A Distributed Abstraction Algorithm for Online Predicate Detection

Himanshu Chauhan1 \quad Vijay K. Garg1 \quad Aravind Natarajan2 \\
Neeraj Mittal2

1Parallel & Distributed Systems Lab, \quad 2Department of Computer Science, \\
Department of Electrical & Computer Engineering \quad University of Texas at Dallas \\
University of Texas at Austin
Outline
Motivation & Problem Definition

Why Online Predicate Detection?

- Large Parallel Computations
 - Non-terminating executions, e.g. server farms
 - Debugging, Runtime validation

0 → 1

0 → 1
Other Applications

- General predicate detection algorithms, such as Cooper-Marzullo [1991]
 - Perform abstraction with respect to simpler predicate
 - Detect remaining conjunct in the abstracted structure
 - Reduced complexity by using abstraction based detection
Predicate Detection in Distributed Computations

Find all global states in a computation that satisfy a predicate

\[P_1 \quad x_1 \quad 1 \quad 2 \quad -1 \quad 0 \]

\[P_2 \quad x_2 \quad 0 \quad 2 \quad 1 \quad 3 \]

\[P_3 \quad x_3 \quad 4 \quad 1 \quad 2 \quad 4 \]

Predicate \((x_1 \times x_2 + x_3 < 5) \land (x_1 \geq 1) \land (x_3 \leq 3)\): \(O(k^3)\) steps

- \(O(k^n)\) complexity for \(n\) processes, and \(k\) events per process
- Compute intensive for large computations
Exploiting Predicate Structure Using Abstractions

Predicate \((x_1 \cdot x_2 + x_3 < 5) \land (x_1 \geq 1) \land (x_3 \leq 3)\)

(a) Original Computation

(b) Slice w.r.t. \((x_1 \geq 1) \land (x_3 \leq 3)\)
Motivation & Problem Definition

Paper Focus

- **Offline** and **Online** algorithms for abstracting computations for *regular* predicates exist [Mittal et al. 01 & Sen et al. 03]

- **This paper**: Efficient **distributed** **online** algorithm to abstract a computation with respect to *regular* predicates.
System Model

- Asynchronous message passing
- n reliable processes
- FIFO, loss-less channels
- Denote a distributed computation with (E, \rightarrow)
 - E: Set of all events in the computation
 - \rightarrow: happened-before relation

[Lamport 78]
Consistent Cut: Possible global state of the system during its execution.
Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

Formally:

Given a distributed computation \((E, \rightarrow)\), a subset of events \(C \subseteq E\) is a consistent cut if \(C\) contains an event \(e\) only if it contains all events that happened-before \(e\).

\[
e \in C \land f \rightarrow e \Rightarrow f \in C
\]
Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

i.e. if a message receipt event has *happened*, the corresponding message send event must have happened.
Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

For conciseness, we represent a consistent cut by its maximum elements on each process.

\[
\begin{align*}
\{\} & \quad \checkmark \\
\{a\} & \quad \checkmark \\
[b, e] & \quad \checkmark \\
[a, f] & \quad \times
\end{align*}
\]

Use vector clocks for checking consistency/finding causal dependency.
Lattice of Consistent Cuts

Set of all consistent cuts of a computation \((E, \rightarrow)\), forms a lattice under the relation \(\subseteq\). [Mattern 89]
Lattice of Consistent Cuts

Computation and its Lattice of Consistent Cuts
Regular Predicates

A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.
A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.
Regular Predicates

A predicate is *regular* if for any two consistent cuts C and D that satisfy the predicate, the consistent cuts given by $(C \cup D)$ and $(C \cap D)$ also satisfy the predicate.

$$\{b, g\} \cap \{c, f\} = \{b, f\},$$
$$\{b, g\} \cup \{c, f\} = \{c, g\}$$
Regular Predicates - Examples

- Local Predicates
- Conjunctive Predicates — conjunctions of local predicates
- Monotonic Channel Predicates
 - All channels are empty/full
 - There are at most m messages in transit from P_i to P_j
Regular Predicates - Examples

- Local Predicates

- Conjunctive Predicates — conjunctions of local predicates

- Monotonic Channel Predicates
 - All channels are empty/full
 - There are at most m messages in transit from P_i to P_j

Not Regular: There are even number of messages in a channel
Regular Predicates

Predicate: “all channels are empty”
Regular Predicates

Predicate: “all channels are empty”

\[P_1 \quad \begin{array}{c}
\text{a} \\
\text{b} \\
\text{c}
\end{array} \quad \begin{array}{c}
P_2 \\
\text{e} \\
\text{f} \\
\text{g}
\end{array} \]
Why use Abstractions?

Goal: Find all global states that satisfy a given predicate.

Key Benefit of Abstraction

When B is regular: we can “get away” with only enumerating cuts that satisfy B, and are not joins of other consistent cuts.

Due to Birkhoff’s Representation Theorem for Lattices [Birkhoff 37]
Slice: A subset of the set of all global states of a computation that satisfies the predicate.
Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that satisfies the predicate.
Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that satisfies the predicate.
Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that satisfies the predicate.

\[\{a\}, \{b, e\}, \{b, f\}, \{b, g\} \]

\[\{c, g\}, \{c, f\}, \{b, g\} \]

\[\{c, e\}, \{b, f\} \]

\[\{c\}, \{b, e\} \]

\[\{b\}, \{a, e\} \]

\[\{a\}, \{e\} \]

\[\{\}\]

\[B: “all channels are empty” \]
How do we do that?

Exploit $J_B(e)$
How do we do that?

Given a predicate B, and event e in a computation $J_B(e)$: The least consistent cut that satisfies B and contains e.
How do we do that?

Given a predicate B, and event e in a computation

$J_B(e)$: The least consistent cut that satisfies B and contains e.

Abstractions of Computations - Slicing
How do we do that?

Given a predicate B, and event e in a computation $J_B(e)$: The least consistent cut that satisfies B and contains e.

B: "all channels are empty"
How do we do that?

Given a predicate B, and event e in a computation $J_B(e)$: The least consistent cut that satisfies B and contains e.

Himanshu (UT Austin)
Distributed Online Abstraction
How do we do that?

Given a predicate B, and event e in a computation

$J_B(e)$: The least consistent cut that satisfies B and contains e.

P_1: $a \rightarrow b \rightarrow c$

P_2: $e \rightarrow f \rightarrow g$

B: “all channels are empty”
How do we do that?

Given a predicate B, and event e in a computation $J_B(e)$: The least consistent cut that satisfies B and contains e.

B: "all channels are empty"
How do we do that?

Given a predicate B, and event e in a computation

$J_B(e)$: The least consistent cut that satisfies B and contains e.

Abstractions of Computations - Slicing

Himanshu (UT Austin)
Distributed Online Abstraction
Slice for Regular Predicates

For a computation \((E, \rightarrow)\), and regular predicate \(B\)

\[
J_B = \{ J_B(e) \mid e \in E \}
\]
Bored with definitions?

- Enough with the definitions
- Enough with notation
- Just tell us the crux of it
Bored with definitions?

It comes down to a two line pseudo-code

\texttt{foreach event e in computation:}

\hspace{1em} find the least consistent cut that satisfies B
\hspace{1em} and includes e
Centralized Online Slicing

- One process acts as the central *slicer* - CS
- Each process P_i sends details (state/vector clock etc.) of relevant events to CS

[Mittal et al. 07]
Basic Algorithm

Challenges

- Simple decomposition of centralized algorithm into n independent executions is inefficient
- Results in large number of redundant communications
- Multiple computations lead to identical results
Each process P_i has an additional *slicer* thread S_i.

P_i sends details (state/vector clock etc.) of relevant events *locally* to S_i.

![Diagram of Distributed Online Slicing]

S_1 T_1 P_1 0 1

S_2 T_2 P_2 0 1
Distributed Algorithm at S_i

- Each slicer, S_i, has a token, T_i, that computes $J_B(e)$ where $e \in E_i$
- Tokens are sent to other slicers to progress on $J_B(e)$

For each event make use of:

$$e \rightarrow f \Rightarrow J_B(e) \subseteq J_B(f)$$
Distributed Algorithm at S_i

\[B = \text{“all channels are empty”} \]

\[\begin{array}{c}
S_1 & \xrightarrow{T_1} & P1 \xleftarrow{1} \\
\downarrow & & \downarrow \\
S_2 & \xleftarrow{T_2} & P2 \xrightarrow{1}
\end{array} \]

\begin{tabular}{|c|c|c|}
\hline
 & $T_1 \@ S_1$ & $T_2 \@ S_2$ \\
\hline
\hline
e & $P_{1.1}$ & $P_{2.1}$ \\
\hline
cut & [1, 0] & [0, 1] \\
\hline
dependency & [1, 0] & [0, 1] \\
\hline
cut consistent? & ✓ & ✓ \\
\hline
satisfies B? & ✓ & ✓ \\
\hline
output cut? & ✓ & ✓ \\
\hline
wait for & $P_{1.2}$ & $P_{2.2}$ \\
\hline
\end{tabular}
What happens in non-trivial cases?

\[B = \text{“all channels are empty”} \]
Basic Algorithm

What happens in non-trivial cases?

\(B = \text{“all channels are empty”} \)

Suppose, \(P_1 \) just reported its 2\(^{nd} \) event to \(S_1 \)

\[\begin{align*}
S_1 & \quad T_1 \\
P_1 & \quad 1 \quad 2 \\
P_2 & \quad 1 \\
S_2 & \quad T_2
\end{align*} \]
Basic Algorithm

What happens in non-trivial cases?

$B =$ “all channels are empty”

Suppose, P_1 just reported its 2nd event to S_1

| $T_1 @ S_1$ |
|----------------|------------------|
| e | $P_{1.2}$ |
| cut | [2, 0] |
| $dependency$ | [2, 0] |
| cut consistent? | ✓ |
| satisfies B? | X |
| wait for | $P_{2.1}$ |

send T_1 to S_2
Basic Algorithm

\(S_2 \) receives \(T_1 \)

Regular predicate structure

- Exact knowledge of which event to wait for
- Which states to evaluate predicate on

\[S_1 \]

\[P_1 \]

\[P_2 \]

\[S_2 \]

\[T_1 \]

wait for \(P_{2.1} \)
S_2 receives T_1

Regular predicate structure

- Exact knowledge of which event to wait for
- Which states to evaluate predicate on

\[S_1 \]
\[P_1 \quad 1 \quad 2 \]
\[P_2 \quad 1 \quad 2 \]

S_2 waits for $P_2.1$

B would not be even evaluated on any state unless S_2 is told about a message ‘receipt’
S_2 receives T_1

Regular predicate structure

- Exact knowledge of which event to wait for
- Which states to evaluate predicate on

B would not be even evaluated on any state unless S_2 is told about a message ‘receipt’

T_1 would wait at S_2 till $P_2.2$ is reported
Basic Algorithm

$P_{2.2}$ is reported to S_2

After $P_{2.2}$ is reported to S_2

<table>
<thead>
<tr>
<th></th>
<th>$T_1 @ S_2$</th>
<th>$T_2 @ S_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>$P_{1.2}$</td>
<td>$P_{2.2}$</td>
</tr>
<tr>
<td>cut</td>
<td>[2, 2]</td>
<td>[2, 2]</td>
</tr>
<tr>
<td>$dependency$</td>
<td>[2, 2]</td>
<td>[2, 2]</td>
</tr>
<tr>
<td>cut consistent?</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>satisfies B?</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>output cut?</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>wait for</td>
<td>$P_{1.3}$</td>
<td>$P_{2.3}$</td>
</tr>
</tbody>
</table>

S_2 sends T_1 back to S_1
Send only if needed - ie. before sending your token to S_k, check if you have token T_k containing the required information.
Send only if needed - ie. before sending your token to S_k, check if you have token T_k containing the required information.
Stall computations that would lead to duplicate computations

$S_1 \rightarrow T_1 \rightarrow b$

$P_1 \rightarrow a \rightarrow b \rightarrow c$

$P_2 \rightarrow e \rightarrow f \rightarrow g$

$S_2 \rightarrow T_2 \rightarrow f$

Allow only one computation to progress if there is a possibility of duplicates (see paper for details)
Optimizations - II

Stall computations that would lead to duplicate computations

Allow only one computation to progress if there is a possibility of duplicates (see paper for details)
Comparison with Centralized Approach

Distributed vs Centralized

\(n \): # of processes, \(|E| \): # of events in computation
\(|S| \): # bits required to store state data
\(|E_i| \): # of events on process \(P_i \)

<table>
<thead>
<tr>
<th></th>
<th>Centralized</th>
<th>Distributed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work/Process</td>
<td>(O(n^2</td>
<td>E</td>
</tr>
<tr>
<td>Space/Process</td>
<td>(O(</td>
<td>E</td>
</tr>
</tbody>
</table>

\(O(n) \) savings in work per process

\(O(n) \) savings in storage space per process

For conjunctive predicates:

The optimized version has \(O(n) \) savings in message load per process
Questions?

Thanks!
Future Work

- Even with optimizations, there can be degenerate cases with $O(|E|)$ messages on a single process.

- Is there a distributed algorithm that guarantees reduced messages (by $O(n)$) per process?

- Total work performed is still $O(n|E|)$.

- Is there a distributed algorithm that reduces this bound?