., C,,, which communicate
to an assignment of values to all variables in the process. using control messageen independent channels. A con-
For two states andt in the same processx<;,,t denotes troller C; monitors and controls proced$ by determin-
thats immediately precedesn the sequential execution of ing the next state and by occasionally blocking the pro-
the process< (precedeldenotes the transitive closure of cess. Since the underlying process would not be able to
<im. We says ~ t (s remotely precedef if the mes- distinguish between its controller’s blocking action and a
sage sent in the event afteis received in the event before reduction of its execution speed, the control is transgaren
t. Given these relations, theausally precedeghappened The actions (monitoring and blocking) of the controllers ar
before) relation [6],—, is defined as the transitive closure specified by alistributed control strategy
of the union of<;,, and~+. Note that— is an irreflexive On running a distributed control strategy for a control
partial-order over states in all processes. So, given any tw system, the resultant controlled distributed computaigon
statess andt, eithers—t or t—s or neither causally pre- in no way different from a computation of any other dis-
cedes the other, denoted Byt (s is concurrentwith ¢). We tributed system. We can, therefore, model a controlled dis-
use the notation — ¢ to denotes—t vV s =tands < ¢ tributed computation as a deposet. This deposet would in-
todenotes <t V s =1t. clude extra control states and control messages. If we re-
Let S; be the set of local states in the local execution of strict this deposet to the states of the underlying distetu
P; and letS = J, S; then a distributed computation can be system, we would have the deposet of the underlying system
modeled as a tuplgsy, . .., S,,~, <). We call it adeposet with added control causality between certain states. We use

this as our model of a controlled distributed computation as

follows. / \

Given a distributed computation modeled by a deposet [% A \\ PR } /I \ Z}
(S1,-..,8n,~, <) with a causal precedenc¢®, —), we N s 7 - s - | -
define anextended deposébi, ..., S,,~, <,«C,>) to con- NS 4 4 false
sist of an extra control relatio¥> (for :c'\c»y, we sayz is - l i S) S S
forced beforey) between states. Each tuple is induced true true true true
by a control message in the control system and relates the X, X, nas X, Xer 1

first underlying state before its send and the next underly-
ing state after its receive. We then define an extended causal

precedencés, £>) to be the transitive closure of the unions
of <im, ~ and<%. The extended deposet would model a
valid computation only if(S, =) is an irreflexive, partial-

order. However, it is possible to definea relation which
' " P o _ _ Consider the problem of detecting if a satisfying execu-
causes cycles with> and results in a= that is notirreflex- tjon exists in a computation for a given predicate.

Figure 1. Proof: SGSD is NP-complete

4. Off-line Predicate Control is NP-hard

ive. We say that such-& relationinterfereswith —. Satisfying Global Sequence Detection (SGSDiBiven a
Definition. ~ Given a deposet(Si, ..., Sp,~, <), with depose(Sy, ..., S,,~, <) and a global predicat8, de-
irreflexive partial-order(S, —) and a control relation termine if B is feasible forS (i.e. if there exists a global
which does not interfere withs, the resultant extended de- sequence ii$ that satisfies3).

poset(Si,...,Sn,~, <,«C,>) with irreflexive partial-order

(S, E)) is called thecontrolled deposetf S with .~ Lemma 1 SGSDis NP-complete.

Itis easy to show that the set of global sequences in theprsof. The problem is in NP because it takes polynomial
controlled deposet is a subset of the set of global sequencegme to check that a candidate global sequence is valid and

in the original deposet. This is exactly the function expect 4t it satisfies3. To show that it is NP-hard, we map SAT
of a control system. to it. If b is the boolean expression in SAT, then for each

A local predicatefor processP; is a boolean function variable,zy, .. ., 2, in b we assign a separate process with
of the variables associated wiff). A global predicate B, two states, onerue and onefalse (Figure 1). We define
is an expression using boolean connectiveg, A on local a process for an extra boolean variablg, ; which starts
predicates. I8 can be expressed &sv i> V... 1, wherel; true, goes through galse state, and ends-ue again. We

is a local predicate of; then B is adisjunctive predicate gefineB = b v Zm+1 and then apply SGSD to find a satis-
B(G) denotes the value of predicaieat the global state fying global sequence. If it finds one, then the global state

G. We assume tha8(G) can be efficiently computed. with z,,.1 = false will have a satisfying assignment for

G is said tosatisfy B if B(G) = true. A global se- the variables ob. Conversely, ify is satisfiable, then there
guencey satisfiesB if every global state iry satisfiesB. must be a satisfying global sequence.
Similarly, a depose$ satisfiesB if every global sequence Given a satisfying control strategy, we can determine a
in S satisfiesB. Lastly, a distributed control strategy sat- satisfying global sequence by simulating a run of the strat-
isfiesB if every pOSSibIe deposet satisfiBs B isinfeasible egy. Converse|y, given a Satisfying g|oba| sequence, we can
for deposetS if no global sequence iff satisfiesB. construct a satisfying control strategy that would onlpail

We can now formally define our problems: that sequence as a possible run. Therefore, the problem of
The Off-line Predicate Control Problem detecting if a satisfying control strategy exists is eqlgaa

to SGSD. A detailed proof of this fact may be found in [12].

Given a global predicaté3 and deposef for the under-) ; .
This equivalence indicates that:

lying system, construct a distributed control strategyttha

satisfiesB, unless is infeasible fors. Theorem 1 Off-line predicate control is NP-hard.

The On-line Predicate Control Problem
Given a global predicatés and depose$ for the underly- 5 Qff-line Disjunctive Predicate Control
ing system (provided on-line), construct a distributed-con

trol strategy that satisfief, unlessB is infeasible forS. Since predicate control is NP-hard in general, we restrict

On-line predicate control is obviously a harder problem our attention to the class of disjunctive predicates. Intu-
than off-line predicate control. itively, these predicates state that at least one localitiond

must be met at all times, or, in other words, that a bad com- Algorithm Description
bination of local conditions does not occur. Some examples

of these predicates are: The algorithm is listed in Figure 2. The current global

stateg is advanced fromL forwards. ForP; we will only

(1) Two process mutual exclusion: be interested in local states which arg, T;, the I;.lo or

Tesy Vo TCsy I;.hi for some false-interval;. Global stateg will only

(2) At least one server is available: . consist of such local states. The predicates defined in the
avail V availy V ... availy, algorithm assume as an implicit parameter. i is at a

(3) @ must happen beforg I;.lo state, we say thak; is false Otherwise, we say that
after z V. before y P; is true. For P;, N (i) defines the next false-interval with

(4) At least one philosopher is thinking:

respect tog[i]. ValidPairs() is the set of pairs of pro-
think, V thinks V ... think, P oglé] y P P

cesses for which the next false-interval of a process may be
crossed while maintaining another process true. The local

Note how we can even achieve the fine-grained control ga1e/,044(7) consists of the local state of interest afyéi].
necessary to cause a specific event to happen before anothey, ¢, example, ifg[i] is false, g[i] must be at arl;.lo
as in property(3). This was done using local predicates to ;¢ andhezt (i) would beN (i).hi.

check if the event has happened yet.
Let the disjunctive predicate under consideratiorboe
[V... VlI,. Ourapproach to solving the problem consists

of constructing a satisfying controlled deposefokith L.
A control strategy can be implemented from the controlled

deposet by forcing the causal order of each tupleo»irby
sending and receiving (with blocking) a control message on
the concerned processes at the appropriate states.

The sequence determined by the total orderngf local
states inS; can be divided into intervals that ateie or
falsewith respect to local predicate. We define dalse-
interval I as a maximal sequence of consecutive states in

The algorithm takes as input the given trace of the dis-
tributed computation. This is implicitly used in evaluatin
the predicates used in the algorithm. The outpuf,isa
gueue of tuples that defines terelation.

The central idea of the algorithm is to construct a chain
of alternating true intervals and backward-point'ngg ar-
rows. The chain extends from the state on some process
P; to the T; state on some procegy. Since any global
state must intersect this chain, it must either be incomsist
(if it intersects at a backward pointin% arrow), or it must
satisfy the predicate (if it intersects at a true interval).

S; for which ; is false.I.lo andI.hi denote the beginning At L1, the algorithm enters a loop which exits whgn
and ending states ah To indicate that a false interval ison Nas extended past the last false interval on some process,
P,, we use the notatiofy. We now define: say P;, indicating that the output chain has reachigdand

is complete. In each iteration of the loop, we will cross at
least one false interval while some true interval maintains
o)) ~ the responsibility of remaining true. Since there are adinit

The significance of such an overlapping set of intervals is nymper of false intervals, the algorithm must terminate. We
that in a valid global execution, no process can leave its in- yiiempt to find such a pair of false and true intervals in L2
terval until all the other processes are inside their ird&sv _| 4 e are guaranteed to find an overlapping set of false
So, if we have an overlapping set of false-intervals, then ev iniervals if no such pair can be found (for the proof of this

ery global sequence must contain a global state in which act refer to [12]). So by Lemma 2, we can safely exit at
is false, and no satisfying control strategy exists. This is | 3 with “No Controller Exists”.

stated in the following result from [4]:

overlap(Iy,...,In) = Vi,j: (Ij.lo=1I;.hi) V (L;lo= 1;) V
(Ij.hi =Tj)

Once we have found such a pair, we update our output
chain by executing proceduskddControl() in L14 - L18.

Normally, a tuple,g[%'] A next(k), will be output. Intu-
itively, this ensures that we do not exit the true intervadis
in the previous iteration(g[k], nexzt(k)), until the true in-
terval in the current iteration(g[k'], next(k')), is entered.
However, in the first iteration, and in any iteration in which

Lemma 2 In a deposet(Si,...,S,,~, <), with causal
precedencés, —):

if 3L,...,1, : overlap(ly,...,I,)thenthereis no global
sequence ir$ which satisfies3.

Our algorithm makes use of this result by exiting wittho the current true interval starts at,, we may simply reini-
Controller Exists”message when it detects an overlapping tialize the chain td.

set of false intervals. If a set of false-intervals does weto In L6 - L9, we cross the chosen false-interda{!) while

lap then there must be a pair of intervallsandl; suchthat advancingg on all the other processes to be causally con-
I; can be crossed befolgis entered. We define: sistent with this move. In other words, if a crossed state on
crossable(I;, I;) = (Ii.loAI.hi) A (Iilo # L;) A (Ij.hi £ T;) P, transitively depends on a state on some other process,

Variables: C a queue of tuples of local states, initiafly
and finally outputs the tuples in th% relation.

new false-intervals has to be compared with- 1 existing
false-intervals, the time complexity &(n?p).

gll.n] =L current global state . C . . .
k k16 :nteglers The size of~ is O(np) because one tuple is output in
t ocal state

each iteration of the outer while loop. Therefore, the mes-
Predicates: sage complexity of control messages usad(isp). To give
false(i) = 3 : gli] = Li.lo an idea of this quantity, in the two-process mutual exclusio

true(i) = ﬁfalse(z) ",
(i) = { minI; : gli] < Lido it itexists example, there would be one message for each critical sec-

null _ otherwise tion, in the worst case (which is unlikely).
neat(s) = ;"(i).,o :]t fﬁfg(j ot A good control strategy should also allow as much con-

N(i).hi if false(i)
ValidPairs() = {(¢,7) : true(i) A crossable(N(i), N(j))}
select(Z) = randomly selected element of S6t£ ()

currency as possible. The ideal control strategy would only
suppress the non-satisfying global sequences while allow-
ing all satisfying ones. While this metric is hard to define,

it is clear, for example, that a control strategy involving
one-way, two-process synchronizations allows more con-
currency than one involving multiple global synchroniza-
tions. Since each control message corresponds to a one-
way, two-process synchronization (the receives are block-
ing), we haveD(np) such synchronizations.

L1 while (Vi: N(i) # null) {
L2 if (ValidPairs() = 0) (* find a true interval which
L3 exit(“No Controller E><|sts); can be maintained while
L4 (k', 1) := select(ValidPairs()); afalseintervalis crossed *
L5 AddControl(C, k', k);

L6 ¢t := N(l).hi;

L7 for (i€ {0,...,n})

L8 while (next(i) — t) (* advanceg

L9 gli] := next(i); consistently with— *)

L10 &k := k' (* record last true interval *)

(* exiton reaching ar; *)

}
L11 k' := select({i|
L12 AddControl(C, k'
L13 ezit(C);

NG =) 6. On-line Disjunctive Predicate Control

Procedures: Unfortunately, we find that the problem is impossible to
o A‘ffd(cf’k"]”_”’fk,;” > k)4 solve for non-trivial (i.en > 2) disjunctive predicates. The
proof for this [12] constructs a counter-example scenario

L16 C := 0; (* start chain *)
L7 elseif(k # ') (+ optimization *) that forces any control strategy to deadlock.

L18 enqueue(C, (g[k'], next(k))); (*add outputtuple *)

Theorem 3 The On-Line Predicate Control Problem for
non-trivial (n > 2) Disjunctive Predicates is impossible to
solve.

Figure 2. Algorithm: Off-line Control

then that state must also be crossed. Once this is done, we
remember this iteration’s true interval in the variall€at
L10) and repeat the loop.

Note that even if we generalize on-line predicate control
to allow each controller a finite lookahead of the underlying
computation, the problem would still be impossible. Since

~ Once we exit the loop, we output the laSt tuple to it js impossible to solve the problem as it stands, we make
finish the chain and exit with the chain as output. the following assumptions:

We refer the reader to [12] for the proof of correctness of Al: Vi: P; does not block in states wheleis false.

this algorithm and we merely state: A2: Vi l;(Ty)
These assumptions allow us to assume tHalseprocess

Theorem 2 The algorithm in Figure 2 terminates and cor- wjll eventually becomérue without blocking.
_rectly solves _the off-line predicate control problem fos-di Our control strategy is listed in Figure 3. At any time
junctive predicates. during execution, some process is gmpegoatind must
remaintrue until it is sure that some other process is true
and has assumed the role s¢apegoatfrom him. The
scapegoat simply requests any other process to take on the

The time complexity of the algorithm @(nzp) wherep role. Since Al and A2 ensure that it would eventually be-
is the maximum number of false-intervals in a process. The cometrue there will be no deadlocks. The details of the
naive implementation of the algorithm would &¢n3p) be- ~ proof of correctness may be found in [12].
cause the outer while loop iterat€§np) times and calcu-
lating the set/ alidPairs() can takeO(n?) time to check Theorem 4 The distributed control strategy listed in Fig-
every pair of processes. However, an optimized implemen-ure 3 terminates (does not deadlock) and correctly solves
tation avoids redundant comparisons by computing the setthe on-line predicate control problem for disjunctive pred
ValidPuairs() dynamically. Since, in this approach, each cates.

Evaluation

Distributed Control Strategy for Controller, C;:

Input:

l; a boolean function that takes a state as input
On-line Input:

s current state of the underlying computation

s' next state of the underlying computation
Variables:

scapegoat = init(i) boolean

pending = false boolean

ik integer

Control Actions:

e scapegoat N —l;(s"): o receiveqreq(j)):

sendreq(i), select(C)); if 1;(s) then
receivdack); scapegoat := true;
scapegoat = false; sendack, Cj);
else
e pending A l;i(s): pending := true;
pending := false; k= j;
scapegoat := true;
sendack, Ck);
Definitions:

true for ones andfalsefor others
set of all controllers
arbitrary element of non-empty sgt

init (i)
c

select(Z)

Figure 3. Control Strategy: On-line Control

The k-mutual exclusion problem (a recent study may be
found in [2]) is a generalization of the traditional mutual
exclusion problem where at mostprocesses can be in the
critical section at the same time. For= n — 1, this speci-

parison is beyond the scope of this presentation, the inguit
reason is that the-mutual exclusion algorithms usually use
k tokens while our algorithm uses a singleti-tokenwhich
acts as a liability rather than a privilege. This indicatestt
for largek, a different class of algorithms may be more ap-
propriate for thek-mutual exclusion problem.

7. Applications

— T

P
Wit

\ >

Y
Y

(a) Computation C (b) Computation C

e e
P, -5 > P —
P f' /b c P f' /b ¢ -
2 (2 g
¥ X g ¥ /
Ps) - P3 >

a d a d

(c) Computation C (d) Computation C

Figure 4. Example: Distribued Debugging

fies that at all times, at least one process must not be in the

critical section. If we define the false-intervals to beicat
sections, our problem becomes equivalerftte 1)-mutual
exclusion. Our distributed control strategy, therefolepa
solves thgn — 1)-mutual exclusion problem.

Evaluation

We follow the general guidelines in [10] for evaluating
mutual-exclusion algorithms. Since only the critical sec-

We have provided the ability to control a distributed
computation both while being replayed and while being run
for the first time. However, the utility of this ability depés
on how effectively it can be used in the distributed debug-
ging process. We now discuss applications of both off-line
and on-line predicate control while debugging distributed
programs.

Our running example will be a replicated server system
with three server processés, P, and P;. During debug-

tions of the scapegoat cause any overhead and the remairging, a trace of the distributed computatiéh was taken
ing critical section entries do not, we measure the overheadas shown in Figure 4(a). The thicker intervals in the pro-

overn critical section entries. LeT’ be the average mes-
sage propagation delay ard,,,, be the maximum criti-

cess executions indicate intervals when the servers weren’
available for service.

cal section execution timéresponse timis the time delay The system should have been designed to ensure that one
between a request for entering the critical section and theserver was available at all times. So we run a predicate de-
corresponding entryPer n critical section entries2 mes- tection algorithm orC; (such as that in [4]) to detebtig; :
sages are required and response time is bounded betwe€fall the servers are unavailable”. We detect two consistent
2T and2T + E,,.., depending on when the request arrives. global state€? andH, as shown in the diagram, whéreg,
We have the option of reducing the response time at the ex-is possible.
pense of message overhead. We can devise a scheme where Our next step is to contral’; with the safety predi-
the scapegoat broadcasts a request to all controllers,cand scate:“at least one server must be available at all times”.
has a better chance of finding at least one of them not in theSince this is a disjunctive predicate, we may use our off-
critical section. line algorithm to control’';, and the resulting computation
Our control strategy is simpler and more efficient than C- is shown in Figure 4(b). Note how the control messages
existing solutions to thé-mutual exclusion problem when from o to b and frome to d ensure that global statésand
specialized to thé = n — 1 case. While a complete com- H are no longer consistent ahdg; doesn’t occur.

We now suspediug.: “statesf ande occur at the same nization problems such as general mutual-exclusion which
time”. We run the predicate detection algorithm in [4] to have been solved as independent problems but have not
detect thabug, is indeed possible i@’s. We now impose been solved in the framework of predicate control. This
the required safety predicate thatrhust happen beforg” is an indication that more classes of predicates should have
and controlC> using our off-line algorithm. The resulting predicate control solutions.
computatiorCs in Figure 4(c) is found to be satisfactory.

However, we suspect thatig. may have causeblug; . References
We, therefore, return to our first computatiéh and apply
off-line control to it with the safety predicatee ‘must hap- [1] O. Babaoglu and K. Marzullo. Consistent global states
pen beforef” This leads to computatio@’y in Figure 4(d). of distributed systems: fundamental concepts and mecha-
Note how the new control message frerto f ensures that nisms. In S. Mullender, editoBistributed Systemshap-
G and H are inconsistent. So eliminatirig.g, also elimi- ter 4. Addison-Wesley, 1993.

nateshug, and we conclude that.g, is the most important [2] S. Bulgannawar and N. H. Vaidya. A distributed k-mutual
bug exclusion algorithm. IrProceedings of the 15th Interna-

. . . tional Conference on Distributed Computing Systepages
Now that we have discovered a possible bug in the sys- 153-160. IEEE, 1995.

tem, we should check all future computations under the con- 3] k. M. Chandy and L. Lamport. Distributed snapshots: de-

straint that this bug does not occur. We, therefore, appty ou termining global states of distributed systerd€CM Trans-
on-line algorithm with the predicatee ‘must happen before actions on Computer Systen3§1):63—75, February 1985.
f” while running the system to generate new computations. [4] V. K. Garg and B. Waldecker. Detection of strong unsta-
If no more bugs are detected, our confidencebhat is the ble predicates in .dis.tributed programé=EE Transactions
problem increases. on Parallel and Distributed Systemni&(12):1323-1333, De-

cember 1996.
[5] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic
sequences of predicates in distributed computationBrdn

In this illustration, we have demonstrated three areas
where predicate control may be applied:

- Determining if a bug recurs under added safety con- ceedings of the Workshop on Parallel and Distributed De-
straints. (off-line) bugging pages 32—42. ACM/ONR, 1993.

- Determining the most important bug. (off-line) [6] L. Lamport. Time, clocks, and the ordering of events

- Preventing possible bugs in computations being run for in a distributed system. Communications of the ACM
the first time. (on-line) 21(7):558-565, July 1978.

[7] A. Maggiolo-Schettini, H. Wedde, and J. Winkowski. Mod-
) .) eling a solution for a control problem in distributed system
8. Conclusions and Discussion by restrictions Theoretical Computer SciencE3(1):61-83,

January 1981.
[8] F. Mattern. Virtual time and global states of distribditgys-

We have accomplished all of our goals from Section 1. tems. InParallel and Distributed Algorithms: Proc. of the

While these relqte to dlstrlbu.ted debugglng., Its Impoﬁ’tap International Workshop on Parallel and Distributed Algo-
tonote thatpredlpatg control 'Sap'fObl?m oflndepeqdentlp rithms pages 215-226. Elsevier Science Publishers B. V.
terest and that distributed debugging is just one of its main (North Holland), 1989.

applications. Off-line predicate control would find appli- [9] R. H. B. Netzer and B. P. Miller. Optimal tracing and repla
cations wherever control is required when the computation for debugging message-passing prograrifie Journal of

is knowna priori, such as in distributed recovery. On-line Supercomputing3(4):371-388, 1995. .
predicate control is widely applicable, addressing ismfes [10] M. Singhal. A taxonomy of distributed mutual exclusion

general synchronization, of which important problems such icg)g;nal of Parallel and Distributed Computing8:94-101,

as mutual exclusion form a part. . [11] K. Tai. Race analysis of traces of asynchronous message
Given that general predicate control is NP-hard and that passing programs. IRroceedings of the 17th International

we can solve the simple class of disjunctive predicate con- Conference on Distributed Computing Systepesjes 261—

trol efficiently, the next step is to attempt to solve predi- 268. IEEE, 1997.

cate control for more general classes of predicates. To-[12] A. Tarafdar and V. K. Garg. Predicate control for actile

wards this goal, we have recently solved both on-line and bugging of distributed programs. Technical Report ECE-

off-line predicate control for arbitrary predicates, untee PDS-1998-002, Parallel and Distributed Systems Labora-

restriction that the false-intervals of local predicatesmau- tory, ECE Dept. University of Texas at Austin, 1998. avail-
able at http://maple.ece.utexas.edu as technical regort T

tually separated. Thedecally independent global predi- PDS-1998.-002

catesare a generalization of disjunctive predicates and al- 13] A, |. Tomlinson and V. K. Garg. Maintaining global asser
|0W_U5 to express properties such as system-wide deadlock tions on distributed sytems. @omputer Systems and Edu-
avoidance and more general forms of 2-process mutual ex- cation, pages 257-272. Tata McGraw-Hill Publishing Com-
clusion. However, there are still many distributed synehro pany Limited, 1994.

