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Abstract itself to a consistent global state. We focus on optimistic

logging, an important class of log-based rollback recovery

The problem of recovering distributed systems from  Optimistic logging protocols log messages to stable stor-
crash failures has been widely studied in the context of tra- age asynchronously, thus incurring low failure-free over-
ditional non-threaded processes. However, extendingethos head. On a failure, some unlogged messages may be lost,
solutions to the multi-threaded scenario presents newrob resulting in the loss of some states of the failed process.
lems. We identify and address these problems for optimisticFurthermore, this results in the rollback of states on other
logging protocols. non-failed processes that causally depend on the loststate

There are two natural extension to optimistic logging In order to determine which states need to be rolled back,
protocols in the multi-threaded scenario. The first exten- the causal dependencies between states needs to be tracked.
sion is process-centricwhere the points of internal non-  This can be implemented by having all messages piggyback
determinism caused by threads are logged. The secondh dependency vector of siZg(n), wheren is the number
extension isthread-centric where each thread is treated of processes in the system [15].
as a separate process. The process-centric approach suf- \while extending this solution to multi-threaded pro-
fers from false Causaliw while the thread-centric apprkl)ac cesses we have two natural Choicespracess_centri@p_
suffers from hlgh Causa"ty traCking overhead. By observ- proach and ahread_centricapproach_ In the process-
ing that the granularity of failures can be different from centric approach, the internal non-deterministic events
the granularity of rollbacks, we design a néalancedap-  caused by threads are logged [7, 14]. With this provision,
proach which incurs low causality tracking overhead and other researchers have used traditional optimistic pajoc

also eliminates false causality. This, however, gives rise to the problem of false causality
between threads of a process. This problem has two serious
1. Introduction repercussions. First, during failure-free mode, it caukes

_ o o _ ~unnecessary blocking of outputs to the environment. Sec-

Multi-threading is becoming increasingly common in ond, during recovery from a failure, it causes unnecessary
distributed systems owing to the need for light-weight con- rg||backs.
currency. We address the problem of recovering multi-  Agempting to eliminate false causality leads to the
threaded distributed systems from process crash failures ead-centric approach. Here, each individual thread is
Although recovery has been a widely studied problem in eated as a process and a process crash is treated asenultipl
traditional non-threaded systems [5], extending these-sol  ¢oncurrent thread crashes. In this approach, during failur
tions to the multi-threaded scenario gives rise t0 new prob-fee operation, causality is tracked at the level of threads
lems. We address those problems for the optimistic 1ogging This makes causality tracking an expensive operation re-
protocols. o _quiring a dependency vector of sig§nm), wheren is the

The traditional distributed recovery problem deals with  mber of processes amd is a bound on the number of

recovering a distributed system from process crash falure {nreads per process. This increases the message size over-
One approach to solving the recovery problem is Iog—basedhead' as well as space and time overhead.
rollback recovery, which combines checkpointing and mes- Thus the process-centric and the thread-centric ap-

sage logging. When a failure occurs, the distributed system

K ¢ the checknoi q | Iproaches present a trade-off between false causality and
can make use of the checkpoints and message logs to resto acking overhead. We make the observation that processes
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units Therefore, it is sufficient to track the dependency of the state of an application process, adding control inferma
threads on processes. Thiglancedapproach tracks causal tion to a message, rolling back the application to an earlier

dependencies using a dependency vector of Gige). At state, etc.
the same time it eliminates false causality, since threelsa  Therecovery problenis to specify the behavior of a re-
rolled back independently. covery system that controls the application system to ensur

In Section 2, we present some background on optimistic that despite crash failures, the system execution remains
recovery in traditional non-threaded environments. In-Sec equivalent to a possible crash-free execution of the stand-
tion 3, we describe the two natural extensions — process-alone application system.
centric logging and thread-centric logging — and the asso-9 o Optimistic L ogging
ciated false causality versus tracking overhead tradehoff
Section 4, we describe our ndvalanced protocofor opti-
mistic recovery in multi-threaded distributed systemsc-S
tion 5 is a note on generalizing the ideas of the paper.

Log-based rollback recovery protocols [5] rely on check-

e points and message logs, using them during recovery to re-
store the whole system to a consistent global state (one in
which every received message was sent). It is guaranteed

2. Background: Optimistic Recovery that this restored state is one which could possibly have hap

2.1. System Model and the Recovery Problem pened in a failure-free system execution and, thgrefo'rsa, th

approach solves the recovery problem. Depending on when

We consider an application system consisting:qfro- and where the received messages are logged, the log-based
cesses communicating only through messages. The comrollback recovery schemes can be divided into three cate-
munication system used is unreliable, in that it can lose, gories: pessimistic, optimistic, and causal [5]. In thipga
delay, or duplicate a message. The environment also usegur focus is on optimistic logging protocols.
messages to provide inputs to and receive outputs fromthe e first present an example and then use it to specify
application system. Each process has its own volatile stor-the details of how a traditional optimistic logging protbco
age and also has access to stable storage. The data save@erates. The protocol we present is similar in spirit to the
on volatile storage is lost in a process crash, while the datagnes presented in [3, 15].
saved on stable storage remains unaffected by a process
crash.

A process execution is a sequence of states. The state
may be divided intcstate intervalsconsisting of the states  An example of an optimistic recovery system is shown in
between two consecutive message receipts by the appliFigure 1. Solid horizontal lines show the useful computa-
cation process. In single threaded systems, the executionion, and dashed horizontal lines show the computation that
within each interval is assumed to be completely determin-is either lost in a failure or rolled back by the recovery pro-
istic, i.e., actions performed between two message regeive tocol. In the figure¢l andc2, shown by squares, are check-
are completely determined by the content of the first mes- points of processeB1 and P2 respectively. State intervals
sage received and the state of the process at the time of thare numbered from0 to s7 and they extend from one mes-
first receive. As we will see, in multi-threaded systems, sage receive to the next. The numbers shown in rectangular
non-deterministic thread scheduling affects the state of aboxes will be explained later in this chapter.
process. It is sufficient for our purposes to view process ex-  In Figure 1(a), procesB1 takes a checkpoird, acts on
ecutions at the granularity of state intervals and not state  some messages (not shown in the figure) and starts the inter-
Therefore, for simplicity, we will sometimes usgatesto val s0. P1 logs to stable storage all messages that have been
meanstate intervals received so far. It starts interval by processinging the

All n process executions together constitute a system ex-messagen0. In intervals2, messagen? is sent toP2. P1
ecution. Two physical system executions are consideredthen fails without logging the messag# to stable storage
equivalent if their interaction with the environment is the or receiving the messagel. It loses its volatile memory,
same. which includes the knowledge about processing the mes-

A process fails by simply crashing. In a crash failure, sagem0. During this time,P2 acts on the message2.

a process stops executing and loses the data in its volatile Figure 1(b) shows the post-failure computation. On

storage. The process does no other harm, such as sendingstarting after the failureP1 restores its last checkpoint

incorrect messages. Pre-failure states of a process that ca c1, replays all the logged messages and restores the interval
not be recreated after a failure are called lost states. s1. It then broadcasts a failure announcement (not shown

The application system is controlled by an underlying re- in Figure 1). It continues its execution and starts inteséal
covery system. The type of control may be of various forms, by processingn1. P2 receives the failure announcementin
such as saving a checkpoint of the application process;, stopinterval s5 and realizes that it is dependent on a lost state.
ping an application process, adding control information to It rolls back, restores its last checkpoi2, and replays the

SI?xample
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Figure 1. Example: Optimistic Recovery in Action

logged messages until it is about to process the mes-
sage that made it dependent on a lost state. It disealds
and continues its execution by processing. The mes-
sagem?2 is not regenerated in post-failure computatidt.
remains unaffected by the failure &fl.

Detecting Orphans: Causally Precedes

is used. Thelv of a processd’; hasn state interval indices
wheren is the number of processes in the system asizhge
interval indexis a tuple containing amcarnation number
and asequence number

Whenever a process fails and is restarted, it is said to be
in a newincarnation The incarnation number in thih en-
try of its dv is its own incarnation number. The incarnation
number in thej’'th entry is equal to the highest incarnation

As just seen, in optimistic logging, some messages may benumber of P; which causally precedeB;. Let state inter-
lost in a failure. This may result in some lost states on the val indexe be ¢, 7). Then, we define a total ordering,
failed process. All states that “causally depend” onsushlo on state interval indices as < ey = (t1 < t2) V[(t1 =
states must also be detected and rolled back. Such states agg) A (i; < i2)].

known asorphans

Each process piggybacks ifs on every outgoing mes-

The intuitive notion of “causally depends” that we have sage. Before processing a message, a process updates its

used is formalized by the following relation. Leausally

dv by taking a componentwise maximum of its with the

precedeqdenoted by—) be the smallest transitive binary gy of the incoming message and incrementing its own se-

relation on state intervals satisfying the following twaneo
ditions:

e u — v if the processing of an application message in ¢ rectangular box correspondsdofk]

statewu results in state, (for example,s1 — s6 in
Figure 1(b)),

e u — v if the processing of an application message sent

from v startsv (for example s2 — s5 in Figure 1(a)).

By s — u, we means — u or s = u. Note that a failure

guence number.

An example ofdv is shown in Figure 1. Theév of each
state is shown in a rectangular box near it. Fté row of

It has been previously demonstrated that dependency
vectors track the causally precedes relation, and thexefor
can be used to detect orphans [3, 15].

Recovering from a Crash

or a rollback does not start a new interval. It simply ressore  When a proces# fails, it restores its most recent check-

an old interval. Now we can define an orphan state as:

orphan(s) = Ju: lost(u) A u—s

Tracking Causal Dependencies. Dependency Vectors

The causally precedes relation needs to be tracked for or-

phan detection. For this purposedependency vectddv)

point and replays the logged messages that were processed
after that checkpoint. NextP; broadcasts a failure an-
nouncement containing its state index, which is the ending
index number of the failed incarnation. In Figure 1, fail-
ure announcement d?2 contains (1,7). It then waits for an
acknowledgment from all processes.

Upon receiving a failure announcement, a proc€ss
compares itglv with that index. If thedv shows thatP;’s



state depends on a higher-index interval of the failed incar units A recovery unit is a single unit of execution in opti-
nation of P;, P; rolls back to undo the orphan states. Sim- mistic recovery systems. Recovery units fail as a unit and
ilarly, it discards the orphan messages from its log. It also roll back in response to another unit's failure.

saves the received failure announcement inngarnation In previous sections, we chose individual processes as
end tableto discard any orphan message that may arrive in recovery units. In a multi-threaded environment, there are
future. It then sends an acknowledgment to the sender oftwo natural candidates for the recovery unit: a process or a
the failure announcement. thread.

Handling Output Commits 3.2.1 Process-centric Logging

Qistributed applicationsloften need Fo interact with th_¢+ OU | treating a process as a recovery unit in a multi-threaded
side world. Examples include setting hardware switches, gystem, there is another source of non-determinism apart
performing database updates, printing computation r&sult oy the order of message receives. Depending on the
displaying execution progress, etc. Since the outsidedvorl gcheqyling, the threads may access shared objects in a dif-

in general does not have the capability of rolling back its terent order. Therefore, after a failure, replaying the mes

state, the applications must guarantee that any output sen{,qe |og to a process is not sufficient to recreate the desired
to the outside world will never need to be revoked. This is states.

called thgogtput commit problem . To solve this problem, Goldberg et. al. [7] require that
In optimistic recovery, an output can be committed when g4 e objects be accessed only in locked regions. The or-
the state intervals that the output depends on have all beyqr in which threads acquire locks is logged. During a re-

comestable[15]. (An intervalis said to bstableif itcan 5y the same locking order is enforced. This trace-and-
be recreated from the information saved on stable Storage)replay technique has also been used in concurrent debug-
To determine when an output can be committed, each pro—gers [10, 16].

cess periodically broadcasts a logging progress notifinati
to let other processes know which of its state intervals haveSI
become stable.

Another approach has been used by Elnozahy and
ye [14]. They focus on uniprocessor multi-threaded en-
vironments in which the points of non-determinism can be

3. Optimistic Recovery with Multi-threaded reduced to the thread switches. Therefore, they log the or-

Processes der of thread switches and ensure that thread switches occur
in the same order during replay. Again, this approach has
3.1. System Model been used in concurrent debuggers [11, 13].

Each process contains a set of threads and a set of shared Given that the non-determinism due to thread scheduling
objects. Threads of different processes communicate onlycan be tracked and replayed, the general optimistic regover
through messages. Threads of the same process commun@pproach described before can be used with a process as a
cate through shared objects and messages. Any other forniecovery unit.
of communication is allowed between threads, as long as it
can be modeled using shared objects or messages. For ex-
ample, wait-notify synchronizations can be modeled using The False Causality Problem
messages.

Threads of a process crash together. This happens nof\n example of how the process-centric approach operates
only in hardware crashes but also in most software crasheds shown in Figure 2(a). Receive of message, m2 and
because threads share the same address space and are #e Starts the intervalsl, s2 ands3 respectively. Whe0
protected from each other by the operating system. fails and loses stgte interval, P1 hgs to roll back state

The recovery system can restore the state of an individuapntervals:_%. In the figure, the threads in each process are not
thread or shared object to an old state without affecting the ShOWn, since processes are the recovery units.

other threads or shared objects. This assumption will be L€t us now take another look at this scenario at the level
discussed in Section 4.4. of threads instead of processes. Figure 2(b) shows the same

scenario at the level of threads. The figure shows that pro-
cess P1 consists of two threads T2 and T3. Therefdre,
We now investigate how to extend the optimistic recov- is an interleaving of the states 2 and7'3. Suppose that,
ery protocol given in Section 2 to multi-threaded environ- afterm3 was received, there was no shared object interac-
ments. tions betweerf'2 and7'3. So, only the states dii3 were
Strom and Yemini [15] presented the original optimistic really caused byn3 and needed to roll back. The states in
protocol not in terms of processes, but in termsemfovery s3 belonging tal'2 were rolled back unnecessarily. This is

3.2. Extending Optimistic Recovery
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Figure 2. Extending Optimistic Logging

said to be due tfalse causalitynduced between the states 3.2.2 Thread-centric Logging
in the two threads. o
Threads can be modeled as recovery units since they can be
Besides causing unnecessary rollbacks during recovery,m”ed back indepe_ndentl_y. Failure _of a process is modeled
false causality has an unwanted effect in failure-free mode@S concurrent multiple failure of all its threads.
as well. In Figure 2(a), the output messagé from s2 There are a number of important issues that arise when

cannot be committed unti0 has become stable. However, treating threads as recovery units in the optimistic loggin

the thread view in Figure 2(b) shows us that this was, in scheme. First, in addition to dependencies between threads

fact, unnecessary. The waiting was a result of false causal-dué to messages, there are also dependencies caused by
ity induced betweem?2 andm4. Thus, false causality also  Shared obJects._Thes_e new dependencies must be tracked.
increases the latency of output commits. As seen in the pre-Second, on a failure, just as a thread may have to roll back,

vious section, the latency of output commits is an important @ shared object may also have to roll back. Thus, orphan de-
factor for message logging protocols. tection must be carried out for threads, as well as for shared

objects. Third, both threads and shared objects must be re-

How often does false causality arise? Lewis and Berg [9] Stored to a checkpoint and replayed.
have divided multi-threaded programs into two main cate- N order to address these issues, we now describe a way
gories: inherently multi-threaded programend not obvi- to model shared objects using messages and threads. A fic-
ously multi-threaded programsinherently multi-threaded titious thread is associated with each shared object whose
programs require multi-threading for ease of programming State is the same as that of the corresponding object. We
and not for speedup. These programs have highly in- model each method invocation on a shared object as a pair
dependent tasks that are naturally expressed as thread®f messages between the invoking thread and the thread as-
Some examples of such programs are: servers which handlgociated with the object. The first message is sent by the
multiple requests simultaneously, debuggers which moni- invoking thread and contains the method identifier and the
tor a program while keeping multiple displays active at the method parameters. The second message is sent by the
same time, and simulators which simulate different enti- thread associated with the object and contains the return
ties that operate simultaneously. The other class of notvalue of the method. This greatly simplifies presentation
obviously multi-threaded programs are those that require Of the protocols because now messages are the only form of
multi-threading for speedup on a multi-processor machine. COmmunication in the whole distributed system.
Such programs have tightly-coupled threads that interact Further, the simplified model captures a way to deal with
frequently through shared memory. Some examples areeach of the three issues mentioned above. The new depen-
numerical programs and fine-tuning bottlenecks in existing dencies are tracked by treating the shared object accesses a
code. Of these two categories, the inherently multi-theead messages and associating a vector with each shared object.
programs have highly independent threads which do not in-Similarly, orphan detection and replay of shared objects is
teract frequently, and therefore, would display false ekus done just as in threads.
ity more often. Our focus will be on this important category Since we have dealt with the new issues, all that remains
of multi-threaded applications. is to apply the general optimistic logging scheme. So the
computation in Figure 2(a) appears as that in Figure 2(b).
Given that the false causality problem is an important WhenT'0 and T'1 fail, the thread-interval sending2 is
concern, how can it be addressed? The problem arises benot lost in the failure. So only'3 and notT'2 is rolled
cause threads, which are independent units, are grouped toback. Also, message4 is committed without waiting for
gether as a single unit. To solve this problem, we now study the interval sendingn2 to become stable.
an approach that models each thread as a recovery unit. Therefore, the thread-centric approach clearly reduces



type sii_type:  (inc:int, seq: int); I type representing state interval index with incation
/I and sequence numbers

Thread Tj Process P,
dv arrayfn] of sii_type; st sii_type;
// dependency vector /I state interval index
IET  arrayp] of set of sii_type; log list of untyped objects;
/l incarnation end table /l'log for messages angsi values

LOG list of untyped objects;
/ stable log for messages,
/I sii values, and checkpoints

Figure 3. Variables Used in the Protocol

false causality. The dependency tracking overhead, how-tities to track. Also, choosing a larger granularity roltka
ever, is greatly increased. A main factor in this overhead is unit increases the extent of false causality since multiple
that, instead oD (n) entries, each dependency vector now entities are forced to roll back together. In the previous se
hasO(mn) entries (wheren is the maximum number of  tion, we saw that the trade-off between dependency track-
threads per process). A more detailed discussion on thising overhead and false causality depended on the granular-

overhead will be presented in Section 4.3. ity of the recovery unit. The separation of roles into fadur
units and rollback units allows the trade-off to be avoided,
An Inherent Trade-off? by choosing a larger granularity failure unit (process) and

) . smaller granularity rollback unit (thread). This is the tah
The process-centric and thread-centric approaches offer gqea for ourbalanced protocol

trade-off between dependency tracking overhead and extent  However, to achieve the separation of roles, we must si-

of false causality. This trade-off seems to be an inhere&ton myltaneously deal with both thread state intervals and pro-
as it arises from the choice of granularity of the recovery cess state intervals. This requires a redefinition of a m®ce
unit. A larger recovery unit introduces more false causal- state interval as a “consistent” set of thread state interva

ity and has lower tracking overhead than a smaller one.\\e define this notion of consistency formally in [4].
In database systems, an analogous trade-off exists betweeﬂ 1. TheBalanced Protocol: Details

lock maintenance overhead and extent of false causality - _
while choosing the lock granularity. Surprisingly, in niult The protocol specifies the actions to be taken by the re-

threaded recovery, this trade-off can be avoided by a schemé&overy system. The actions are divided into two categories,
that we now present. those for a process (failure unit) and those for a threadt (rol

back unit).

4. The Balanced Protocol Figure 3 shows the variables used in the protocol. We

We observe that a recovery unit plays two distinct roles use capital letters to indicate variables on stable storage
in optimistic recovery. The first role is that offailure unit (e.g.IET) and small letters to indicate variables on volatile
The defining characteristic of a failure unit is that it feals storage (e.gdv). Global variables common to all threads
a unit. The second role is that ofallback unit A rollback (process variables) are underlined (e.gii). Calls to
unit can be rolled back and restored to a previous state in-the run-time environment start with an underscore (e.g.
dependently. For example, in the process-centric protocol _Send(data, dv) calls the environment, whil§end(data)
the process was both the failure unit and the rollback unit, calls the program’s function).
whereas in the thread-centric protocol, the thread was the Each thread maintains a dependency vegiaand an in-
failure unit and rollback unit. carnation end tabléET in order to detect orphans. Thé

A general observation we can make about optimistic re- indicates the current process-wide state interval indése T
covery is that:to detect orphans, it is sufficient for a roll- log and LOG are the volatile and stable logs respectively.
back unit to track its transitive dependency on a failuretuni - The volatile log is used as a buffer for the log before it is
Then, the failure of a failure unit causes all orphaned roll- made stable. The stable log is used to recover from a pro-
back units to rollback, bringing the system back to a consis- cess failure. The stable and volatile logs are also used to
tent state. independently restore a thread to a previous state.

Thus, choosing a larger granularity failure unit reduces  The actions of the protocol may be divided into two
the dependency tracking overhead since there are fewer entypes: normal mode and recovery mode. Figure 4 lists the



Thread T} Process P,
Initialize: Initialize:
Vk £ j: dv[k] := (0, 0) sti:=(1,1)
dulj]:=(1,1) log :==null
Vk: IETk] ={} LOG :=null
Send(data): Take Checkpoint:
_Send{ata, dv); log = log + sit;
LOG := LOG +log;
Receive: log = null; o
repeat LOG = LOG + _Checkpoint();
m = _Receive(); sii.seq ;= sii.seq + 1,
until (- orphan¢n.dv, I ET));
log :=log + (m, 7); M ake M essage L og:
dv := max@dv, m.dv); LOG := LOG + log;
dvlj] = sii; log := null; o
Start Statelnterval:
log :=log + sii;
Ez'.seq? sii.seq +1;

Figure 4. Protocol for Normal-mode Operation

normal mode protocol. For simplicity, all actions are as-  Periodically, checkpoints are also taken. The volatile log
sumed to be atomic. is flushed to the stable log and a checkpoint is appended
First, in order to ensure that process state intervals are(Take Checkpoint). The oldsii value is logged before the
consistent, the recovery system periodically starts a newcheckpoint and incremented after the checkpoint. This en-
state interval $tart State Interval) by incrementing the  sures that every checkpoint is exactly between two state in-
global siz value. The oldszi is queued in the log mark- tervals. We assume that in addition to the application sys-
ing the end of the previous receive set in the log. On the tem state, the checkpointincludes the dependency véetor
next receive event, each threBgassigns its locafv[j] en- for each thread.
try the value of this globatii (Receive), thus keeping track The recovery mode protocol is listed in Figure 5. On a
of the process state interval it belongs to. crash failure, the crashed process restores its last chatkp
Each thread keeps track of the highest process state interin the stable logLOG (Restart After Crash). All threads
val that it is aware of using its local dependency vediar are replayed from this point using messages andalues
The dependency vector mechanism is the same as beforefrom LOG upto the last complete process state interval.
(Send, Receive). Next, the crashed process broadcasts an announcement
On receiving a message, a thread must discard it, if it is of its failure to all threads of all other processes. This an-
an orphan messagRéceive). It can detect this by looking  nouncement includes its recovered state interval indeix ind
atits incarnation end tablBE’T" which is updated appropri-  cating the end of that incarnation. This broadcast must be
ately in the recovery mode of the protocol. More precisely, reliable in order to ensure that the system returns to a con-
we specify the predicate sistent state. Reliability may be ensured by repeating the
orphan(dv, IET) = 3j : A(t,z) € IET[j] : broadcast periodically. The process then blocks, waitimg f
(t = dv[jl.ine) A (= < dv[j].seq) an agknowledgementfrqm all thr.eads. Once al! of these are
received, it starts a new incarnation by appropriately tpda

A received message is logged in the global volatile log ing its state interval index.

log (Receive). This log totally orders all receives of all When a thread receives a failure announcement, it first
threads in their real time order, marking the end of receive records the announcementin its incarnation end taBt&

sets by storing theisii values Etart State I nterval). Peri- (Handle Fail_Announce). This will be later used in nor-
odically, this volatile log is flushed to stable storayykake mal mode to discard orphan messagRscgive). It then
Message L og). decides if it is an orphan based on its dependency vector



Thread Tj Process P;
Handle Fail_Announce(sender _id, sender_sii): Restart After Crash:
IET[sender_id] := IET [sender_id] U {sender_sii}; restore last checkpoint iIROG;
if (orphan@v, IET)) globally replay all threads i?; using messages
deleteorphanslog, LOG, IET) andsis values after last checkpoint bOG;
restore last checkpoint @; in LOG; reliably broadcasF'ail_Announce(i, sii) to
locally replay thread’; using messages agd all threads in all other processes;
values after last checkpoint &f in LOG andlog; wait for Ack_Announce from all;
sendAck_Announce t0 Psepger_id o sit.inc = sit.inc + 1,
sit.seq ;= 1;

Figure 5. Protocol for Recovery-mode Operation

and its newly updatedET. If it is, it must delete all or-  orphan state intervab. Threadl'3 remains unaffected by
phan entries from its stable and volatile logs. Next, it must this failure. Note that, if?1 were to fail instead o0, and
restore the last thread checkpoint from the stable log. Itlose the state intervai3, then both7'0 and7'1 will detect

then replays itself to its latest state using the messageés anthat they are orphans due to the entry (1,4) in thiis.

s1i values in the stable and volatile logs. This will bring it This illustrates an important point of our protocol: in gpit

to the latest state that is not an orphan with respect to theof belonging to the same process state interval and sharing a
received failure announcement. Note that the other threadscommon index, thread intervals andi6 act as independent
and, in particular, the globati; remain unaffected by this  rollback units and a single failure unit at the same time.
action. Finally, it sends an acknowledgement to the sendery 3. Compar ative Evaluation

of the failure announcement.

To complete the protocol, we must add logging progress
notification to accomodate output commit. However, we
omit these details because they are identical to those-in tra
ditional optimistic protocols.

4.2. An Example

There are two factors of interest while comparing various
protocols: false causality and dependency tracking over-
head.

We have already discussed the false causality problem
in Section 3.2.1. To summarize: the false causality prob-
lem arises in the process-centric approach because threads
are forced to roll back together even when they have low

1,7 i . . . . .
st 82 N El 4 failure interactions between them. False causality is partioukarl
To— 1= - @ problem for a large class of applications that have low in-
PO T f i teractions between threads. The observable effects & fals
8 . S %3) causality are: (1) delayed output commits, and (2) unnec-
(. m3 " ma 2.9 essary rollbacks after a failure. Both the thread-centric
. and balanced approaches avoid false causality by allowing
T2 B \ threads to roll back independently.
P1 T ! The price paid for avoiding false causality is the higher
/ 1 dependency tracking overhead. This overhead is in three
a4 2 forms: space overhead, time overhead, and message size
overhead. Table 1 summarizes the relative overheads of the
Figure 6. Example: Balanced Protocol various protocols. The overhead of checkpointing is com-
mon to all protocols and hence it is not shown in the table.
An example of our protocol in action is shown in Fig- As discussed before, there have been two implementa-

ure 6. Threadq'0, T'1 belong to proces#0 and7'2, T'3 tions of the process-centric approach: Slye & Elnozahy
belong toP1. The dashed arcs show the ends of the pro- [14], and Goldberg et al. [7]. Slye & Elnozahy use a soft-
cess state intervald, s2 ands3. Thread state intervals are ware counter to track the thread switches. Therefore, the
t1 to t6. State interval indices of2 ands3 are (1,7) and  space overhead consists 6f(s) space to log all thread
(1,4) respectively. WhetP0 fails, it loses the state inter- switching information andD(en) space to store depen-
val s2. It broadcasts a failure announcement containing thedency vectors for each receive event. The time overhead
index (1,6), corresponding to the state interval indexlof consists of the total extra time the recovery protocol re-
On receiving this announcement, threBd rolls back the quires to execute. This involves the time to save check-



Space Time Message Size False

Overhead Overhead Overhead Causality
Process-centric(l)| O(s + en) O(c+en) O(n) yes
Process-centric(ll) O(o + en) O(o + en) O(n) yes
Thread-centric O(mn(o+e)) | O(mn(o+e)) O(mn) no
Balanced O(n(o+e)) O(n(o+e)) O(n) no

Process-centric(l) is the process-centric protocol uSilyg & Elnozahy [14]
Process-centric(ll) is the process-centric protocol gissoldberg et al. [7]
n is the number of processes

m is the maximum number of threads and shared objects pergsoce

e is the maximum number of message receive events per prooesstmn

o is the maximum number of shared object accesses per proaasion

s is the maximum number of thread switches per process exegcuti

cis the time overhead for maintaining a software counter

Table 1. Comparative Evaluation of Overheads

points, log thread switching information, log dependency = Compared to the process-centric protocol of Goldberg
vectors. Therefore, the time overhead is proportional éo th et al., the balanced protocol has the same message size
space overhead. The message size overhe@dri$ since overhead, but higher space and time overhead. This is be-
the dependency vector hasntries, one per process. cause each shared object access in the balanced approach
Goldberg et al. log the order of shared memory accessed0gs aO(n) vector instead of constant information. With

so that they can be deterministically replayed. Therefore, respect to the process-centric protocol using Slye & El-
the space overhead@(o + en) with the O(0) component nozahy’s technique, the space and time overhead is also
accounting for the log made on each shared memory accessXpected to be higher since there are usually much fewer

The time overhead is proportional to space overhead. Thethread switches than shared memory accesses. However, as
message overhead remaifién) as before. in Section 3.2.1, only the applications that have low thread

For the thread-centric approach, we assume that the overinteraction suffer greatly from false causality. For thege

heads of checkpointing are similar for thread and processP/ic@tions, the increase in time and space overheads of bal-
checkpoints. In practice, thread checkpoints may take ad-2nc€ protocol is low because the number of shared object
ditional time overhead to separate the thread local state®CC€SSeS is low. Thus, the process-centric protocol should
from the process address space. Another method would b€ used for applications with high thread interaction, and,

to simply take process checkpoints and extract the threadtherefore, low false causality effects. _Thg balanced proto
checkpoints when required. Since shared object accesseS0! should be used for the class of applications that have low

are treated as message receives, the space overhead to 14gead interaction, where the extra space and time overhead

the dependency vectors @(mn(o + ¢)) since each vec- iS outweighed by the saving in false causality effects.

tor hasO(mn) entries. The time overhead is similar. The 4.4. Implementation |ssues

message size overhead is nGmn). . There are two new issues that arise when implementing
The balanced approach reduces the vector size fromoptimistic recovery in multi-threaded systems as opposed t

O(mn) in the thread-centric approach @(n). All over-  traditional systems: checkpointing threads, trackingseiu
heads are similar to the thread-centric case replasing ity through shared object accesses, and replaying threads
by . independently.

The saving in space, time and message size overhead of Checkpointing threads is handled differently in different
the balanced protocol with respect to the thread-centde pr multi-threaded systems. In POSIX Threads, the thread state
tocol is substantial becausen is potentially a very large  consists of the stack, register context (including program
guantity compared ta. Each individual thread and shared counter), thread local storage, and objects that are aeate
objectin the system is accounted forimn. Since both pro-  on the heap by a thread. The global data is shared between
tocols achieve the same elimination of false causality, theall threads. This division may be simplistic, and it is pos-
balanced protocol should always be preferred to the thread-sible for shared objects to exist in the stack of one process
centric protocol. or on the heap. In such cases, a simplistic division would



work correctly but would induce greater false causality. It References
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Each method invocation on a shared object is treated as
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turn from the shared object is treated as a message from
the shared object to the thread. Thus, the recovery managef10]
must intervene at both these points. The log consists of the
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ing a thread or a shared object, the logged values are re-
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5. Final Note: Generalization

So far, we have considered the failure and rollback units ;5
in the context of processes and threads. We can select these

units at even coarser granularities. For simplicity, letos-

sider a system consisting of non-threaded processes. Now,

a process can be a rollback unit while a processor can be14]
a failure unit. Compared to traditional optimistic proto-
cols, this approach reduces the dependency tracking over 15
head while injecting false causality between processes. In
case of a hardware crash, entire processor indeed crashes as
a unit. In case of a software crash of a single process, all[16]
processes on the corresponding processor have to simulate

a crash, and hence the false causality between them. Further
generalizing, a local area network can act as a failure onit i [17]
a wide area environment. A process still acts as a rollback

unit.
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