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Motivation & Problem Definition

Why Online Predicate Detection?

m Large Parallel Computations

m Non-terminating executions, e.g. server farms
m Debugging, Runtime validation
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Motivation & Problem Definition

Other Applications

m General predicate detection algorithms, such as Cooper-Marzullo
[1991]
m Perform abstraction with respect to simpler predicate
m Detect remaining conjunct in the abstracted structure
m Reduced complexity by using abstraction based detection
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Motivation & Problem Definition

Predicate Detection in Distributed Computations

Find all global states in a computation that satisfy a predicate
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Predicate (x1 * xo +x3 < 5) A (x1 > 1) A (x3 < 3): O(k3) steps

m O(k™) complexity for n processes, and k events per process

m Compute intensive for large computations
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Motivation & Problem Definition

Exploiting Predicate Structure Using Abstractions

Predicate (x1 * xo +x3 < 5)A (x1 > 1) A (x3 < 3)
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(a) Original Computation (b) Slice w.r.t.
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Motivation & Problem Definition

Paper Focus

m Offline and Online algorithms for abstracting computations for regular
predicates exist [Mittal et al. 01 & Sen et al. 03]

m This paper: Efficient distributed online algorithm to abstract a
computation with respect to regular predicates.
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Model

System Model

m Asynchronous message passing

m n reliable processes

m FIFO, loss-less channels

m Denote a distributed computation with (E, —)

m E: Set of all events in the computation
m —: happened-before relation [Lamport 78]
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

Formally:

Given a distributed computation (E, —), a subset of events C C E is a
consistent cut if C contains an event e only if it contains all events that
happened-before e.

ecCNf—e=fecC
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

i.e. if a message receipt event has happened, the corresponding message
send event must have happened.
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Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

For conciseness, we represent a consistent cut by its maximum elements
on each process.
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Use vector clocks for checking consistency /finding causual dependency
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Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

Set of all consistent cuts of a computation (E,—), forms a lattice under
the relation C. [Mattern 89]
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Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

P1
P>

Computation and its Lattice of Consistent Cuts
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy

the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy
the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy

the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates - Examples

m Local Predicates

m Conjunctive Predicates — conjunctions of local predicates

m Monotonic Channel Predicates

m All channels are empty/full
m There are at most m messages in transit from P; to P;
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates - Examples

m Local Predicates

m Conjunctive Predicates — conjunctions of local predicates

m Monotonic Channel Predicates

m All channels are empty/full
m There are at most m messages in transit from P; to P;

Not Regular: There are even number of messages in a channel
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

Predicate: “all channels are empty”

P1
P>
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Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

Predicate: “all channels are empty”
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Abstractions of Computations - Slicing

Why use Abstractions?

Goal: Find all global states that satisfy a given predicate.
Key Benefit of Abstraction

When B is regular: we can “get away” with only enumerating cuts that
satisfy B, and are not joins of other consistent cuts.

Due to Birkhoff's Representation Theorem for Lattices [Birkhoff 37]
Distributed Online Abstraction



Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.
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Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

Consistent Cuts

Satisfying B

Slice for B

start
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Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.
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Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

B: “all channels are empty”
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Abstractions of Computations - S

How do we do tha

Exploit Jg(e)

Himanshu (UT Austin) Distributed Online Abstraction



Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation
Jg(€e): The least consistent cut that satisfies B and contains e.
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Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

P>
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Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

Not in Slice

a
@ In Slice

P>

Himanshu (UT Austin) Distributed Online Abstraction



Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

Not in Slice

a
@ In Slice

P1

P>
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Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(€e): The least consistent cut that satisfies B and contains e

Cj Not in Slice
@ n Slice

P1

P>

Himanshu (UT Austin) Distributed Online Abstraction



Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.
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Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(€e): The least consistent cut that satisfies B and contains e

Cj Not in Slice
@ n Slice

P1

P>
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Abstractions of Computations - Slicing

Slice for Regular Predicates

For a computation (E,—), and regular predicate B

Slice for B is defined as:

Jg ={Jg(e) | e € E}
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Abstractions of Computations - Slicing

Bored with definitions?

m Enough with the definitions
m Enough with notation

m Just tell us the crux of it
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Abstractions of Computations - Slicing

Bored with definitions?

It comes down to a two line pseudo-code

foreach event e in computation:

find the least consistent cut that satisfies B
and includes e
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Slicing Algorithm

Centralized Online Slicing

m One process acts as the central slicer - CS

m Each process P; sends details (state/vector clock etc.) of relevant
events to CS

[Mittal et al. 07]
Slicer

P1O—
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Basic Algorithm

Challenges

m Simple decomposition of centralized algorithm into n independent
executions is inefficient

m Results in large number of redundant communications

m Multiple computations lead to identical results
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Basic Algorithm

Distributed Online Slicing

m Each process P; has an additional slicer thread S;

m P; sends details (state/vector clock etc.) of relevant events locally to
Si

5 @

P1O——
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P20——
0: 1
M

S, (o
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Basic Algorithm

Distributed Algorithm at S;

m Each slicer, S;, has a token, T;, that computes Jg(e) where e € E;

m Tokens are sent to other slicers to progress on Jg(e)

For each event make use of:

e~ f= JB(e) - JB(f)
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Basic Algorithm

B = "all channels are empty”

S @

Pl —o0O
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Distributed Algorithm at S;

T,0@5 | 7,05,
e Pl.l P2.1
cut [1,0] [0,1]
dependency [1,0] [0,1]
cut consistent? v v
satisfies B? v v
output cut? v v
wait for Py.2 P>.2
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Basic Algorithm

What happens in non-trivial cases?

B= "all channels are empty”

s @

B

P1—0
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Basic Algorithm

What happens in non-trivial cases?

B= "all channels are empty”

Suppose, Py just reported its 2" event to
S
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Basic Algorithm

What happens in

non-trivial cases?

B= "all channels are empty”

Suppose, Py just reported its 2" event to

S1
T,05
51 G e P;.2
p . cut [2,0]
' 1 & dependency [2,0]
p cut consistent? v
2 1 satisfies B? X
wait for P>.1
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Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for

m Which states to evaluate predicate on

51
Py :Zi:
1 2
P>
1 2
S,

“» wait for P.1
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Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for

m Which states to evaluate predicate on

51
Py j;i:
1 2
P>
1 2
S

“» wait for P.1

B would not be even evaluated on any state unless Sy is told about a
message ‘receipt’
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Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for
m Which states to evaluate predicate on

51
Py K
1 2
P>
1 2

52@

B would not be even evaluated on any state unless S; is told about a
message ‘receipt’
T1 would wait at Sy till P».2 is reported
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Basic Algorithm

P,.2 is reported to S,

After P,.2 is reported to S»

Himanshu (UT Austin)

T,@5, | T, @S5,
e P12 P22
cut [2,2] [2,2]
dependency [2,2] [2,2]
cut consistent? v v
satisfies B? v v
output cut? v v
wait for P1.3 P>.3

S, sends T7 back to S
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Optimizations

Optimizations - |

.—» computing for b
S
Z\ c
O O
f g
S2
» computing for f

Send only if needed - ie. before sending your token to S, check if you
have token Ty containing the required information.
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Optimizations

Optimizations - |

S
Py O Q O
a \b\}‘ c
P2 O A\ O
S f g

52 ‘e oy computing for b

»computing for f

Send only if needed - ie. before sending your token to S, check if you
have token Ty containing the required information.
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Optimizations
Optimizations - I

Stall computations that would lead to duplicate computations

—» computing for b
S
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» computing for f
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Optimizations
Optimizations - I

Stall computations that would lead to duplicate computations

—» computing for b
S
Z\ c
O O—
f g
S
» computing for f

Allow only one computation to progress if there is a possibility of
duplicates (see paper for details)
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Comparison with Centralized Approach

Distributed vs Centralized

n: # of processes, |S|: # bits required to store state data
|E|: # of events in computation |Ei|: # of events on process P;

Centralized | Distributed
Work/Process | O(n?|E|) O(n|E|)
Space/Process | O(|E|.|S|) | O(|Eil.|S|)

O(n) savings in work per process
O(n) savings in storage space per process

For conjunctive predicates:
The optimized version has O(n) savings in message load per process
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Questions

uestions?

Thanks!
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Questions

Even with optimizations, there can be degenerate cases with O(|E|)
messages on a single process

m Is there a distributed algorithm that guarantees reduced messages (by
O(n)) per process?

m Total work performed is still O(n|E|)

Is there a distributed algorithm that reduces this bound?
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