A Distributed Abstraction Algorithm for Online

Predicate Detection

Himanshu Chauhan ! Vijay K. Garg ! Aravind Natarajan 2
Neeraj Mittal 2

1Parallel & Distributed Systems Lab,
Department of Electrical & Computer Engineering
University of Texas at Austin

2Department of Computer Science,
University of Texas at Dallas

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Motivation & Problem Definition

Why Online Predicate Detection?

m Large Parallel Computations

m Non-terminating executions, e.g. server farms
m Debugging, Runtime validation

0 1
o—
0 1

Himanshu (UT Austin) Distributed Online Abstraction

Motivation & Problem Definition

Other Applications

m General predicate detection algorithms, such as Cooper-Marzullo
[1991]
m Perform abstraction with respect to simpler predicate
m Detect remaining conjunct in the abstracted structure
m Reduced complexity by using abstraction based detection

Himanshu (UT Austin) Distributed Online Abstraction 4/1

Motivation & Problem Definition

Predicate Detection in Distributed Computations

Find all global states in a computation that satisfy a predicate

w 12 -1 0
P o—O0—Q—0
a b d
x 0 3
P, 2
€ h
P3 O O—
u v ow X
Predicate (x1 * xo +x3 < 5) A (x1 > 1) A (x3 < 3): O(k3) steps

m O(k™) complexity for n processes, and k events per process

m Compute intensive for large computations

Himanshu (UT Austin) Distributed Online Abstraction

Motivation & Problem Definition

Exploiting Predicate Structure Using Abstractions

Predicate (x1 * xo +x3 < 5)A (x1 > 1) A (x3 < 3)

X1 0
Pl O~
d
X2 3
P>
e h a, e, fv u,v b
P3 O O~ w g
u v w X
(a) Original Computation (b) Slice w.r.t.

Ca>1)A (s <3)

Himanshu (UT Austin) Distributed Online Abstraction

Motivation & Problem Definition

Paper Focus

m Offline and Online algorithms for abstracting computations for regular
predicates exist [Mittal et al. 01 & Sen et al. 03]

m This paper: Efficient distributed online algorithm to abstract a
computation with respect to regular predicates.

Himanshu (UT Austin) Distributed Online Abstraction

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Model

System Model

m Asynchronous message passing

m n reliable processes

m FIFO, loss-less channels

m Denote a distributed computation with (E, —)

m E: Set of all events in the computation
m —: happened-before relation [Lamport 78]

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

Formally:

Given a distributed computation (E, —), a subset of events C C E is a
consistent cut if C contains an event e only if it contains all events that
happened-before e.

ecCNf—e=fecC

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

i.e. if a message receipt event has happened, the corresponding message
send event must have happened.

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Consistent Cuts

Consistent Cut: Possible global state of the system during its execution.

For conciseness, we represent a consistent cut by its maximum elements
on each process.

v

{a} v
P1 [b, e] v
a p c
P>
e f g [a,f] X

Use vector clocks for checking consistency /finding causual dependency

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

Set of all consistent cuts of a computation (E,—), forms a lattice under
the relation C. [Mattern 89]

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Lattice of Consistent Cuts

P1
P>

Computation and its Lattice of Consistent Cuts

Himanshu (UT Austin) Distributed Online Abstraction 11/1

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy

the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy
the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.

Py

(0}
-
o

Himanshu (UT Austin) Distributed Online Abstraction 12/1

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

A predicate is regular if for any two consistent cuts C and D that satisfy

the predicate, the consistent cuts given by (C U D) and (C N D) also
satisfy the predicate.

Py O “Q— C
a Z\, c

P> O ‘»u.. = O
e f g

{b,g} N{c,f} ={b,f},
{b.gtU{c,f} ={c g}

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates - Examples

m Local Predicates

m Conjunctive Predicates — conjunctions of local predicates

m Monotonic Channel Predicates

m All channels are empty/full
m There are at most m messages in transit from P; to P;

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates - Examples

m Local Predicates

m Conjunctive Predicates — conjunctions of local predicates

m Monotonic Channel Predicates

m All channels are empty/full
m There are at most m messages in transit from P; to P;

Not Regular: There are even number of messages in a channel

Himanshu (UT Austin) Distributed Online Abstraction

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

Predicate: “all channels are empty”

P1
P>

Himanshu (UT Austin) Distributed Online Abstraction 14 /1

Consistent Cuts and Lattices, Regular Predicates

Regular Predicates

Predicate: “all channels are empty”

P1
P>

Himanshu (UT Austin) Distributed Online Abstraction 14 /1

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

Why use Abstractions?

Goal: Find all global states that satisfy a given predicate.
Key Benefit of Abstraction

When B is regular: we can “get away” with only enumerating cuts that
satisfy B, and are not joins of other consistent cuts.

Due to Birkhoff's Representation Theorem for Lattices [Birkhoff 37]
Distributed Online Abstraction

Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

Himanshu (UT Austin) Distributed Online Abstraction 17 /1

Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

Consistent Cuts

Satisfying B

Slice for B

start

Himanshu (UT Austin) Distributed Online Abstraction 17 /1

Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

Himanshu (UT Austin) Distributed Online Abstraction 17 /1

Abstractions of Computations - Slicing

Abstractions for Regular Predicates

Slice: A subset of the set of all global states of a computation that
satisfies the predicate.

B: “all channels are empty”

Himanshu (UT Austin) Distributed Online Abstraction 17 /1

Abstractions of Computations - S

How do we do tha

Exploit Jg(e)

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation
Jg(€e): The least consistent cut that satisfies B and contains e.

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

P>

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

Not in Slice

a
@ In Slice

P>

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

Not in Slice

a
@ In Slice

P1

P>

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(€e): The least consistent cut that satisfies B and contains e

Cj Not in Slice
@ n Slice

P1

P>

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(e): The least consistent cut that satisfies B and contains e.

P1

P>

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

How do we do that?

Given a predicate B, and event e in a computation

Jg(€e): The least consistent cut that satisfies B and contains e

Cj Not in Slice
@ n Slice

P1

P>

Himanshu (UT Austin)

Distributed Online Abstraction

Abstractions of Computations - Slicing

Slice for Regular Predicates

For a computation (E,—), and regular predicate B

Slice for B is defined as:

Jg ={Jg(e) | e € E}

Himanshu (UT Austin) Distributed Online Abstraction 19/1

Abstractions of Computations - Slicing

Bored with definitions?

m Enough with the definitions
m Enough with notation

m Just tell us the crux of it

Himanshu (UT Austin) Distributed Online Abstraction

Abstractions of Computations - Slicing

Bored with definitions?

It comes down to a two line pseudo-code

foreach event e in computation:

find the least consistent cut that satisfies B
and includes e

Himanshu (UT Austin) Distributed Online Abstraction

Slicing Algorithm

Centralized Online Slicing

m One process acts as the central slicer - CS

m Each process P; sends details (state/vector clock etc.) of relevant
events to CS

[Mittal et al. 07]
Slicer

P1O—

Pz%j;’

Himanshu (UT Austin) Distributed Online Abstraction

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Basic Algorithm

Challenges

m Simple decomposition of centralized algorithm into n independent
executions is inefficient

m Results in large number of redundant communications

m Multiple computations lead to identical results

Himanshu (UT Austin) Distributed Online Abstraction

Basic Algorithm

Distributed Online Slicing

m Each process P; has an additional slicer thread S;

m P; sends details (state/vector clock etc.) of relevant events locally to
Si

5 @

P1O——
0 1

P20——
0: 1
M

S, (o

Himanshu (UT Austin) Distributed Online Abstraction

Basic Algorithm

Distributed Algorithm at S;

m Each slicer, S;, has a token, T;, that computes Jg(e) where e € E;

m Tokens are sent to other slicers to progress on Jg(e)

For each event make use of:

e~ f= JB(e) - JB(f)

Himanshu (UT Austin) Distributed Online Abstraction 25 /1

Basic Algorithm

B = "all channels are empty”

S @

Pl —o0O

Himanshu (UT Austin)

Distributed Algorithm at S;

T,0@5 | 7,05,
e Pl.l P2.1
cut [1,0] [0,1]
dependency [1,0] [0,1]
cut consistent? v v
satisfies B? v v
output cut? v v
wait for Py.2 P>.2

Distributed Online Abstraction

Basic Algorithm

What happens in non-trivial cases?

B= "all channels are empty”

s @

B

P1—0

Himanshu (UT Austin) Distributed Online Abstraction

26 /

1

Basic Algorithm

What happens in non-trivial cases?

B= "all channels are empty”

Suppose, Py just reported its 2" event to
S

Himanshu (UT Austin) Distributed Online Abstraction 26 /1

Basic Algorithm

What happens in

non-trivial cases?

B= "all channels are empty”

Suppose, Py just reported its 2" event to

S1
T,05
51 G e P;.2
p . cut [2,0]
' 1 & dependency [2,0]
p cut consistent? v
2 1 satisfies B? X
wait for P>.1

Himanshu (UT Austin)

send T; to S

Distributed Online Abstraction

Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for

m Which states to evaluate predicate on

51
Py :Zi:
1 2
P>
1 2
S,

“» wait for P.1

Himanshu (UT Austin) Distributed Online Abstraction

Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for

m Which states to evaluate predicate on

51
Py j;i:
1 2
P>
1 2
S

“» wait for P.1

B would not be even evaluated on any state unless Sy is told about a
message ‘receipt’

Himanshu (UT Austin) Distributed Online Abstraction 27 /1

Basic Algorithm

S, receives T;

Regular predicate structure
m Exact knowledge of which event to wait for
m Which states to evaluate predicate on

51
Py K
1 2
P>
1 2

52@

B would not be even evaluated on any state unless S; is told about a
message ‘receipt’
T1 would wait at Sy till P».2 is reported

Distributed Online Abstraction

Basic Algorithm

P,.2 is reported to S,

After P,.2 is reported to S»

Himanshu (UT Austin)

T,@5, | T, @S5,
e P12 P22
cut [2,2] [2,2]
dependency [2,2] [2,2]
cut consistent? v v
satisfies B? v v
output cut? v v
wait for P1.3 P>.3

S, sends T7 back to S

Distributed Online Abstraction

Optimizations

Optimizations - |

.—» computing for b
S
Z\ c
O O
f g
S2
» computing for f

Send only if needed - ie. before sending your token to S, check if you
have token Ty containing the required information.

Py

L O

P>

® O

Himanshu (UT Austin) Distributed Online Abstraction 29 /1

Optimizations

Optimizations - |

S
Py O Q O
a \b\}‘ c
P2 O A\ O
S f g

52 ‘e oy computing for b

»computing for f

Send only if needed - ie. before sending your token to S, check if you
have token Ty containing the required information.

Himanshu (UT Austin) Distributed Online Abstraction 29 /1

Optimizations
Optimizations - I

Stall computations that would lead to duplicate computations

—» computing for b
S
Z\ c
O O—
f g
S
» computing for f

Py

L O

P>

o O

Himanshu (UT Austin) Distributed Online Abstraction

Optimizations
Optimizations - I

Stall computations that would lead to duplicate computations

—» computing for b
S
Z\ c
O O—
f g
S
» computing for f

Allow only one computation to progress if there is a possibility of
duplicates (see paper for details)

Py

L O

P>

o O

Himanshu (UT Austin) Distributed Online Abstraction

Outline

Himanshu (UT Austin) Distributed Online Abstraction

Comparison with Centralized Approach

Distributed vs Centralized

n: # of processes, |S|: # bits required to store state data
|E|: # of events in computation |Ei|: # of events on process P;

Centralized | Distributed
Work/Process | O(n?|E|) O(n|E|)
Space/Process | O(|E|.|S|) | O(|Eil.|S|)

O(n) savings in work per process
O(n) savings in storage space per process

For conjunctive predicates:
The optimized version has O(n) savings in message load per process

Himanshu (UT Austin) Distributed Online Abstraction 32/1

Questions

uestions?

Thanks!

Himanshu (UT Austin) Distributed Online Abstraction

Questions

Even with optimizations, there can be degenerate cases with O(|E|)
messages on a single process

m Is there a distributed algorithm that guarantees reduced messages (by
O(n)) per process?

m Total work performed is still O(n|E|)

Is there a distributed algorithm that reduces this bound?

Himanshu (UT Austin) Distributed Online Abstraction 34 /1

	0.0:
	0.1:
	0.2:
	0.3:
	0.4:
	0.5:
	0.6:
	0.7:
	0.8:
	0.9:
	anm0:
	1.0:
	1.1:
	1.2:
	1.3:
	1.4:
	1.5:
	1.6:
	1.7:
	1.8:
	1.9:
	anm1:
	2.0:
	2.1:
	2.2:
	2.3:
	2.4:
	2.5:
	2.6:
	2.7:
	2.8:
	2.9:
	anm2:
	3.0:
	3.1:
	anm3:
	4.0:
	4.1:
	4.2:
	anm4:

