
Predicate Control for Active Debugging of Distributed Programs

Ashis Tarafdar�
Department of Computer Sciences
The University of Texas at Austin

Austin, TX 78712-1188, USA
ashis@cs.utexas.edu

Vijay K. Garg y
Department of Electrical and Computer Engineering

The University of Texas at Austin
Austin, TX 78712-1084, USA

garg@ece.utexas.edu

Abstract

Existing approaches to debugging distributed systems in-
volve a cycle of passive observation followed by computa-
tion replaying. We propose predicate control as anactive
approach to debugging such systems. The predicate control
approach involves a cycle of observation followed bycon-
trolled replaying of computations, based on observation.

We formalize the predicate control problem for both off-
line and on-line scenarios. We prove that off-line predicate
control for general boolean predicates is NP-hard. How-
ever, we provide an efficient solution for off-line predicate
control for the class of disjunctive predicates. We further
solve on-line predicate control for disjunctive predicates
under certain restrictions on the system.

Lastly, we demonstrate how both off-line and on-line
predicate control facilitate distributed debugging by allow-
ing the programmer to control computations to maintain
global safety properties.

1. Introduction

In distributed systems, a cycle of observation followed
by replaying computations is the basis for locating bugs.
The debugging process would be greatly facilitated if we
add the ability toactivelycontrol the replayed computations
based on the observations. This leads to a cycle of obser-
vation andcontrolledreplaying which may, if used wisely,
greatly accelerate the discovery of bugs. We focus on con-
trolling a computation based on the specification of safety
properties on global states. We call this thepredicate con-
trol problem.

There are two important scenarios in which predicate
control is useful for debugging distributed programs. Con-�supported in part by the MCD Fellowshipysupported in part by the NSF Grants ECS-9414780, CCR-9520540,
TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant

sider the cycle of observation and controlled replaying of
computations. We first detect a global bug while observing
a certain computation. Next, we try to replay the compu-
tation with some added control, to determine if it would be
sufficient to eliminate the bug. This control is in the form of
added causal dependencies to the existing trace of the com-
putation. Since the computation is knowna priori, we call
this form of predicate controloff-line predicate control. We
may vary the added control and observe the resulting be-
havior of the computation to help us in localizing the bug.
Once we have found a form of control that is effective for
one computation, we may apply the same control to a new
computation. Here we don’t havea priori knowledge of the
computation. Therefore, we call this controlon-line predi-
cate control. Section 7 illustrates the active debugging pro-
cess with an example.

In this paper, we formally define off-line and on-line
predicate control in an asynchronous message-passing sys-
tem. We show that solving predicate control for safety
properties based on general boolean predicates is NP-hard.
However, for the useful class of disjunctive boolean predi-
cates, we present an efficient algorithm for solving off-line
predicate control, and an efficient algorithm for solving on-
line predicate control under certain system restrictions.We
then illustrate, with an example, the active debugging ap-
proach in which both forms of predicate control are ap-
plied.

2. Related Work

Our contributions are two-fold: a new active approach to
distributed debugging, and a solution of the predicate con-
trol problem. We present related work in both areas.

Research in distributed debugging has focussed on two
problems: detecting bugs in a distributed computation and
replaying a traced distributed computation. Research in the
detection of bugs mainly differs in the types of bugs spec-
ified. The seminal work in this area is the global snapshot
algorithm [3] which is used to detect stable bugs (which re-

main true once they become true). Since then, detection
algorithms have been designed for many different classes
of bugs such as: race conditions [11], predicates on single
global states [1], predicates based on sequences of global
states [5]. Research in replaying trace computations have
focussed on reducing the size of the trace by determining
which events are necessary for successful replaying [9]. Our
approach focusses on adding a control mechanism to the
debugging process to allow computations to be run under
safety constraints.

We are aware of two previous studies of controlling dis-
tributed systems to maintain classes of global predicates.
One study [7] allows global properties within the class of
conditional elementary restrictions [7]. Unlike our modelof
a distributed system, their model uses an off-line specifica-
tion of pair-wise mutually exclusive states and does not use
causality. [13] studies the on-line maintenance of a class of
global predicates based on ensuring that a sum expression
on local variables does not exceed a threshold. In contrast
to these approaches, our focus will be on general global
boolean predicates and the class of disjunctive predicates.
We also study both the on-line and off-line variants of the
control problem.

3. Model and Problem Specification

The distributed system consists ofn sequential processesP1, P2, . . . , Pn which can send messages to one another
over reliable channels. The system is asynchronous and has
no shared memory. No constraints are placed on message
ordering.

Thelocal executionof Pi consists of a sequence ofstates
andeventsstarting at a special start state?i and ending at a
special final state>i. An event takes the process from one
state to another. An event may be a local event, a message
send event, or a message receive event. A state corresponds
to an assignment of values to all variables in the process.

For two statess andt in the same process,s�imt denotes
thats immediately precedest in the sequential execution of
the process.� (precedes) denotes the transitive closure of�im. We says ; t (s remotely precedest) if the mes-
sage sent in the event afters is received in the event beforet. Given these relations, thecausally precedes(happened
before) relation [6],!, is defined as the transitive closure
of the union of�im and;. Note that! is an irreflexive
partial-order over states in all processes. So, given any two
statess andt, eithers!t or t!s or neither causally pre-
cedes the other, denoted byskt (s is concurrentwith t). We
use the notations! t to denotes!t _ s = t ands � t
to denotes � t _ s = t.

Let Si be the set of local states in the local execution ofPi and letS = Si Si then a distributed computation can be
modeled as a tuple(S1; : : : ; Sn;;;�). We call it adeposet

(decomposed partially-ordered set) provided that(S;!) is
an irreflexive partial order and it satisfies three reasonable
constraints:

D1: No messages are received before the initial state,
D2: No messages are sent after the final state, and
D3: A single event does not both send and receive.
In a distributed computation modeled as a deposet,(S1; : : : ; Sn;;;�), we define aglobal stateto be a sub-

set ofS containing exactly one state from each setSi. LetG be the set of all global states in the deposet. We de-
fine an ordering relation� on G as: For two global statesG;H 2 G : G � H iff 8i : G[i] � H [i] whereG[i] 2 Si
andH [i] 2 Si are the states fromPi in global statesG andH respectively. It has been established that(G;�) is a lat-
tice [8].

A global state, G, is said to beconsistentif 8x; y 2G : xky. A consistent global state captures the notion of
a global state that could possibly occur in the distributed
computation. IfGc is the set of all consistent global states
in the deposet, then(Gc;�) is also a lattice. It is easy to
show usingD1 and D2 that the initial global state? =(?1; : : : ;?n) and the final global state> = (>1; : : : ;>n)
are consistent.

An actual execution of a distributed system would take it
from the initial consistent global state? to the final consis-
tent global state> through a sequence of consistent global
states (a path in the lattice(Gc;�)). We model the global
execution as aglobal sequence– a sequenceg of consistent
global states ordered by� such that restricting the sequence
to any one processPi produces the sequenceSi of states
ordered by� or the sequenceSi with some states consec-
utively repeated (called astutterof Si). Note that this does
not enforce an interleaving of events since in a global se-
quence multiple local events can take place simultaneously.

Thecontrol systemis a distinct distributed system whose
processes arecontrollers, C1; : : : ; Cn, which communicate
usingcontrol messageson independent channels. A con-
troller Ci monitors and controls processPi by determin-
ing the next state and by occasionally blocking the pro-
cess. Since the underlying process would not be able to
distinguish between its controller’s blocking action and a
reduction of its execution speed, the control is transparent.
The actions (monitoring and blocking) of the controllers are
specified by adistributed control strategy.

On running a distributed control strategy for a control
system, the resultant controlled distributed computationis
in no way different from a computation of any other dis-
tributed system. We can, therefore, model a controlled dis-
tributed computation as a deposet. This deposet would in-
clude extra control states and control messages. If we re-
strict this deposet to the states of the underlying distributed
system, we would have the deposet of the underlying system
with added control causality between certain states. We use

2

this as our model of a controlled distributed computation as
follows.

Given a distributed computation modeled by a deposet(S1; : : : ; Sn;;;�) with a causal precedence(S;!), we

define anextended deposet(S1; : : : ; Sn;;;�; C;) to con-

sist of an extra control relation
C; (for x C;y, we sayx is

forced beforey) between states. Each
C; tuple is induced

by a control message in the control system and relates the
first underlying state before its send and the next underly-
ing state after its receive. We then define an extended causal

precedence(S; C!) to be the transitive closure of the unions

of �im, ; and
C;. The extended deposet would model a

valid computation only if(S; C!) is an irreflexive, partial-

order. However, it is possible to define a
C; relation which

causes cycles with! and results in a
C! that is not irreflex-

ive. We say that such a
C; relationinterfereswith !.

Definition. Given a deposet,(S1; : : : ; Sn;;;�), with

irreflexive partial-order(S;!) and a control relation
C;

which does not interfere with!, the resultant extended de-
poset(S1; : : : ; Sn;;;�; C;) with irreflexive partial-order(S; C!) is called thecontrolled deposetof S with

C;.
It is easy to show that the set of global sequences in the

controlled deposet is a subset of the set of global sequences
in the original deposet. This is exactly the function expected
of a control system.

A local predicatefor processPi is a boolean function
of the variables associated withPi. A global predicate, B,
is an expression using boolean connectives:;_;^ on local
predicates. IfB can be expressed asl1_ l2 _ : : : ln whereli
is a local predicate ofPi thenB is adisjunctive predicate.B(G) denotes the value of predicateB at the global stateG. We assume thatB(G) can be efficiently computed.G is said tosatisfyB if B(G) = true. A global se-
quenceg satisfiesB if every global state ing satisfiesB.
Similarly, a deposetS satisfiesB if every global sequence
in S satisfiesB. Lastly, a distributed control strategyA sat-
isfiesB if every possible deposet satisfiesB. B is infeasible
for deposetS if no global sequence inS satisfiesB.

We can now formally define our problems:

The Off-line Predicate Control Problem
Given a global predicateB and deposetS for the under-
lying system, construct a distributed control strategy that
satisfiesB, unlessB is infeasible forS.

The On-line Predicate Control Problem
Given a global predicateB and deposetS for the underly-
ing system (provided on-line), construct a distributed con-
trol strategy that satisfiesB, unlessB is infeasible forS.

On-line predicate control is obviously a harder problem
than off-line predicate control.

true true true true

truefalse false

false

false

x1 x2 xm xm+1

...

...

...

...
Figure 1. Proof: SGSD is NP-complete

4. Off-line Predicate Control is NP-hard

Consider the problem of detecting if a satisfying execu-
tion exists in a computation for a given predicate.

Satisfying Global Sequence Detection (SGSD):Given a
deposet(S1; : : : ; Sn;;;�) and a global predicateB, de-
termine ifB is feasible forS (i.e. if there exists a global
sequence inS that satisfiesB).

Lemma 1 SGSD is NP-complete.

Proof: The problem is in NP because it takes polynomial
time to check that a candidate global sequence is valid and
that it satisfiesB. To show that it is NP-hard, we map SAT
to it. If b is the boolean expression in SAT, then for each
variable,x1; : : : ; xm, in b we assign a separate process with
two states, onetrue and onefalse (Figure 1). We define
a process for an extra boolean variablexm+1 which startstrue, goes through afalse state, and endstrue again. We
defineB = b _ xm+1 and then apply SGSD to find a satis-
fying global sequence. If it finds one, then the global state
with xm+1 = false will have a satisfying assignment for
the variables ofb. Conversely, ifb is satisfiable, then there
must be a satisfying global sequence.2

Given a satisfying control strategy, we can determine a
satisfying global sequence by simulating a run of the strat-
egy. Conversely, given a satisfying global sequence, we can
construct a satisfying control strategy that would only allow
that sequence as a possible run. Therefore, the problem of
detecting if a satisfying control strategy exists is equivalent
to SGSD. A detailed proof of this fact may be found in [12].
This equivalence indicates that:

Theorem 1 Off-line predicate control is NP-hard.

5. Off-line Disjunctive Predicate Control

Since predicate control is NP-hard in general, we restrict
our attention to the class of disjunctive predicates. Intu-
itively, these predicates state that at least one local condition

3

must be met at all times, or, in other words, that a bad com-
bination of local conditions does not occur. Some examples
of these predicates are:(1) Two process mutual exclusion::cs1 _ :cs2(2) At least one server is available:avail1 _ avail2 _ : : : availn(3) x must happen beforey:after x _ before y(4) At least one philosopher is thinking:think1 _ think2 _ : : : thinkn

Note how we can even achieve the fine-grained control
necessary to cause a specific event to happen before another
as in property(3). This was done using local predicates to
check if the event has happened yet.

Let the disjunctive predicate under consideration beB =l1 _ : : : _ ln. Our approach to solving the problem consists

of constructing a satisfying controlled deposet ofS with
C;.

A control strategy can be implemented from the controlled

deposet by forcing the causal order of each tuple in
C; by

sending and receiving (with blocking) a control message on
the concerned processes at the appropriate states.

The sequence determined by the total ordering� of local
states inSi can be divided into intervals that aretrue or
falsewith respect to local predicateli. We define afalse-
interval I as a maximal sequence of consecutive states inSi for which li is false.I:lo andI:hi denote the beginning
and ending states onI . To indicate that a false interval is onPi, we use the notationIi. We now define:overlap(I1; : : : ; In) � 8i; j : (Ii:lo!Ij :hi) _ (Ii:lo = ?i) _(Ij :hi = >j)
The significance of such an overlapping set of intervals is
that in a valid global execution, no process can leave its in-
terval until all the other processes are inside their intervals.
So, if we have an overlapping set of false-intervals, then ev-
ery global sequence must contain a global state in whichB
is false, and no satisfying control strategy exists. This is
stated in the following result from [4]:

Lemma 2 In a deposet,(S1; : : : ; Sn;;;�), with causal
precedence(S;!):
if 9I1; : : : ; In : overlap(I1; : : : ; In) then there is no global
sequence inS which satisfiesB.

Our algorithm makes use of this result by exiting with a“No
Controller Exists”message when it detects an overlapping
set of false intervals. If a set of false-intervals does not over-
lap then there must be a pair of intervals,Ii andIj such thatIj can be crossed beforeIi is entered. We define:crossable(Ii; Ij) � (Ii:lo 6!Ij :hi) ^ (Ii:lo 6= ?i) ^ (Ij :hi 6= >j)

Algorithm Description

The algorithm is listed in Figure 2. The current global
stateg is advanced from? forwards. ForPi we will only
be interested in local states which are?i, >i, theIi:lo orIi:hi for some false-intervalIi. Global stateg will only
consist of such local states. The predicates defined in the
algorithm assumeg as an implicit parameter. Ifg[i] is at aIi:lo state, we say thatPi is false. Otherwise, we say thatPi is true. ForPi, N(i) defines the next false-interval with
respect tog[i]. V alidPairs() is the set of pairs of pro-
cesses for which the next false-interval of a process may be
crossed while maintaining another process true. The local
statenext(i) consists of the local state of interest afterg[i].
So, for example, ifg[i] is false, g[i] must be at anIi:lo
state andnext(i) would beN(i):hi.

The algorithm takes as input the given trace of the dis-
tributed computation. This is implicitly used in evaluating
the predicates used in the algorithm. The output isC, a

queue of tuples that defines the
C; relation.

The central idea of the algorithm is to construct a chain

of alternating true intervals and backward-pointing
C; ar-

rows. The chain extends from the?i state on some processPi to the>j state on some processPj . Since any global
state must intersect this chain, it must either be inconsistent
(if it intersects at a backward pointing

C; arrow), or it must
satisfy the predicate (if it intersects at a true interval).

At L1, the algorithm enters a loop which exits wheng
has extended past the last false interval on some process,
sayPj , indicating that the output chain has reached>j and
is complete. In each iteration of the loop, we will cross at
least one false interval while some true interval maintains
the responsibility of remaining true. Since there are a finite
number of false intervals, the algorithm must terminate. We
attempt to find such a pair of false and true intervals in L2
- L4. We are guaranteed to find an overlapping set of false
intervals if no such pair can be found (for the proof of this
fact, refer to [12]). So by Lemma 2, we can safely exit at
L3 with “No Controller Exists”.

Once we have found such a pair, we update our output
chain by executing procedureAddControl() in L14 - L18.

Normally, a tuple,g[k0] C; next(k), will be output. Intu-
itively, this ensures that we do not exit the true interval used
in the previous iteration,(g[k]; next(k)), until the true in-
terval in the current iteration,(g[k0]; next(k0)), is entered.
However, in the first iteration, and in any iteration in which
the current true interval starts at?k0 , we may simply reini-
tialize the chain to;.

In L6 - L9, we cross the chosen false-intervalN(l) while
advancingg on all the other processes to be causally con-
sistent with this move. In other words, if a crossed state onPl transitively depends on a state on some other process,

4

Variables: C a queue of tuples of local states, initially;
and finally outputs the tuples in the

C; relation.g[1::n] = ? current global statek; k0; l; i integerst local state

Predicates:false(i) � 9Ii : g[i] = Ii:lotrue(i) � :false(i)N(i) � n min Ii :: g[i] � Ii:lo if it existsnull otherwisenext(i) � � >i if N(i) = nullN(i):lo if true(i)N(i):hi if false(i)V alidPairs() � fhi; ji : true(i) ^ crossable(N(i); N(j))gselect(Z) � randomly selected element of setZ 6= ;
L1 while (8i : N(i) 6= null) f (* exit on reaching a>i *)
L2 if (V alidPairs() = ;) (* find a true interval which
L3 exit(“No Controller Exists”); can be maintained while
L4 h k0; l i := select(V alidPairs()); a false interval is crossed *)
L5 AddControl(C; k0; k);
L6 t := N(l):hi;
L7 for (i 2 f0; : : : ; ng)
L8 while (next(i)! t) (* advanceg
L9 g[i] := next(i); consistently with! *)
L10 k := k0; (* record last true interval *)g
L11 k0 := select(fijN(i) = nullg);
L12 AddControl(C; k0 ; k);
L13 exit(C);
Procedures:
L14 AddControl(C; k0 ; k) f
L15 if (g[k0] = ?k0)
L16 C := ;; (* start chain *)
L17 else if(k 6= k0) (* optimization *)
L18 enqueue(C; h g[k0]; next(k) i); (* add output tuple *)g

Figure 2. Algorithm: Off-line Control

then that state must also be crossed. Once this is done, we
remember this iteration’s true interval in the variablek (at
L10) and repeat the loop.

Once we exit the loop, we output the last
C; tuple to

finish the chain and exit with the chain as output.
We refer the reader to [12] for the proof of correctness of

this algorithm and we merely state:

Theorem 2 The algorithm in Figure 2 terminates and cor-
rectly solves the off-line predicate control problem for dis-
junctive predicates.

Evaluation

The time complexity of the algorithm isO(n2p) wherep
is the maximum number of false-intervals in a process. The
naive implementation of the algorithm would beO(n3p) be-
cause the outer while loop iteratesO(np) times and calcu-
lating the setV alidPairs() can takeO(n2) time to check
every pair of processes. However, an optimized implemen-
tation avoids redundant comparisons by computing the setV alidPairs() dynamically. Since, in this approach, each

new false-intervals has to be compared withn � 1 existing
false-intervals, the time complexity isO(n2p).

The size of
C; is O(np) because one tuple is output in

each iteration of the outer while loop. Therefore, the mes-
sage complexity of control messages used isO(np). To give
an idea of this quantity, in the two-process mutual exclusion
example, there would be one message for each critical sec-
tion, in the worst case (which is unlikely).

A good control strategy should also allow as much con-
currency as possible. The ideal control strategy would only
suppress the non-satisfying global sequences while allow-
ing all satisfying ones. While this metric is hard to define,
it is clear, for example, that a control strategy involving
one-way, two-process synchronizations allows more con-
currency than one involving multiple global synchroniza-
tions. Since each control message corresponds to a one-
way, two-process synchronization (the receives are block-
ing), we haveO(np) such synchronizations.

6. On-line Disjunctive Predicate Control

Unfortunately, we find that the problem is impossible to
solve for non-trivial (i.e.n � 2) disjunctive predicates. The
proof for this [12] constructs a counter-example scenario
that forces any control strategy to deadlock.

Theorem 3 The On-Line Predicate Control Problem for
non-trivial (n � 2) Disjunctive Predicates is impossible to
solve.

Note that even if we generalize on-line predicate control
to allow each controller a finite lookahead of the underlying
computation, the problem would still be impossible. Since
it is impossible to solve the problem as it stands, we make
the following assumptions:

A1: 8i : Pi does not block in states whereli is false.
A2: 8i : li(>i)

These assumptions allow us to assume that afalseprocess
will eventually becometrue without blocking.

Our control strategy is listed in Figure 3. At any time
during execution, some process is thescapegoatand must
remaintrue until it is sure that some other process is true
and has assumed the role ofscapegoatfrom him. The
scapegoat simply requests any other process to take on the
role. Since A1 and A2 ensure that it would eventually be-
cometrue there will be no deadlocks. The details of the
proof of correctness may be found in [12].

Theorem 4 The distributed control strategy listed in Fig-
ure 3 terminates (does not deadlock) and correctly solves
the on-line predicate control problem for disjunctive predi-
cates.

5

Distributed Control Strategy for Controller, Ci:
Input: li a boolean function that takes a state as input
On-line Input:s current state of the underlying computations0 next state of the underlying computation
Variables: scapegoat = init(i) booleanpending = false booleanj; k integer
Control Actions:� scapegoat ^ :li(s0): � received(req(j)):

send(req(i); select(C)); if li(s) then
receive(ack); scapegoat := true;scapegoat := false; send(ack; Cj);

else� pending ^ li(s): pending := true;pending := false; k := j;scapegoat := true;
send(ack; Ck);

Definitions:init(i) true for onei andfalsefor othersC set of all controllersselect(Z) arbitrary element of non-empty setZ
Figure 3. Control Strategy: On-line Control

Thek-mutual exclusion problem (a recent study may be
found in [2]) is a generalization of the traditional mutual
exclusion problem where at mostk processes can be in the
critical section at the same time. Fork = n� 1, this speci-
fies that at all times, at least one process must not be in the
critical section. If we define the false-intervals to be critical
sections, our problem becomes equivalent to(n�1)-mutual
exclusion. Our distributed control strategy, therefore, also
solves the(n� 1)-mutual exclusion problem.

Evaluation

We follow the general guidelines in [10] for evaluating
mutual-exclusion algorithms. Since only the critical sec-
tions of the scapegoat cause any overhead and the remain-
ing critical section entries do not, we measure the overhead
overn critical section entries. LetT be the average mes-
sage propagation delay andEmax be the maximum criti-
cal section execution time.Response timeis the time delay
between a request for entering the critical section and the
corresponding entry.Per n critical section entries, 2 mes-
sages are required and response time is bounded between2T and2T +Emax, depending on when the request arrives.
We have the option of reducing the response time at the ex-
pense of message overhead. We can devise a scheme where
the scapegoat broadcasts a request to all controllers, and so
has a better chance of finding at least one of them not in the
critical section.

Our control strategy is simpler and more efficient than
existing solutions to thek-mutual exclusion problem when
specialized to thek = n � 1 case. While a complete com-

parison is beyond the scope of this presentation, the intuitive
reason is that thek-mutual exclusion algorithms usually usek tokens while our algorithm uses a singleanti-tokenwhich
acts as a liability rather than a privilege. This indicates that
for largek, a different class of algorithms may be more ap-
propriate for thek-mutual exclusion problem.

7. Applications

P3

P2

P1

P2

P3

P1

P2

P3

P1

P1

P2

P3

3

1 2

4

G H

a

b c

d

e

f

a

b c

d

e

f

a

b c

d

e

f

(c) Computation C

(a) Computation C (b) Computation C

(d) Computation C

Figure 4. Example: Distribued Debugging

We have provided the ability to control a distributed
computation both while being replayed and while being run
for the first time. However, the utility of this ability depends
on how effectively it can be used in the distributed debug-
ging process. We now discuss applications of both off-line
and on-line predicate control while debugging distributed
programs.

Our running example will be a replicated server system
with three server processesP1, P2 andP3. During debug-
ging, a trace of the distributed computationC1 was taken
as shown in Figure 4(a). The thicker intervals in the pro-
cess executions indicate intervals when the servers weren’t
available for service.

The system should have been designed to ensure that one
server was available at all times. So we run a predicate de-
tection algorithm onC1 (such as that in [4]) to detectbug1:
“all the servers are unavailable”. We detect two consistent
global statesG andH , as shown in the diagram, wherebug1
is possible.

Our next step is to controlC1 with the safety predi-
cate:“at least one server must be available at all times”.
Since this is a disjunctive predicate, we may use our off-
line algorithm to controlC1, and the resulting computationC2 is shown in Figure 4(b). Note how the control messages
from a to b and fromc to d ensure that global statesG andH are no longer consistent andbug1 doesn’t occur.

6

We now suspectbug2: “statesf ande occur at the same
time”. We run the predicate detection algorithm in [4] to
detect thatbug2 is indeed possible inC2. We now impose
the required safety predicate that “e must happen beforef ”
and controlC2 using our off-line algorithm. The resulting
computationC3 in Figure 4(c) is found to be satisfactory.

However, we suspect thatbug2 may have causedbug1.
We, therefore, return to our first computationC1 and apply
off-line control to it with the safety predicate: “e must hap-
pen beforef ” This leads to computationC4 in Figure 4(d).
Note how the new control message frome to f ensures thatG andH are inconsistent. So eliminatingbug2 also elimi-
natesbug1 and we conclude thatbug2 is the most important
bug.

Now that we have discovered a possible bug in the sys-
tem, we should check all future computations under the con-
straint that this bug does not occur. We, therefore, apply our
on-line algorithm with the predicate: “emust happen beforef ” while running the system to generate new computations.
If no more bugs are detected, our confidence thatbug2 is the
problem increases.

In this illustration, we have demonstrated three areas
where predicate control may be applied:

- Determining if a bug recurs under added safety con-
straints. (off-line)

- Determining the most important bug. (off-line)
- Preventing possible bugs in computations being run for

the first time. (on-line)

8. Conclusions and Discussion

We have accomplished all of our goals from Section 1.
While these relate to distributed debugging, it is important
to note that predicate control is a problem of independent in-
terest and that distributed debugging is just one of its main
applications. Off-line predicate control would find appli-
cations wherever control is required when the computation
is knowna priori, such as in distributed recovery. On-line
predicate control is widely applicable, addressing issuesof
general synchronization, of which important problems such
as mutual exclusion form a part.

Given that general predicate control is NP-hard and that
we can solve the simple class of disjunctive predicate con-
trol efficiently, the next step is to attempt to solve predi-
cate control for more general classes of predicates. To-
wards this goal, we have recently solved both on-line and
off-line predicate control for arbitrary predicates, under the
restriction that the false-intervals of local predicates are mu-
tually separated. Theselocally independent global predi-
catesare a generalization of disjunctive predicates and al-
low us to express properties such as system-wide deadlock
avoidance and more general forms of 2-process mutual ex-
clusion. However, there are still many distributed synchro-

nization problems such as general mutual-exclusion which
have been solved as independent problems but have not
been solved in the framework of predicate control. This
is an indication that more classes of predicates should have
predicate control solutions.

References

[1] O. Babaoglu and K. Marzullo. Consistent global states
of distributed systems: fundamental concepts and mecha-
nisms. In S. Mullender, editor,Distributed Systems, chap-
ter 4. Addison-Wesley, 1993.

[2] S. Bulgannawar and N. H. Vaidya. A distributed k-mutual
exclusion algorithm. InProceedings of the 15th Interna-
tional Conference on Distributed Computing Systems, pages
153–160. IEEE, 1995.

[3] K. M. Chandy and L. Lamport. Distributed snapshots: de-
termining global states of distributed systems.ACM Trans-
actions on Computer Systems, 3(1):63–75, February 1985.

[4] V. K. Garg and B. Waldecker. Detection of strong unsta-
ble predicates in distributed programs.IEEE Transactions
on Parallel and Distributed Systems, 7(12):1323–1333, De-
cember 1996.

[5] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic
sequences of predicates in distributed computations. InPro-
ceedings of the Workshop on Parallel and Distributed De-
bugging, pages 32–42. ACM/ONR, 1993.

[6] L. Lamport. Time, clocks, and the ordering of events
in a distributed system. Communications of the ACM,
21(7):558–565, July 1978.

[7] A. Maggiolo-Schettini, H. Wedde, and J. Winkowski. Mod-
eling a solution for a control problem in distributed systems
by restrictions.Theoretical Computer Science, 13(1):61–83,
January 1981.

[8] F. Mattern. Virtual time and global states of distributed sys-
tems. InParallel and Distributed Algorithms: Proc. of the
International Workshop on Parallel and Distributed Algo-
rithms, pages 215–226. Elsevier Science Publishers B. V.
(North Holland), 1989.

[9] R. H. B. Netzer and B. P. Miller. Optimal tracing and replay
for debugging message-passing programs.The Journal of
Supercomputing, 8(4):371–388, 1995.

[10] M. Singhal. A taxonomy of distributed mutual exclusion.
Journal of Parallel and Distributed Computing, 18:94–101,
1993.

[11] K. Tai. Race analysis of traces of asynchronous message-
passing programs. InProceedings of the 17th International
Conference on Distributed Computing Systems, pages 261–
268. IEEE, 1997.

[12] A. Tarafdar and V. K. Garg. Predicate control for activede-
bugging of distributed programs. Technical Report ECE-
PDS-1998-002, Parallel and Distributed Systems Labora-
tory, ECE Dept. University of Texas at Austin, 1998. avail-
able at http://maple.ece.utexas.edu as technical report TR-
PDS-1998-002.

[13] A. I. Tomlinson and V. K. Garg. Maintaining global asser-
tions on distributed sytems. InComputer Systems and Edu-
cation, pages 257–272. Tata McGraw-Hill Publishing Com-
pany Limited, 1994.

7

