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Abstract

In the recovery of failed processes in a distributed pro-
gram, causal logging schemes offer several benefits. These
benefits include no rollback of unfailedprocesses and simple
approaches to output commit. Unfortunately, previous ap-
proaches to the recovery of multiple simultaneous failures
require that the distributed execution be blocked or that re-
covering processes coordinate. The latter requires assump-
tions which are not satisfatory. In this paper we present a
solution that has neither of these drawbacks.

Message logging is an important technique for recover-
ing from failures in distributed programs. This technique
logs the order in which messages are received. By assuming
that receive ordering is the only source of non-determinism,
execution is recoverable using this ordering. Pessimistic
message logging [4, 11] forces a process to wait before send-
ing any message while the message log is written to stable
storage. Optimistic logging methods [9, 12, 13, 15] (and the
similar sender based logging [8, 14]) assume failures are rare
and therefore allow ordering information to be lost in a fail-
ure. (That is, a message is logged in the background while
execution proceeds). Consequently, received messages and
any sends that depend on them may not be recoverable. This
may then require that unfailed processes roll back their ex-
ecution as well. Causal message logging sends message
receive ordering information with each message. This in-
formation includes receives and their causal history since
the last send. The Manetho approach [6] uses this method.
In family-based message logging (FBL) [2] causal history
information for only K processes is included. This method
then tolerates K simultaneous failures rather than all pro-
cesses in the system (as with Manetho and the other logging
methods.)
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over the other message loggingschemes. It allows processes
to execute without blocking (like optimistic logging) and
never forces unfailed processes to roll back their execution
(like pessimistic logging).

Unfortunately, causal message loggingsuffers from com-
plications associated with recovery not present in the other
logging methods. One particular difficulty occurs when
multiple processes fail simultaneously [7]. Solutions have
been presented which require blocking unfailed processes
or coordinating between recovering processes. Neither of
these solutions is satisfactory. In this paper we present a
solution without either of these drawbacks. We note that in-
dependently Alvisi, Rao, and Vin have also developed an al-
gorithm for non-blocking recovery [3].

1. Model

Let Pi represent process i and s and t be execution states
on a process. Let G represent a global state such that G con-
sists of one state from every process in the computation. LetG[i] represent the state of Pi on G. When we speak of pro-
cess recovery we mean that a process has been restored to
a state in its execution that occurred before a failure. Exe-
cution at the process then proceeds from this state. We as-
sume that a process is never permanently disabled such that
it never again responds to messages. We also assume that
processes do not fail an infinite number of times. Let a fail-
ure state be the crash of a process. Let a restored state be
the state from before a failure which is restored upon re-
covery. Let a recovery state be the state following recovery
in which the restored state is restarted. Figure 1 illustrates
these terms. Let s � t if

1. s occurred before t on some Pi and

2. there does not exist a failure k such that s is after thekth restored state and t is after the kth recovery state.

In the figure, s 6� t, but u � s and u � t.
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Let s � t mean s � t or s equals t. Let the ith incarna-

tion be the set of states, S, such that 8s 2 S : ith recovery
state � s � (i + 1)th recovery state. Let all states s such
that, 8i : ith restored state � s � ith failure state, be rolled
back states. In figure 1, s is a rolled back state. Let a run
consist of all states which are not rolled back. Finally, lets ! t (the happens-before relation for states) be the smal-
lest relation satisfying:

1. s � t,
2. s is the send state of a message and t is its receive state,

3. s! u ^ u! t.
Messages may fail and channels are unordered. When a

process failure occurs, it may be restored by restarting at a
previous state. If a state s is not restored to the run, a state t
is restored to the run, and s! t, then t is an orphan state. To
restore the distributed computation without orphan states, if
a receive state is in the run, then the corresponding send state
must also be in the run. Let S be the set of states, then this
property can be given as:8s; t 2 S : t 2 run ^ s! t) s 2 run

2. Recovering after failures

When a process fails in causal message logging al-
gorithms, to recover it must recreate its message log (that is,
the message receive ordering). The information necessary
to encapsulate the ordering of messages is called determin-
ants [1, 2]. We will use this concept here.

A recovery algorithm for causal message logging must
ensure that messages from recovering processes do not cre-
ate orphan states. Figure 2 illustrates how this might happen
when recovering a single process. In the figure, P1, upon re-
start, requests all determinants from P2. P2 replies with its
determinant set. However, it does so before receiving mes-
sage m0, so that the information sent to P1 does not include
the ordering information for m. If P2 then receives m0 it
may create an orphan state because the receive of m0 will
be in the run but the receive of m (and therefore the send ofm0) may not.

The solution is for P1 to include, in all messages, the
number of the incarnation from which a message is sent.
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When recovery information is requested, P1 indicates that
it is entering a new incarnation, and any messages sub-
sequently received from earlier incarnations are discarded.
In the figure, P2 would know to discard m0.

The solution for single failures does not keep orphan
states from being created when there are multiple failures.
Figure 3 demonstrates this. In this example, first presented
in [7], P2 fails as well. Here, even though P1 has indicated
its new incarnation number, P3 may still create an orphan
state because m00 only includes the incarnation number forP2, but not for P1. P3, not knowing of P2’s failure, receivesm00 and creates an orphan state.
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While it may seem that the solution is to havem00 include
the incarnation of P1 as well as P2, there is a less costly
solution, which we will present in the next section. First,
however, we will discuss previous solutions.

Alvisi, [1], and Johnson and Zwaenepoel [9] avoid this
problem using the following idea: processes that respond
with determinant information are required to first write this
information to stable storage. These processes must then
also block the receive of any messages until after a spe-
cial message has been received from the recovering pro-
cess indicating recovery is complete. This completion mes-
sage lists the determinants received and used for recovery.
The blocking process then knows which messages can be re-
ceived and which must be discarded. Figure 4 shows this
scenario. In the figure, P3 writes its recovery reply inform-
ation to stable storage before replying. It then blocks the re-
ceive ofm00 until the recovery complete message is received
from P1. When this message is received, m is not part ofP1’s execution, and so m00 is discarded since it depends onm. The drawbacks are clear: this approach delays execution
of the entire computation; every process must block while
writing to stable storage and then while waiting for the failed



process to recover.
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Another solution was presented by Elnozahy [7]. In this
solution, a process must determine when a failure occurred
relative to all others. Therefore, it numbers its failure as
the ordth failure in the system. For all processes that are
recovering, the process with the lowest ord becomes the
leader. The leader then requests the incarnation number
from all recovering processes. From these it creates an in-
carnation vector and sends it to all live processes. The live
processes use the vector to discard messages that origin-
ated from earlier incarnations. The live processes respond
by sending all determinant information to the leader. The
leader then forwards this to all recovering processes. This
is shown in Figure 5. If a failure of a live process occurs be-
fore sending a response with determinant information, the
leader starts over. If the leader fails, the next process be-
comes leader. Figure 6 shows this.
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There are several problems with this approach:� It requires knowledge of recovering processes. This
knowledge would have to be manifested as a broad-
cast message from a process that begins to recover. The
broadcast would indicate that it is part of the recovering
set.� It requires knowledge of failure order.

Since recovery detection and orderingare not free, messages
must be exchanged to perform these tasks. Suppose a pro-
cess, upon recovering, performs recovery detection by send-
ing “need to recover” messages. In response, all processes
acknowledge with a message that indicates whether they are
recovering or not. If two processes fail simultaneously, they
must also agree as to the order of their failure. Figure 7
shows what the recovery might be with this approach.
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3. Our solution

For handling single failures, we employ the same tech-
nique as in [1, 7, 9]. That is, we require processes to in-
clude their incarnation number with every message sent.
The single failure case also requires that every process main-
tain the greatest incarnation number known for every other
process. We call this the incarnationvector. We use f (a fail-
ure count) in our algorithm to represent this vector and s:f to
represent the value of f at state s.

For handling multiple failures (the scenario in figure 3),
we require that a recovering process accept determinant in-
formation from a process only when that process’s incarn-
ation vector is greater than or equal to its own. As we will
show later, this requirement allows us to satisfy the property
of “no orphan states.”

Figure 8 gives our algorithm which implements our re-
quirements for handling single and multiple failures. We
briefly describe it here. In the algorithm, fm is an incarnation
vector received in a message and recovering is a boolean
variable. When a failure occurs, the recovering process
reads, increments and then writes its incarnation number to
stable storage as in the other approaches. Then it sends its
incarnation number to all processes as a recovery request
message (R1). Upon receipt of a recovery request message
a process updates its incarnation vector. The process then
sends its incarnation vector with determinant information
to the recovering process (R2). The recovering process re-
ceives these recovery reply messages, and if all incarnation
vectors agree, the recovering process is done (R4 and R5).
However, if a reply message is received with an incarnation
entry that is less than that held by the recovering process, the
reply is discarded and a new request is made which includes



(R1) upon restart after failure do
read f from stable storage;
increment f[k] and write it to stable storage;
recovering = TRUE;
send f[k] with recover request to all processes;

(R2) upon receiving recover request from Pj do
for all l: f[l] = max(f[l],fm[l]);
send f and determinants to Pj as recovery reply;

(R3) upon receiving recovery reply from Pj do
if (9l :fm[l] < f[l]) then

send f with recover request to Pj;
/* discard recovery reply. */

else if (9l :fm[l] > f[l]) then
f = fm;
send f with recover request to all

processes that have already replied;
(R4) else

update determinant information
(R5) if determinant information updated from

all processes then
recreate messages;
recovering = FALSE;
write f to stable storage;Pk

the latest incarnation vector. If a reply is received with an in-
carnation entry greater than what has already been received,
the reply is accepted and a new request is sent to all earlier
received replies (R3).

Figure 9 shows how the receipt of m00 (from figure 3 is
avoided. In the figure, suppose both P1 and P2 have incarn-
ation numbers of 2 when they start recovery. At s P3 would
believe P2’s incarnation number to be less than 2. When P1
receives P3’s recovery reply at t, it immediately requests a
new recovery reply because P1 discovered P2’s failure at u.
Figure 10 demonstrates that the repeated failure of one pro-
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cess does not necessarily affect the recovery of another pro-
cess. In this figure, P2 recovers despite P1’s failure.

In Elnozahy’s approach any failure during recovery af-
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fects all processes trying to recover. Therefore, our ap-
proach has the following benefits:� Knowledge of concurrent failures discovered automat-

ically.� No ordering of failures is required, all are independent.

The basic idea behind our approach and that of Elnozahy
is that all processes that respond with determinant inform-
ation must do so with knowledge of which incarnation the
other replies are coming from. We observe that these replies
must create a global state for which every local state has the
same incarnation information. We call this global state a re-
covery reply state. This state need not be consistent (that is,
receive states may precede the recovery reply state, without
their corresponding send states doing the same [5]). We will
prove the existence of such a state for all failures when prov-
ing correctness.

Definition 3.1 The recovery reply state (RRS) for failurex atPk is the least global state,G, across all processes such
that:

1. The recovery state (for failure x) � G[k]
2. The recovering variable at G[k] equals TRUE

3. For all i: G[i].f = G[k].f = f at (R5) for Pk.

An RRS acts as a barrier to messages sent before earlier fail-
ures. No message sent before an RRS with an incarnation
number less than f for the RRS will be delivered after the
RRS. Our recovery algorithm ensures that recovery reply
messages are all received with the same view of incarnations
(that is, that an RRS is created).

We will show in the next section that ensuring an RRS ex-
ists for every recovery, maintains the property of “no orphan
states.” Figure 11, although complex, gives an example of
the creation of an RRS for a failure at P1 when it occurs near
in time to another failure. The recovery replies received ati; ii, and iv are invalid (and in fact the reply at iv is rejec-
ted) since P3 has also failed and increments its incarnation
number so that it doesn’t match those of the previous replies.
(This reply from P3 is received at iii.) Therefore, P1 up-
dates f and requests determinants from P2 and P4 again and
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from P5 when its reply is later received at iv. P1 receives
the second replies at v; vi; vii. P1 also reaches R5 in our al-
gorithm at vii. The solid line across the computation in the
figure therefore represents the recovery reply state for P1’s
failure.

4. Correctness

We now demonstrate that our algorithm maintains the
property of “no orphan states.” We assume that given de-
terminant information, a process can recreate and replay
messages. This can be done by requesting that processes re-
send messages. It is not too difficult to show that this is al-
ways possible (see [1]).

We first show that for every failure a recovery reply state
exists.

Lemma 4.1 For every failure x, there exists a recovery
reply state (RRS).

Proof: Let x be a failure on Pk. When Pk fails we assume
that it is restarted. Let G be the set of global states that sat-
isfy conditions 1,2, and 3 of the definition of RRS (Defini-
tion 3.1). We prove first that G is not empty and second that
there exists a least global state in G.G is not empty: Upon restarting following failure x, Pk
executes lines R1. The state, s, at which Pk completes R1
satisfies conditions 1 and 2. That is, its recovery state � s
and recovering = TRUE at s. Also, f has been updated and
sent to all processes in Pk’s group. Pk will eventually re-
ceive a recovery reply message (it can rerequest a reply in
case it believes another process has failed or that a message
was lost). If no other failures have occurred, all replies re-
ceived will contain an incarnation vector equivalent to s.f,
and 8i 6= k: G[i] is the state following the receive of the
recovery request. If other failures have occurred f received
by Pk will not equal s:f. By lines R3, Pk updates its f and
resends recover request messages until all recovery reply

messages received contain an f equal to its own. Since we
assume that processes always eventually respond, and that
every process fails a finite number of times, Pk will eventu-
ally gather all replies necessary. If the final recovery request
message is sent at s00, by previous assumptions all processes
will eventually have a state at which f = s00:f. Let t be the first
state in which f at Pk = s00:f. Now since s � t, condition 1 is
satisfied forG[k] = t. Condition 2 is satisfied because t will
precede the state at which the final correct reply is received.
For every other process i, G[i] is the first state for which f =s00:f, which satisfies condition 3. Therefore there is a G that
satisfies conditions 1, 2, and 3.

There is an earliest G: We know that the earliest value
agreed to is t:f (Pk stops sending recovery request messages
when all replies equal its own f by lines R3.) We know that
there is a G in which 8i 6= k: G[i].f = t:f. Since there must
be an earliest state at every Pi which sets f = t:f, let G[i] be
this state. Therefore, there is an earliest G. ut

We will show in the next lemma that messages such asm00 in Figure 11 (for which there is a failure that follows the
send on the same process and precedes the recovery reply
state) will not be delivered after the recovery reply state.

Lemma 4.2 No message will be received followinga recov-
ery reply state, RRS, if there has been an intervening failure
between its send and the RRS.

Proof: Let m:send and m:receive represent the send and
receive states for a message m. We can state the lemma as
follows:8m sent from Pj to Pk, where m is an application message:

(9x : x =failure state: m:send � x � RRS[j]) )(RRS[k] 6� m:receive).
Note first that if 9x : x =failure state: m:send � x �RRS[j] thenm:send:f[j] < RRS[j]:f[j]: (i)

This is because when Pj recovers after x, it performs R1 be-
fore anything else. Therefore, any state after xwill have f[j]
greater than f[j] from any state before x.

From definition of RRS,8l; RRS[l]:f = RRS[i]:f: (ii)
(i) and (ii) imply m:send:f[j] < RRS[k]:f[j]. Because

of this, m will not be received for any state which follows
RRS[k]. ut

Now we can show that our algorithm does not allow
orphan states.

Theorem 4.3 The recovery algorithm of figure 8 does not
create orphan states.

Proof: We must show that:8s; t : s 62 run ) t 62 run _ s 6! t



Equivalently, if a send state is not in a run, then neither is the
corresponding receive state.

A send state, s, is not in a run if a failure occurs followings and all determinants for receives which precede s are not
recovered in some subsequent recovery. That is, s is not part
of the run if s � failure state x and the determinants at s are
not part of some recovery which follows x.

Let s’s corresponding receive state, be t. Let y be a fail-
ure state whose recovery reply state (RRSy) follows x (x
may equal y). If s is not in the run, then8k : t 6� RRSy[k] (�):
That is, t must follow some recovery so that the determin-
ants at s are not part of that recovery. (There are other re-
quirements as well, however, we don’t need these for our
proof).

If (*) holds then recovery of y may not contain the de-
terminants necessary to recreate s. That is, (*) means that9j : s � x � RRSy[j]. To prove our theorem we must
show that t is not in the run. Since 8k : t 6� RRSy[k] and by
the previous lemma, t will not be received followingRRSy
(because 9j : s � x � RRSy[j]), t is not part of the run. ut
5. Conclusions

We have presented an approach for recovery in causal
message logging which does not require unfailed processes
to block or require special coordination among recovering
processes.

6. Acknowledgements

We would like to thank Lorenzo Alvisi for valuable dis-
cussions concerning causal message logging.

References

[1] L. Alvisi. “Understanding the message logging
paradigm for masking process crashes.” In Ph.D.
dissertation. Cornell University, January 1996.

[2] L. Alvisi, K. Marzullo, “Trade-Offs in Implementing
Optimal Message Logging Protocols,” Proceedings of
the 15th ACM Symposium on the Principles of Distrib-
uted Computing, ACM, May 1996.

[3] L. Alvisi, S. Rao, H. Vin, “Understanding Recovery in
Causal Message Logging,” Computer Science Depart-
ment, Technical report, University of Texas at Austin
(in preparation).

[4] A. Borg, J. Baumbach, S. Glazer, “A message sys-
tem supporting fault tolerance,” Proceedings of the
Ninth ACM Symposium on Operating Systems Prin-
ciples, ACM, October 1983, pp. 90-99.

[5] K. Chandy, L. Lamport, “Distributed Snapshots: De-
termining Global States of Distributed Systems,” ACM
Transactions on Computer Systems, ACM, February
1985, pp. 63-75.

[6] E. Elnozahy, W. Zwaenepoel, “Manetho: Transpar-
ent Rollback-Recovery with Low Overhead, Limited
Rollback, and Fast Output Commit,” IEEE Transac-
tions on Computers, Vol. C-41, No. 5, May 1992, pp.
526-531.

[7] E. Elnozahy, “On the relevance of Communication
Costs of Rollback-Recovery Protocols,” Proceedings
of the 15th ACM Symposium on Principles of Distrib-
uted Computing, 1995, pp.74-79.

[8] D. Johnson and W. Zwaenepoel. “Sender-based mes-
sage logging.” 17th Annual International Symposium
on Fault-Tolerant Computing, pages 14–19, June
1987.

[9] D. Johnson, W. Zwaenepoel, “Recovery in Distrib-
uted Systems Using Optimistic Message Logging and
Checkpointing,” Journal of Algorithms, Vol. 11, Sept.
1990, pp.462-491.

[10] D. Johnson, “Efficient Transparent Optimistic Roll-
back Recovery for Distributed ApplicationPrograms,”
Proceedings of the 12th Symposium on Reliable Dis-
tributed Systems, IEEE Computer Society, October
1993, pp.86-95.

[11] M. L. Powell, D. L. Presotto, “Publishing: a reliable
broadcast communication mechanism,” Proceedings
of the Ninth ACM Symposium on Operating Systems
Principles, ACM, October 1983, pp. 100-109.

[12] A.P. Sistla, J.L. Welch, “Efficient Distributed Recov-
ery Procedure Using Message Logging,” Eighth ACM
Symposium on Principles of Distributed Computing,
1989, pp.223-238.

[13] S.W. Smith, D.B. Johnson, J.D. Tygar, “Completely
asynchronous recovery with minimal rollbacks,” Pro-
ceedings of the 25th International Symposium on Fault
Tolerant Computing, 1995, pp.361-370.

[14] R. Strom, D. Bacon, and S. Yemeni. “Volatile logging
in n-fault-tolerantdistributedsystems.” Proceedings fo
the 18th International Symposium on Fault-Tolerant
Computing, pages 44–49, June 1988.



[15] R. Strom, S. Yemeni, “Optimistic Recovery in Distrib-
uted Systems,” ACM Transactions on Computer Sys-
tems, Vol. 3, August 1985, pp.204-226.


