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Abstract

In the recovery of failed processes in a distributed pro-
gram, causal logging schemes offer several benefits. These
benefitsincludeno rollback of unfailed processes and simple
approaches to output commit. Unfortunately, previous ap-
proaches to the recovery of multiple simultaneous failures
require that the distributed execution be blocked or that re-
covering processes coordinate. The latter requires assump-
tions which are not satisfatory. In this paper we present a
solution that has neither of these drawbacks.

Message logging is an important technique for recover-
ing from failures in distributed programs. This technique
logsthe order in which messages arereceived. By assuming
that receive ordering isthe only source of non-determinism,
execution is recoverable using this ordering. Pessimistic
message logging[4, 11] forcesaprocessto wait before send-
ing any message while the message log is written to stable
storage. Optimisticlogging methods[9, 12, 13, 15] (and the
similar sender based logging[8, 14]) assumefailuresarerare
and therefore allow ordering informationto be lost in afail -
ure. (That is, a message is logged in the background while
execution proceeds). Conseguently, received messages and
any sendsthat depend onthem may not berecoverable. This
may then require that unfailed processes roll back their ex-
ecution as well. Causa message logging sends message
receive ordering information with each message. This in-
formation includes receives and their causa history since
the last send. The Manetho approach [6] uses this method.
In family-based message logging (FBL) [2] causal history
information for only K processes isincluded. This method
then tolerates K simultaneous failures rather than al pro-
cesses in the system (as with Manetho and the other logging
methods.)

The causal message |ogging approach offers advantages
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over the other message |ogging schemes. It allowsprocesses
to execute without blocking (like optimistic logging) and
never forces unfailed processes to roll back their execution
(like pessimistic logging).

Unfortunately, causal message logging suffersfrom com-
plications associated with recovery not present in the other
logging methods. One particular difficulty occurs when
multiple processes fail smultaneoudly [7]. Solutions have
been presented which require blocking unfailed processes
or coordinating between recovering processes. Neither of
these solutions is satisfactory. In this paper we present a
solution without either of these drawbacks. We notethat in-
dependently Alvisi, Rao, and Vin have al so developed an al-
gorithm for non-blocking recovery [3].

1. Modd

Let P; represent process : and s and ¢ be execution states
onaprocess. Let G represent aglobal state such that &' con-
sistsof onestate from every processin the computation. Let
Gi] represent the state of P; on G. When we speak of pro-
Ccess recovery we mean that a process has been restored to
a dtate in its execution that occurred before afailure. Exe-
cution at the process then proceeds from this state. We as-
sume that a process isnever permanently disabled such that
it never again responds to messages. We also assume that
processes do not fail an infinite number of times. Let afail-
ure state be the crash of a process. Let a restored state be
the state from before a failure which is restored upon re-
covery. Let arecovery state be the state foll owing recovery
in which the restored state is restarted. Figure 1 illustrates
theseterms. Let s < ¢ if

1. s occurred before ¢ on some P; and

2. there does not exist afailure k such that s is after the
kth restored state and ¢ is after the kth recovery state.

Inthefigure, s A ¢, butu < s andu < ¢.
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Let s < ¢ mean s < t or s equalst. Let the jth incarna-
tion be the set of states, 5, such that Vs € S : ith recovery
state < s < (¢ + 1)th recovery state. Let al states s such
that, Vi : ith restored state < s < ith failure state, berolled
back states. In figure 1, s isarolled back state. Let arun
consist of all states which are not rolled back. Finaly, let
s — t (the happens-before relation for states) be the smal-
lest relation satisfying:

1 s<t,
2. sisthesend state of amessage and ¢ isitsreceive state,
s> uAu—t.

Messages may fail and channels are unordered. When a
process failure occurs, it may be restored by restarting at a
previous state. If astate s isnot restored to the run, astate ¢
isrestoredtotherun,and s — ¢, thent isanorphanstate. To
restore the distributed computation without orphan states, if
areceivestateisintherun, then the corresponding send state
must aso beintherun. Let S bethe set of states, then this
property can be given as.

Vs,t€S:tErUNAs —t=se€run
2. Recovering after failures

When a process fails in causal message logging a-
gorithms, to recover it must recreate itsmessage log (that i s,
the message receive ordering). The information necessary
to encapsulate the ordering of messages is called determin-
ants[1, 2]. Wewill use this concept here.

A recovery algorithm for causal message logging must
ensure that messages from recovering processes do not cre-
ateorphan states. Figure2illustrateshow thismight happen
when recovering asingleprocess. Inthefigure, P, uponre-
start, requests adl determinantsfrom Ps. P, replieswithits
determinant set. However, it does so before receiving mes-
sage m’, so that the information sent to P; does not include
the ordering information for m. If P then receives m’ it
may create an orphan state because the receive of m’ will
bein therun but the receive of m (and therefore the send of
m’) may not.

The solution is for P; to include, in al messages, the
number of the incarnation from which a message is sent.
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When recovery information is requested, P; indicates that
it is entering a new incarnation, and any messages sub-
sequently received from earlier incarnations are discarded.
In thefigure, P, would know to discard m’.

The solution for single failures does not keep orphan
states from being created when there are multiple failures.
Figure 3 demonstrates this. In this example, first presented
in[7], P, falsaswell. Here, even though P, hasindicated
its new incarnation number, P; may till create an orphan
state because m'’ only includes the incarnation number for
Ps, but notfor P;. Ps, not knowing of P,'sfailure, receives
m'’ and creates an orphan state.
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Whileit may seem that the solutionisto have m’ include
the incarnation of P, as well as P, there is a less costly
solution, which we will present in the next section. First,
however, we will discuss previous solutions.

Alvid, [1], and Johnson and Zwaenepod [9] avoid this
problem using the following idea: processes that respond
with determinant information are required to first writethis
information to stable storage. These processes must then
also block the receive of any messages until after a spe-
ciad message has been received from the recovering pro-
cess indicating recovery iscomplete. This completion mes-
sage lists the determinants received and used for recovery.
The blocking process then knowswhich messages can bere-
ceived and which must be discarded. Figure 4 shows this
scenario. Inthefigure, Ps writesitsrecovery reply inform-
ation to stable storage before replying. It then blocksthere-
ceiveof m/’ until therecovery complete message isreceived
from P;. When this message is received, m is not part of
P;’sexecution, and so m’’ is discarded since it depends on
m. Thedrawbacksareclear: thisapproach delaysexecution
of the entire computation; every process must block while
writingto stable storageand thenwhilewaiting for thefail ed
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Another solution was presented by Elnozahy [7]. Inthis
solution, a process must determine when a failure occurred
relative to dl others. Therefore, it numbers its failure as
the ordth failure in the system. For al processes that are
recovering, the process with the lowest ord becomes the
leader. The leader then requests the incarnation number
from @l recovering processes. From these it creates an in-
carnation vector and sendsit to all live processes. The live
processes use the vector to discard messages that origin-
ated from earlier incarnations. The live processes respond
by sending al determinant information to the leader. The
leader then forwards this to al recovering processes. This
isshownin Figure5. If afalureof alive process occurs be-
fore sending a response with determinant information, the
leader starts over. |If the leader fails, the next process be-
comes leader. Figure 6 shows this.
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There are several problems with thisapproach:

o It requires knowledge of recovering processes. This
knowledge would have to be manifested as a broad-
cast message from aprocessthat beginsto recover. The
broadcast wouldindicatethat itispart of therecovering
et

o It requires knowledge of failure order.

Sincerecovery detectionand ordering are not free, messages
must be exchanged to perform these tasks. Suppose a pro-
cess, upon recovering, performsrecovery detection by send-
ing “need to recover” messages. |n response, al processes
acknowledge with a message that indicateswhether they are
recovering or not. If two processes fail simultaneously, they
must also agree as to the order of ther failure. Figure 7
shows what the recovery might be with this approach.
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3. Our solution

For handling single failures, we employ the same tech-
niqgue asin[1, 7, 9]. That is, we require processes to in-
clude their incarnation number with every message sent.
Thesinglefailurecase al so requiresthat every processmain-
tain the greatest incarnation number known for every other
process. We call thistheincarnationvector. Weusef (afail-
urecount) in our algorithmto represent thisvector and s.fto
represent the value of f at state s.

For handling multiplefailures (the scenario in figure 3),
we require that a recovering process accept determinant in-
formation from a process only when that process's incarn-
ation vector is greater than or equal to itsown. Aswe will
show later, thisrequirement allows usto satisfy the property
of “no orphan states.”

Figure 8 gives our agorithm which implements our re-
quirements for handling single and multiple failures. We
briefly describeit here. Inthealgorithm, f,,, isanincarnation
vector received in a message and recovering is a boolean
variable. When a failure occurs, the recovering process
reads, increments and then writes its incarnation number to
stable storage as in the other approaches. Then it sends its
incarnation number to all processes as a recovery request
message (R1). Upon receipt of arecovery request message
a process updates its incarnation vector. The process then
sends its incarnation vector with determinant information
to the recovering process (R2). The recovering process re-
ceives these recovery reply messages, and if dl incarnation
vectors agree, the recovering process is done (R4 and R5).
However, if areply message isreceived with an incarnation
entry that islessthan that held by therecovering process, the
reply isdiscarded and anew request is made which includes



(R1) upon restart after failure do
read f from stable storage;
increment f[k] and write it to stable storage;
recovering = TRUE;
send f[K] with recover request to all processes;
(R2) upon receiving recover request from P; do
for all {: f[{] = max(f[{].f,,[{]);
send f and determinants to P; as recovery reply;
(R3) upon receiving recovery reply from P; do
if (AL :f,.[1] < f[{]) then
send f with recover request to P;;
[* discard recovery reply. */
else if (31 :f,,[1] > f[{]) then
f="fn;
send f with recover request to all
processes that have already replied;
(R4) else
update determinant information
(R5) if determinant information updated from
all processes then
recreate messages;
recovering = FALSE;
write f to stable storage;

Py

thelatest incarnation vector. If areplyisreceived withan in-
carnation entry greater than what has already been received,
thereply is accepted and a new request is sent to all earlier
received replies (R3).

Figure 9 shows how the receipt of m" (from figure 3is
avoided. Inthefigure, suppose both P; and P, haveincarn-
ation numbers of 2 when they start recovery. At s P; would
believe P5’sincarnation number to be lessthan 2. When P;
receives Ps'srecovery reply at ¢, it immediately requests a
new recovery reply because P; discovered P,'sfailureét u.
Figure 10 demonstrates that the repeated failure of one pro-
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cess does not necessarily affect the recovery of another pro-
cess. Inthisfigure, P, recovers despite P;’sfailure.
In Elnozahy’s approach any failure during recovery &f-
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fects al processes trying to recover. Therefore, our ap-
proach has the following benefits:

o Knowledge of concurrent failures discovered automat-
icaly.

o Noorderingof failuresisrequired, all areindependent.

The basic idea behind our approach and that of Elnozahy
isthat all processes that respond with determinant inform-
ation must do so with knowledge of which incarnation the
other repliesare coming from. We observethat these replies
must create agloba state for which every local state has the
same incarnation information. We cdll thisglobal stateare-
covery reply state. Thisstate need not be consistent (that is,
receive states may precede the recovery reply state, without
their corresponding send states doing the same [5]). Wewill
provetheexistence of such astatefor all failureswhen prov-
ing correctness.

Definition 3.1 Therecovery reply state (RRS) for failure
x at P, istheleast global state, (¢, across all processes such
that:

1. Therecovery state (for failurez) < G[k]
2. Therecovering variableat [k] equals TRUE
3. For all i: G[7].f= Gk].f= fat(R5) for P.

An RRSacts as abarrier to messages sent beforeearlier fail-
ures. No message sent before an RRS with an incarnation
number less than f for the RRS will be delivered after the
RRS. Our recovery agorithm ensures that recovery reply
messages are d| received withthe sameview of incarnations
(that is, that an RRS s created).

Wewill show inthenext section that ensuring an RRSex-
istsfor every recovery, maintainsthe property of “no orphan
states.” Figure 11, athough complex, gives an example of
thecreation of an RRSfor afailureat P; whenit occurs near
in timeto another failure. The recovery replies received at
1,1, and iv are invalid (and in fact the reply at 7v isrgec-
ted) since P; has also failed and increments its incarnation
number so that it doesn’t match those of the previousreplies.
(This reply from P isreceived at i) Therefore, P, up-
dates f and requests determinants from P, and P, again and
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from P5 when itsreply is later received at jv. P; receives
the second repliesat v, vi, vii. P alsoreachesR5inour al-
gorithm at vi:. The solid line across the computation in the
figure therefore represents the recovery reply statefor P;’'s
failure.

4. Correctness

We now demonstrate that our algorithm maintains the
property of “no orphan states.” We assume that given de-
terminant information, a process can recreate and replay
messages. This can be done by requesting that processes re-
send messages. It is not too difficult to show that thisisd-
ways possible (see[1]).

Wefirst show that for every failure arecovery reply state
exists.

Lemmad4.l For every failure z, there exists a recovery
reply state (RRS).

Proof: Let  beafalureon P,. When P, fails we assume
that itisrestarted. Let G be the set of global states that sat-
isfy conditions 1,2, and 3 of the definition of RRS (Defini-
tion 3.1). We provefirst that G is not empty and second that
there exists aleast globd statein G.

G isnot empty: Upon restarting following failure =, Py
executes lines R1. The state, s, a which P, completes R1
satisfies conditions 1 and 2. That is, itsrecovery state < s
and recovering = TRUE a s. Also, f has been updated and
sent to al processes in P;'s group. P, will eventually re-
ceive arecovery reply message (it can rerequest areply in
case it believes another process hasfailed or that a message
was logt). If no other failures have occurred, al repliesre-
ceived will contain an incarnation vector equivalent to s.f,
and Vi # k: G[i] isthe state following the receive of the
recovery request. If other failures have occurred f received
by P, will not equd s.f. By lines R3, P, updatesitsfand
resends recover request messages until al recovery reply

messages received contain an f equal to its own. Since we
assume that processes aways eventualy respond, and that
every process failsafinite number of times, P, will eventu-
aly gather al repliesnecessary. If thefinal recovery request
messageissent at s”, by previousassumptionsall processes
will eventually have astateat whichf=s" f. Let ¢t bethefirst
stateinwhichfat P, = s’ .f. Now sinces < ¢, conditionlis
satisfied for G[k] = ¢. Condition 2 is satisfied becauset will
precede the state at which thefinal correct reply isreceived.
For every other process i, G[i] isthefirst statefor which f =
s’ .f, which satisfies condition 3. Thereforethereisa G that
satisfies conditions 1, 2, and 3.

Thereisan earliest G: We know that the earliest value
agreed toist.f (P, stopssending recovery request messages
when al replies equal itsown f by linesR3.) We know that
thereisa G inwhich Vi # k: G[i].f =¢.f. Since there must
be an earliest state at every P; which setsf = ¢.f, let (G[7] be
thisstate. Therefore, thereisan earliest G. O

We will show in the next lemma that messages such as
m' inFigure 11 (for which thereisafailurethat followsthe
send on the same process and precedes the recovery reply
state) will not be delivered after the recovery reply state.

Lemma4.2 Nomessagewill bereceived followinga recov-
ery reply state, RRS, if there has been an intervening failure
between its send and the RRS.

Proof: Let m.send and m.receive represent the send and
receive states for a message m. We can state the lemma as
follows:
Vm sent from P; to Py, wherem is an application message:
(Fz : = =falurestate: m.send < < RRS[j]) =
(RRS[k] 4 m.receive).
Note first that if 3z :
RRS[j] then

x =failure state: m.send < = <

m.send f[j] < RRS[j].fj]. (7)
Thisisbecause when P; recovers fter z, it performs R1 be-
foreanything else. Therefore, any state after « will havef[;]
greater than f[;] from any stete before x.

From definition of RRS,

VI, RRS[I]f= RRS[i]f. (i)

(i) and (ii) imply m.send.f[j] < RRS[k].f[j]. Because
of this, m will not be received for any state which follows
RRS[k]. O

Now we can show that our agorithm does not alow
orphan states.

Theorem 4.3 The recovery algorithm of figure 8 does not
create orphan states.

Proof: We must show that:

Vs,t:sgrun=+<¢tgrunvs At



Equivaently, if asend stateisnot inarun, then neither isthe
corresponding receive stete.

A send gtate, s, isnotinarunif afailure occursfollowing
s and all determinants for receives which precede s are not
recovered in some subsequent recovery. That is, s isnot part
of therunif s < failure state » and the determinantsat s are
not part of some recovery which follows .

Let s’s corresponding receive state, bet. Let y be afail-
ure state whose recovery reply state (RR.S,) follows z (x
may equal y). If s isnotintherun, then

Ykt £ RRS,[K] (x).

That is, + must follow some recovery so that the determin-
ants a s are not part of that recovery. (There are other re-
quirements as well, however, we don’'t need these for our
proof).

If (*) holds then recovery of y may not contain the de-
terminants necessary to recreate s. That is, (*) means that
Jdj : s < = < RRS,[j]. To prove our theorem we must
showthat ¢ isnotintherun. SinceVk : ¢t £ RRS,[k] and by
the previouslemma, ¢ will not bereceived following RR.S,,
(because 3j : s < & < RR.S,[j]), t isnot part of therun. O

5. Conclusions

We have presented an approach for recovery in causa
message |ogging which does not require unfailed processes
to block or require specid coordination among recovering
Processes.
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