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Motivation & Problem Definition

Why Online Predicate Detection?

Large Parallel Computations

Non-terminating executions, e.g. server farms
Debugging, Runtime validation
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Motivation & Problem Definition

Other Applications

General predicate detection algorithms, such as Cooper-Marzullo
[1991]

Perform abstraction with respect to simpler predicate
Detect remaining conjunct in the abstracted structure
Reduced complexity by using abstraction based detection
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Motivation & Problem Definition

Predicate Detection in Distributed Computations

Find all global states in a computation that satisfy a predicate
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Predicate (x1 ∗ x2 + x3 < 5) ∧ (x1 ≥ 1) ∧ (x3 ≤ 3): O(k3) steps

O(kn) complexity for n processes, and k events per process

Compute intensive for large computations
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Motivation & Problem Definition

Exploiting Predicate Structure Using Abstractions

Predicate (x1 ∗ x2 + x3 < 5)∧ (x1 ≥ 1) ∧ (x3 ≤ 3)
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(a) Original Computation

a, e, f , u, v b

w g

(b) Slice w.r.t.
(x1 ≥ 1) ∧ (x3 ≤ 3)
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Motivation & Problem Definition

Paper Focus

Offline and Online algorithms for abstracting computations for regular
predicates exist [Mittal et al. 01 & Sen et al. 03]

This paper: Efficient distributed online algorithm to abstract a
computation with respect to regular predicates.
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Model

System Model

Asynchronous message passing

n reliable processes

FIFO, loss-less channels

Denote a distributed computation with (E ,→)

E : Set of all events in the computation
→: happened-before relation [Lamport 78]
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

Formally:

Given a distributed computation (E ,→), a subset of events C ⊆ E is a
consistent cut if C contains an event e only if it contains all events that
happened-before e.

e ∈ C ∧ f → e ⇒ f ∈ C
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

i.e. if a message receipt event has happened, the corresponding message
send event must have happened.
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

For conciseness, we represent a consistent cut by its maximum elements
on each process.
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{a} X

[b, e] X[c , e] X

[a, f ] X

Use vector clocks for checking consistency/finding causual dependency
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Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

Set of all consistent cuts of a computation (E ,→), forms a lattice under
the relation ⊆. [Mattern 89]
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Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

a b c

e f g

P1

P2
{}

{a} {e}

{b} {a, e}

{c} {b, e}

{c , e} {b, f }

{c , f } {b, g}

{c , g}

Computation and its Lattice of Consistent Cuts
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy
the predicate, the consistent cuts given by (C ∪ D) and (C ∩ D) also
satisfy the predicate.
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy
the predicate, the consistent cuts given by (C ∪ D) and (C ∩ D) also
satisfy the predicate.
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{b, g} ∩ {c , f } = {b, f },
{b, g} ∪ {c , f } = {c, g}
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates - Examples

Local Predicates

Conjunctive Predicates − conjunctions of local predicates

Monotonic Channel Predicates

All channels are empty/full
There are at most m messages in transit from Pi to Pj

Not Regular: There are even number of messages in a channel
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

Predicate: “all channels are empty”
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Abstractions of Computations - Slicing

Why use Abstractions?

Goal: Find all global states that satisfy a given predicate.

Key Benefit of Abstraction

When B is regular: we can “get away” with only enumerating cuts that
satisfy B, and are not joins of other consistent cuts.

Due to Birkhoff’s Representation Theorem for Lattices [Birkhoff 37]
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Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.
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start

end Consistent Cuts

Satisfying B

Slice for B
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Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

a b c

e f g

P1

P2 {}

{a} {e}

{b} {a, e}

{c} {b, e}

{c , e} {b, f }

{c , f } {b, g}

{c , g}

{a} {e}

{b, f }

{c , f } {b, g}

B: “all channels are empty”
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Abstractions of Computations - Slicing

How do we do that?

Exploit JB(e)
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Abstractions of Computations - Slicing

Slice for Regular Predicates

For a computation (E ,→), and regular predicate B

Slice for B is defined as:

JB = {JB(e) | e ∈ E}
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Abstractions of Computations - Slicing

Bored with definitions?

Enough with the definitions

Enough with notation

Just tell us the crux of it
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Abstractions of Computations - Slicing

Bored with definitions?

It comes down to a two line pseudo-code

foreach event e in computation:

find the least consistent cut that satisfies B
and includes e
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Slicing Algorithm

Centralized Online Slicing

One process acts as the central slicer - CS

Each process Pi sends details (state/vector clock etc.) of relevant
events to CS

[Mittal et al. 07]
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Basic Algorithm

Challenges

Simple decomposition of centralized algorithm into n independent
executions is inefficient

Results in large number of redundant communications

Multiple computations lead to identical results
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Basic Algorithm

Distributed Online Slicing

Each process Pi has an additional slicer thread Si

Pi sends details (state/vector clock etc.) of relevant events locally to
Si
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Basic Algorithm

Distributed Algorithm at Si

Each slicer, Si , has a token, Ti , that computes JB(e) where e ∈ Ei

Tokens are sent to other slicers to progress on JB(e)

For each event make use of:

e → f ⇒ JB(e) ⊆ JB(f )
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Basic Algorithm

Distributed Algorithm at Si

B = “all channels are empty”

T1 @ S1 T2 @ S2

e P1.1 P2.1

cut [1, 0] [0, 1]

dependency [1, 0] [0, 1]

cut consistent? X X
satisfies B? X X
output cut? X X
wait for P1.2 P2.2
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Basic Algorithm

What happens in non-trivial cases?

B= “all channels are empty”

Suppose, P1 just reported its 2nd event to
S1

T1 @ S1

e P1.2

cut [2, 0]

dependency [2, 0]

cut consistent? X
satisfies B? X

wait for P2.1

send T1 to S2
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Basic Algorithm

S2 receives T1

Regular predicate structure

Exact knowledge of which event to wait for

Which states to evaluate predicate on
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S2
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Regular predicate structure

Exact knowledge of which event to wait for

Which states to evaluate predicate on

1 2

1 2

P1

P2

S1

T1

wait for P2.1

S2

B would not be even evaluated on any state unless S2 is told about a
message ‘receipt’
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S2 receives T1

Regular predicate structure

Exact knowledge of which event to wait for

Which states to evaluate predicate on

1 2

1 2

P1

P2

S1

T1

wait for P2.1

S2

B would not be even evaluated on any state unless S2 is told about a
message ‘receipt’
T1 would wait at S2 till P2.2 is reported
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Basic Algorithm

P2.2 is reported to S2

After P2.2 is reported to S2

1 2

1 2

P1

P2

S1

T1 T2
S2

T1 @ S2 T2 @ S2

e P1.2 P2.2

cut [2, 2] [2, 2]

dependency [2, 2] [2, 2]

cut consistent? X X
satisfies B? X X
output cut? X X
wait for P1.3 P2.3

S2 sends T1 back to S1
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Optimizations

Optimizations - I

a b c

e f g

P1

P2

S1
T1

computing for b

S2
T2 computing for f

Send only if needed - ie. before sending your token to Sk , check if you
have token Tk containing the required information.
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Optimizations

Optimizations - II

Stall computations that would lead to duplicate computations

a b c

e f g

P1

P2

S1
T1

computing for b

S2
T2 computing for f

Allow only one computation to progress if there is a possibility of
duplicates (see paper for details)
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Comparison with Centralized Approach

Distributed vs Centralized

n: # of processes, |S |: # bits required to store state data
|E |: # of events in computation |Ei |: # of events on process Pi

Centralized Distributed

Work/Process O(n2|E |) O(n|E |)
Space/Process O(|E |.|S |) O(|Ei |.|S |)

O(n) savings in work per process
O(n) savings in storage space per process

For conjunctive predicates:
The optimized version has O(n) savings in message load per process
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Questions

Questions?

Thanks!
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Questions

Future Work

Even with optimizations, there can be degenerate cases with O(|E |)
messages on a single process

Is there a distributed algorithm that guarantees reduced messages (by
O(n)) per process?

Total work performed is still O(n|E |)

Is there a distributed algorithm that reduces this bound?
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