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Abstract—Finding the shortest path between nodes in a
graph has wide applications in many important areas such as
transportation and computer networks. However, the current
reference algorithms for this task, Dijkstra’s for single threaded
environments and A-stepping for multi-threaded ones, leave
performance and efficiency on the table by not taking advantage
of additional information available about the graph. In this paper
we present and experimentally evaluate novel algorithms SPi,
SP, and ParSP, that leverage these constraints to solve the
problem faster and more efficiently in key metrics. In single
threaded execution, we show how SP1 and SP2 out-perform
Dijsktra’s algorithm by up to 46%. In multi-threaded execution
we show how our algorithms compare favorably to A-stepping
algorithm in the ability to establish the shortest path between
the source and the median node.

Index Terms—Single Source Shortest Path Problem, Dijkstra’s
Algorithm

I. INTRODUCTION

Graphs are increasingly prevalent: from virtual social net-
works, to physical road networks to everything in between,
such as computer networks. When performing computations
on graphs, a common problem is that of finding the shortest
path (SP) between vertices of the graph. Many algorithms to
solve this problem exist. Among the most well known are
Disjktra’s algorithm for single source shortest path [6] (SSSP),
and A-stepping [16]. Most algorithms rely on simple edge
relaxation and disregard additional information embedded in
the structure of the graph, information that, as we show in this
paper, can be leveraged to greatly increase the performance
and efficiency of the SSSP algorithms.

Dijkstra’s algorithm main loop consists in taking vertices
off of a heap, marking their previously found distance as final,
or fixed, and then going through all the outgoing edges to
update the distances of the neighbors, adding/updating them
in the heap if a lower distance was found. The key insight
of algorithms SP; and SP, is that it is often possible to
leverage implicit additional information about the structure of
the graph to mark a vertex as fixed, i.e to mark its distance
as final, without having to add it to the heap thus avoiding
a O(log n) operation (where n is the number vertices in the
heap), using an O(1) operation instead. SP1 leverages the
notion that when all of the incoming edges to a vertex have
been visited, then that vertex is fixed, possibly never placing
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that vertex in the heap. SP, additionally takes advantages
of another constraint based on the minimum in-weight of a
vertex to mark even more vertices as fixed. Algorithms SP;
and SP,, for general graphs, have a worst case asymptotic
complexity that matches that of Dijkstra’s algorithm for a
sequential implementation; however, they always perform less
heap operations than Dijkstra’s algorithm. Additionally, they are
more suitable for a parallel implementation because they allow
multiple vertices to be explored in parallel unlike Dijkstra’s
algorithm which explores vertices in the order of their shortest
cost. Algorithm S P, allows more parallelism than SP; at the
expense of an additional O(e) (pre-)processing. We present
ParSP; that leverages this parallelism opportunity.

A preliminary version of SP; and SP, without implementa-
tion, optimizations or evaluation were reported in the informal
publication [10]. The current work introduces the novel parallel
algorithm ParSP, and the final, formal version of SP; and
S P, with enhancements informed by real-world computing
constraints, implementation and experimental evaluation.

In this paper we make the following contributions:

o We present a parallel version of S P, ParSP, and show
how it compares favorably to A-stepping. Particularly in
the ability to find final distances to the median node in the
graph faster and behave better as the graph size increases.

e We formalize and conclude work on SP; and SP»
and provide a working implementation which introduces
several changes which greatly improve the algorithms’
runtime behavior. Our implementation is freely available
on Github'.

o We experimentally evaluate our algorithms and compare
them to several alternatives. Based on these results we
provide insight as to which circumstances are more
favorable for each of the benchmarked alternatives.

The rest of the paper is organized as follows: In Section
IT we formalize the problem, summarily present our approach
and state our assumptions. In Section III we introduce prior
work and how it relates to the work presented in this paper.
In Sections IV to VII we introduce algorithms SP;, SP, and
ParSPs,.. In Section IX we introduce our implementation and
the experimental design. In Section X we present and discuss
our experimental findings and in section XI we summarize our
findings and discuss future work.

Thttps://github.com/dralves/sp1-sp2-galois



II. PRELIMINARIES

Formally, the SSSP problem takes as input a weighted
directed graph with n vertices and e edges. We are required
to find cost[x], the minimum cost of a path from the source
vertex vg to all other vertices x where the cost of a path is
defined as the sum of edge weights along that path.

Most SSSP algorithms are inspired by Dijkstra’s algorithm
[6] or Bellman-Ford [2], [8]. We present three algorithms in this
paper in increasing order of work complexity. Algorithms SP;
and S P, are most suitable for sequential implementations but
are faster than Dijkstra’s algorithm since they bypass the heap
in many cases. Algorithm parSP, leverages new parallelism
opportunities and is scalable with the number of threads, as
we’ll show in the experimental section. For general graphs, their
worst case asymptotic complexity matches that of Dijkstra’s
algorithm for a sequential implementation; however, they
always perform less heap operations than Dijkstra’s algorithm.

There are two assumptions in our algorithms. First, we
assume that all weights are strictly positive. This is a minor
strengthening of the assumption in Dijkstra’s algorithm where
all weights are assumed to be non-negative. The second
assumption is that we have access to incoming edges for
any vertex discovered during the execution of the algorithm.
Dijkstra’s algorithm uses only an adjacency list of outgoing
edges. This assumption is also minor in the context of static
graphs. However, when the graph is used in a dynamic setting,
it may be difficult to find the list of incoming edges. We assume
in this paper that either the graph is static or that a vertex can
be expanded in the backward direction in a dynamic graph.

Due to lack of space this paper doesn’t include extensive
proofs of correctness; these can be found in our informal
preliminary work [10].

III. RELATED WORK

The single source shortest path problem has a rich history
[6], [7]. One popular research direction is to improve the worst
case complexity of Dijkstra’s algorithm by using different data
structures. For example, by using Fibonacci heaps for the min-
priority queue, Fredman and Tarjan [9] gave an algorithm that
takes O(e+nlogn). There are many algorithms that run faster
when weights are small integers bounded by some constant
[1], [18], [19]. Our algorithms do not improve the worst case
sequential complexity of the problem, but avoid many heap
operations which produces a significant speedup as we’ll show
in later sections.

There are many related works for parallelizing Dijkstra’s
algorithm [4], [11]. The most closely related work is Crauser
et al [4] which gives three methods to improve parallelism.
These methods, in-version, out-version and in-out-version,
allow multiple vertices to be marked as fixed instead of just
the one with the minimum D value. The in-version marks as
fixed any vertex x such that D[z] < min{D[y] | ~fized(y)}+
min{w[v, z] | = fized(x)}. This method is a special case of
our algorithm SP,. The implementation of in-version in [4]
requires an additional priority queue and the total number
of heap operations increases by a factor of 2 compared to

Dijkstra’s algorithm even though it allows greater parallelism.
Our algorithm S P, uses fewer heap operations than Dijkstra’s
algorithm. The out-version in [4] works as follows. Let L be
defined as min{D[x] + w[z,y| | = fized(x)}. Then, the out-
version marks as fixed all vertices that have D value less than
or equal to L. Our method is independent of this observation.

A popular practical parallel algorithm for SSSP is A-stepping
algorithm due to Meyer and Sanders [16]. Meyer and Sanders
also provide an excellent review of prior parallel algorithms in
[16]. They classify SSSP algorithms as either label-setting, or
label-correcting. Label-setting algorithms, such as Dijkstra’s
algorithm, relax edges only for fixed vertices. Label-correcting
algorithms may relax edges even for non-fixed vertices. Our
algorithms SP;, SP, and parSP, are label-setting.

A-stepping algorithm is a label-correcting algorithm in which
eligible non-fixed vertices are kept in an array of buckets
such that each bucket represents a distance range of A. The
parameter A provides a trade-off between the number of
iterations and the work complexity. For example, when A
is oo, the algorithm reduces to Bellman-Ford algorithm where
any vertex that has its D label changed is explored. When
A equals 1 for integral weights, the algorithm is a variant of
Dijkstra’s algorithm. They show that by taking A = O(1/d)
where d is the maximum degree of a graph on n vertices, and
random edge weights that are uniformly distributed in [0, 1],
their algorithm takes O(n+e+dM) where M is the maximum
shortest path weight from the source vertex to any other vertex.
There are many practical large-scale implementations of the
A-stepping algorithm (for instance, by Madduri et al [15])
in which authors have shown the scalability of the algorithm.
Chakravarthy et al [3] give another scalable implementation of
an algorithm that is a hybrid of the Bellman-Ford algorithm
and the A-stepping algorithm.

In summary, we present two single threaded algorithms for
SSSP in this paper in order of increasing work complexity,
SP; and SP, and present a parallel algorithm, ParSP» that
uses the same techniques but in a multi-threaded setting. We
only compute the cost of the shortest paths and not the actual
paths because the standard method of keeping backward parent
pointers is applicable to all of our algorithms. Algorithm S P;
counts the number of incoming edges to a vertex that have
been relaxed. When all incoming edges have been relaxed, we
show that it is safe to mark this vertex as fixed. The algorithm
S P, generalizes S P; to allow even those vertices to be marked
as fixed which have incoming edges from non-fixed vertices
under certain conditions. Both of these algorithms have fewer
heap operations than Dijkstra’s algorithm for the sequential
case and allow more parallelism when multiple cores are used.

IV. ALGORITHMS

In this section we introduce the algorithms which are the
focus of this paper. We informally presented a preliminary
version of SP; and SP, in [10] which includes proofs
of correctness, so we will not restate the proofs here. For
completeness we will describe the original algorithms, along



with the changes we’ve introduced in the context of this paper.
We also present a parallel version of SP, (ParSPs).

Dijkstra’s algorithm (or one of its variants) is the most
popular single source shortest path algorithm used in practice.
For concreteness sake we use the version shown in Fig. 1
for comparison with our algorithm. The algorithm also helps
in establishing the terminology and the notation used in our
algorithm.

We consider a directed weighted graph (V, E, w) where V
is the set of vertices, E' is the set of directed edges and w is
a map from the set of edges to positive reals (see Fig. 2 for
a running example). To avoid trivialities, we assume that the
graph is loop-free and every vertex x, except the source vertex
Vg, has at least one incoming edge.

var D:array[0...n — 1] of integer
initially Vi : D[i] = oo;
fized: array[0...n — 1] of boolean

initially Vi : fized[i] = false;
H: binary heap of (4, d) initially empty;
D[0] := 0;
H .insert((0,D[0]));

while — H.empty() do
(4, d) := H.removeMin();
fized[j] := true;
forall k: = fized(k) A (j, k) € E
if (D[k] > DI[j] + w[j, k]) then
DIK] := D[j] + wlj, k};
H.insertOrAdjust (k, D[k]);
endwhile;

Fig. 1: Dijkstra’s algorithm to find the shortest paths to all
nodes from v .
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Fig. 2: A Weighted Directed Graph

Dijkstra’s algorithm maintains D[:], which is a tentative cost
to reach v; from vy. Every vertex x in the graph has initially
DJx] equal to co. Whenever a vertex is discovered for the
first time, its D[x] becomes less than co. We use the predicate
discovered(z) = D[z] < co. The variable D decreases for a
vertex whenever a shorter path is found due to edge relaxation.

In addition to the variable D, a boolean array fixed is
maintained. Thus, every discovered vertex is either fixed or
non-fixed. The invariant maintained by the algorithm is that if
a vertex x is fixed then D[z] gives the final shortest cost from
vertex vg to x. If x is non-fixed, then D|x] is the cost of the
shortest path to x that goes only through fixed vertices.

A heap H keeps all vertices that have been discovered but
are non-fixed along with their distance estimates D. We view
the heap as consisting of tuples of the form (j, D[j]) where the
heap property is with respect to D values. The algorithm has

one main while loop that removes the vertex with the minimum
distance from the heap with the method H.removeMin(), say
v;, and marks it as fixed. It then explores the vertex v; by
relaxing all its adjacent edges going to non-fixed vertices v.
The value of D[k] is updated to the minimum of D[k] and
D[j] +wlj, k]. If vy, is not in the heap, then it is inserted, else
if D[k] has decreased then the label associated with vertex k
is adjusted in the heap. We abstract this step as the method
H .insertOrAdjust(k, D[k]). The algorithm terminates when the
heap is empty. At this point there are no discovered non-fixed
vertices and D reflects the cost of the shortest path to all
discovered vertices. If a vertex j is not discovered then D|[j]
is infinity reflecting that v; is unreachable from vy.

V. ALGORITHM S P;: USING PREDECESSORS

Dijkstra’s algorithm finds the vertex with the minimum
tentative distance and marks it as a fixed vertex. This is the
only mechanism by which a vertex is marked as fixed in
Dijkstra’s algorithm. Finding the non-fixed vertex with the
minimum D value takes O(logn) time when a heap or its
variant is used. Our first observation is that if for any non-fixed
vertex x, if all the incoming edges are from fixed vertices,
then the current estimate D]z] is the shortest cost. To exploit
this observation, we maintain with each vertex ¢, a variable
pred[i] that keeps the number of incoming edges that have not
been relaxed. The variable pred[i] is decremented whenever an
incoming edge to vertex 4 is relaxed. When pred]i] becomes
zero, vertex ¢ becomes fixed. Determining a vertex to be fixed
by this additional method increases the rate of marking vertices
as fixed in any iteration of the while loop.

The second observation is that in Dijkstra’s algorithm vertices
are explored only in order of their cost. SP; explores vertices
whenever it finds one that is fixed. Hence, in addition to the
heap H, we maintain a set R of vertices which have been
fixed but not explored, i.e., their adjacency lists have not
been traversed. We also relax the invariant on the heap H. In
Dijkstra’s algorithm, the heap does not contain fixed vertices.
In algorithm SP;, the heap H may contain both fixed and
non-fixed vertices. However, only those fixed vertices which
have been explored may exist in the heap.

The algorithm S P; is shown in Fig. 3. The algorithm starts
with the insertion of the source vertex with its D value as 0 in
the heap. The algorithm consists of two while loops. The outer
while loop removes one vertex from the heap. If this vertex
is fixed, then it has already been explored and therefore it is
skipped; otherwise, it is marked as fixed and inserted in R to
start the inner while loop. The inner loop keeps processing the
set R till it becomes empty.

We do not require that vertices in R be explored in the
order of their cost. If R consists of multiple vertices then all
of them can be explored in parallel. During this exploration
other non-fixed vertices may become fixed. These are then
added to R. The vertices z € R are explored as follows. We
process all out-going adjacent edges (z, k) of the vertex z
to non-fixed vertices k. This step is called processEdgeSPI
in Fig. 3. First, we decrement the count pred[k| to account



var D: array[0 . ..n — 1] of integer
initially Vi : D[i] = oo;
H: binary heap of (4, d) initially empty;
fized: array[0 . ..n — 1] of boolean
initially Vi : fized[i] = false;
Q, R: set of vertices initially empty;
pred: array[0 . . . n — 1] of integer
initially Vi : pred[i] = | {z | (z,v;) € E}|;

DI[0] := 0;
H.insert((0, D[0]));
while - H.empty() do
(4, d) := H.removeMin();
if (~fized[j]) then
R.insert(j);
fized[j] = true;
while R # {} do
forall z € R
R.remove(z);
forall k : —fized(k) A (2,k) € E:
processEdgeSP1(z, k);
endwhile;
forall z € Q:
Q.remove(z);
if ~fized[z] then
H.insertOrAdjust (z, D[z]);
endwhile;

procedure processEdgeSP1(z, k);
var changed: boolean initially false;
pred[k] := pred[k] — 1;
if (D[k] > D|z] + w[z, k]) then
DIk] := D[z] + wlz, kJ;
changed := true;

if (pred[k] = 0) then
fized[k] := true;
R.insert(k);

else if (changed A (k &€ Q)) then
Q.insert(k);

Fig. 3: Algorithm SP;

for its predecessor z being fixed. Then, we do the standard
edge-relaxation procedure by checking whether D[k] can be
decreased by taking this edge. If pred[k] is zero, k is marked
as fixed. Setting fized[k] to true also removes it effectively
from the heap because whenever a fixed vertex is extracted in
the outer while loop it is skipped.

Finally, if D[k] has decreased and pred|[k] is greater than 0,
we insert it in the heap with H.insert.

Consider the graph in Fig. 2. Initially (0, D[0]) is in the
heap H. Since there is only one vertex in the heap H, it is
also the minimum. This vertex is removed and inserted in R
marking vy as fixed. Now, outgoing edges of vy are relaxed.
Since pred[1] becomes 0, v; is marked as fixed and added
to R. The vertex vy has pred as 1 and D[2] as 2 after the
relaxation of edge (vg, vz). The vertex vy is inserted in the @
for later insertion in the heap. Since R is not empty, outgoing
edges of v; are relaxed. The vertex vs is inserted in @ and
its D value is set to 12. The vertex v, is also inserted in )
and its D value is set to 11. At this point R is empty and we

insert vertices in ¢ in H and get back to the outer while loop.

Continuing in this manner, the algorithm terminates with D
array as [0,9,2,8,7).
The following lemma underlies S P;:

Lemma 1. Let v be any non-fixed vertex. Suppose all incoming
edges of v have been relaxed, then D[v] equals cost[v].

We next present the time complexity of the algorithm SP;.
Due to space constraints the full proof of the complexity study
as well as of Lemma 1 is presented in [10], but the conclusion
is captured in the following theorem:

Theorem 1. SP; takes O(e + nlogn) time with Fibonacci
heaps for any directed graph and takes O(e) time for directed
acyclic graphs in which source node is the only one with with
zero incoming edges.

The worst case for SP; is when the vertex discovered last
has outgoing edges to all other vertices. In such a worst-case
scenario, SP; will not have any vertex that becomes fixed
through processing of R and the algorithm will degenerate into
Dijkstra’s algorithm.

VI. ALGORITHM SP5: USING WEIGHTS ON INCOMING
EDGES AND KNOWN MINIMUMS

We now strengthen our mechanism to mark vertices as
fixed. SP; requires access to incoming edges for any vertex.
If (v, k) is an edge, then we call v a predecessor of k. Note
that predecessor is not an acyclic relation and & may also
be a predecessor of v. Let a vertex k£ be discovered from a
predecessor vertex z. Then, we compute inWeight[k] as the
minimum weight of incoming edges from all predecessors
other than z. We exploit inWeight as follows.

Lemma 2. Let k be any non-fixed vertex discovered from the
vertex z in any iteration of the outer while loop with d. If
(D[k] < d + inWeight[k]) then D[k] equals cost[k].

This mechanism comes at the space overhead of maintaining
an additional array inWeight[] indexed by vertices.

inWeight:array [0...n — 1] of int

initially Vi : inWeight[i] = oo;
procedure processEdgeSP2(z, k);
var changed: boolean initially false;
pred[k] := pred[k] — 1;

/| Step 1: vertex k has been discovered.
/| Compute inW eight
if (D[k] = oo) A (pred[k] > 0) then
inWeight[k] := min{w(v, k] | (v, k) € E,v # z};

/I Step 2: relax (z, k) edge

if (D[k] > D[z] + w[z, k]) then
D[k] := Dl[z] + wlz, k];
changed :=true;

/I Step 3: check if vertex k can be fixed.

if ((pred[k] = 0) v (D[k] < d + inWeight[k]) then
fized[k] := true;
R := R.insert(k);

else if (changed A (k € Q)) then Q.insert(k);

Fig. 4: Algorithm SP»: Algorithm SP; with processEdgeSP2

After incorporating Lemma 2, we get the algorithm S P
shown in Fig. 4. It is same as S P, except we use the procedure
processEdgeS P2 instead of processEdgeSP1. In step 1, we
compute inWeight[k] when it is discovered for the first time,
i.e., when D[k] is co. If there are additional incoming edges,
ie., (predlk] > 0), we determine the minimum of all the



incoming weights except from the vertex z that discovered k.
In step 2, we perform the standard edge-relaxation. In step 3,
we check if the vertex k can be fixed either because it has
no more predecessors, or for any non-fixed predecessor v, the
relaxation of the edge (v, k) will not change D|k]. Observe that
for sequential implementations, if R is maintained as a queue
and all edge weights are uniform, then any vertex discovered
for the first time will always be marked as fixed and will never
be inserted in the heap. For such inputs, S P, will behave as a
simple breadth-first-search.

Since any vertex is discovered at most once, computing
inWeight requires processing of all incoming edges of a
vertex at most once. Hence, the cumulative time overhead is
linear in the number of edges. If the graph is unweighted,
then S P, is much faster than Dijkstra’s algorithm when R is
implemented as a queue.

We next present the time complexity of the algorithm S Ps.
Due to space constraints the full proof of the complexity study
as well as of Lemma 2 is presented in [10], but the conclusion
is captured in the following theorem:

Theorem 2. Suppose that R is implemented as a simple queue.
S Py takes

e O(e+nlogn) time with Fibonacci heaps for any directed
graph,

o O(e) time for directed acyclic graphs in which only the
source node has zero incoming edges,

e Of(e) time for any unweighted directed graph.

Hence, SP» unifies Dijkstra’s algorithm with the topological
sort for acyclic graphs as well as the breadth-first search for
unweighted graphs. Consequently, it is faster than Dijkstra’s
algorithm when the input graph is close to an acyclic graph
(i.e., has few cycles) or close to an unweighted graph (most
weights are the same).

Lemma 2 captures a constraint similar to the one used in
the in-version method of [4]. The in-version fixes any vertex
k such that D[k] < d+ min{w[j, k] | —fized(j), (j, k) € E}.
There are two differences. First, we do not include the weight
of the edge that discovered £ in our calculation of inWeight.
Second, in [4] the implementation is based on maintaining an
additional priority queue which adds the overhead of O(elogn)
to the algorithm with ordinary heap implementation. S P, adds
a cumulative overhead of O(e). In sequential implementations,
the in-version increases the number of heap operations, whereas
S P, decreases this number.

VII. ALGORITHM ParSP,: LEVERAGING PARALLELISM
OPPORTUNITIES

One of the key differences between our algorithms and Di-
jskstra’s algorithm is that our algorithms have more opportunity
for parallelism. In this section we present an algorithm that
leverages this opportunity.

Figure 5 shows algorithm ParSP,, which is a parallel
version of S P, (commonalities with the previous algorithms
removed for conciseness). This algorithms uses thread-safe data-
structures for H and R. The algorithm executes as follows:

DJ[0] := 0;
H.insert((0, D[0]));
do in parallel
if R # {}:
R.remove(z);
forall k : —fized(k) A (2,k) € E:
processEdgeSP2(z, k, H);
endfor;
forall z € Q:
Q.remove(z);
if ~fized[z] then
H.insertOrAdjust (z, D[z]);
if R = {}: do single thread
if H# {}:
(4, d) := H.removeMin();
if (= fized[j]) then
fized[j] = true;
R.insert(j);
while R # {} V H # {}

Fig. 5: Algorithm ParSP;

Multiple threads execute the main loop of the algorithm. While
there are elements in R individual threads remove elements
and proceed to execute processEdgeSP2 in parallel. If R is
empty threads proceed to add remaining elements from @ to
the heap and a single thread pops an element from the heap
H and adds it to R. This continues until there are no elements
in both R and H, in which case the algorithm is done.

One of the main reasons Dijkstra’s algorithm is notoriously
hard to parallelize is because its only underlying data-structure,
the heap, is hard to parallelize itself. In fact implementing
something analogous to the above for Dijkstra’s algorithm
actually worsens performance in both single and multi-threaded
scenarios. This happens because, in the case of Dijkstra’s
algorithm, heap operations are the bulk of all operations and if
these operations needs to be protected by a mutex, not only does
this negate any advantage obtained from parallelization but also
the additional context-switching penalty and synchronization
penalty actually increase execution time. While ParS P, uses
a trivially thread-safe heap H protected by mutex, R can be
made much more efficient to use in a multi-thread scenario.
Because R imposes no ordering constraints whatsoever it can
be implemented using parallel efficient data-structures. In our
implementation we leverage Galois’s per-socket FIFO list for
R [13]. This is a list that is partially thread-local, avoiding
synchronization penalties when each thread can produce work
for itself, only reverting using a mutex when this is no longer
the case and work needs to be pulled from other threads.
Similarly @) can be implemented as a thread-local set. There
might be other parallel data-structures that yield even better
results, such as compare-and-set based ones, but we leave
exploring that aspect for future work.

VIII. OPTIMIZATIONS

As we set out to produce a high-performance implementation
of SP; and SP,, we noticed that some details hinder real-
world performance, so we introduced a few empirically-driven
changes, the more relevant of which we describe in this section.



A. Allow duplicates in the heap

High performance implementations of simple binary heaps
are widely available, including in C++ the language we selected
to implement the algorithms. The original implementation
required an insertOrAdjust method in the heap, to avoid
adding a vertex to the heap more than once, thus minimizing
its size. This method is not available in the commonly available
array-based heaps. Adding this method required the heap
implementation to grow in complexity to the point where this
complexity would hurt the algorithm’s runtime performance
by almost one order of magnitude. We considered other types
of heaps, such as Binomial Heaps and Fibonacci Heaps. In
practice, these data structures hinder caching and force memory
jumps which negate any theoretical advantage, at least in the
case of the algorithms described in this paper.

B. Heap compaction

The implementation of both our algorithms and Dijkstra’s
algorithm allows for duplicates in the heap, causing it to

have extra “garbage” but improving its overall performance.

However, both SP; and SP, additionally often mark nodes
as fixed even if they are already in the heap. This means
they will be thrown out on H.pop and are just contributing
to the height of the heap, thus worsening performance. To
partially mitigate this problem we implemented a compaction
mechanism that, on insert and pop, before adding a new
element goes through the end of the vector underlying the
binary heap and discards vertices until it finds one node that is
not fixed. This simple method helps mitigate long tail behavior
we observed in our experiments: even though SP; and SP;
would be considerably faster than Dijkstra’s algorithm for the
majority of the execution, they would tend to converge on the
execution time of Dijskstra’s algorithm near the end of the
algorithm’s run. This is because a lot of cycles were spent
removing vertices from the heap even though they had already
been fixed.

IX. IMPLEMENTATION AND EXPERIMENTAL DESIGN

In this section we present our implementation of the
algorithms introduced in the previous section, as well as the
experimental design underlying the results presented in the
next section.

A. Code & Runtime framework

We chose the Galois Library [13] as our underlying runtime
framework. Using Galois allows us to explore our own
algorithms experimentally while relying on thoroughly tested
parallel and benchmark constructs. Furthermore, Galois already
provides high performance implementations of Dijskstra’s
algorithm and A-stepping, which provide an unbiased baseline
for comparison with our own algorithms.

Our implementation of SP; SP, and ParSP,, as well as
the baseline algorithms for comparison Dijkstra’s algorithm
and A Stepping, is available as open source code on Github?

Zhttps://github.com/dralves/sp1-sp2-galois

under the same license as Galois itself (3-Clause BSD License).
Nearly all of SSSP code relevant for this paper is contained in
the SSSP.cpp file.

B. Measurements and metrics

In our experimental evaluation we focus on two core metrics,
Total Runtime and Median time to fixedness, both in terms
of their absolute values and in comparison to the baseline
performance of Dijkstra’s algorithm, referred to as Speedup.
Total runtime, i.e. the time is takes to find the shortest
path from previously chosen source vertex to all the other
vertices, captures the algorithm overall performance. However,
by itself, Total runtime is lacking in terms of capturing how
fast individual nodes are marked as fixed. Capturing this last
aspect is important because, in real world scenarios, finding
the Shortest Path is seldom the goal of the computation. In fact,
in most situations computing the shortest path is but a step in
a larger computation and, as such, the sooner the follow on
computation can start, the better. This advantage is captured
in the Median time to fixedness metric, captures the median
time that each algorithm takes to mark vertices as fixed (and
thus allowing the follow up computation to start). We chose
the median versus the average as it is statistically more robust
to outliers and thus better captures real-world performance.

In the terms introduced in Section III, only label-setting
algorithms (as is the case of Dijkstra’s algorithm, SP;, SP;
and ParSP,) are able to allow follow on computations to
start early when the shortest path to a particular destination
is found. Label-correcting algorithms, like A-stepping must
run to completion which makes them very inneficient for this
particular aspect. Thus, the Median time to fixedness in the case
of A-stepping is the same as Total runtime, our experiments
take this fact into account.

C. Graphs

The graphs considered for the experiments were either taken
from graph challenge datasets or generated using synthetic
graph generators. The Galois library provides a diverse set of
graphs which includes random, scalefree, structured and road
graphs [13]. Kronecker graphs used in the experiment were
either generated using the SNAP kronecker graph generator
[14] or obtained from graph challenge datasets like DIMACS
[5], graph500 [17]. We additionally used graphs generated with
ParMAT [12] and, in some cases, proceeded to eliminate cycles
to generate directed acyclic graphs. Table I lists the graphs
used in our experimental evaluation and their original names,
to facilitate reproduceability.

D. Setup

The experimental system is a single SkyLake node of the
Stampede2 supercomputer at the Texas Advanced Computing
Center. Each SkyLake node is a 2-socket Intel(R) Xeon(R)
CPU - Platinum 8160 @ 2.1GHz with 24 cores per socket and
two threads per core and 192GB of RAM. Our experiments
were limited to a maximum of 32 threads constrained to a



Dataset Original Name Name used Type
Galois USA Roads USA Roads - 23M road
Galois r4-2e26 RMAT 2e26 random
DIMACS || coAuthorsDBLP coAuthorsDBLP - 50k | citation
DIMACS || coPapersDBLP coPaperDBLP - 400K | citation
DIMACS || belgium.osm.graph.bz2 | Belgium Cities road
Graph500 || graph500-s21-ef16 Graph500 1.2M scalefree
Graph500 || graph500-s23-ef16 Graph500 4.5M scalefree
SNAP kron-2e23 Kronecker 2e24 scalefree
SNAP kron-2e28 Kronecker 2e28 scalefree
SNAP kron-2¢30 Kronecker 2¢30 scalefree
SNAP kron-2e32 Kronecker 2e32 scalefree

TABLE I: Graphs used in experimental evaluation

S P, single condition for fixedness is more sensitive to the
graph morphology and that SP, is more robust to different
types and scales of graphs, which makes sense since S P, also
includes SP;’s condition.

B. Multi Threaded Evaluation

While S P, demonstrably works well on graphs of all scales,
larger graphs can benefit from multi-threaded algorithms like
ParSP;. In the next experiment we evaluate how Dijkstra’s
algorithm, SP; and S P, compare with ParSP;.

Single vs Multi threaded performance - Total runtime - Total

single socket, both to exclude possible NUMA effects and to
avoid saturating the CPU.

We use the Release build of our own fork of the Galois library
for our experiment (available on github). The Galois library
includes reference single source shortest path implementations
of Dijkstra and Delta-stepping algorithms. The experiment uses
Intel C++ Compiler version 18.0.2 and Boost C++ libraries.

X. EXPERIMENTAL RESULTS

In this section we will present our experimental findings, de-
rive insight and provide commentary on particularly interesting
results.

A. Single Threaded Evaluation

In order to establish a baseline for the remaining experiments,
the first experiment measures the speed up both for Totral
Runtime and Median time to fixedness of the non-parallel
versions of SP; and SP, versus Dijkstra’s algorithm.

Graphs of different sizes - Total runtime - Speedup

Dijkstra
1.6 4 SP1

SP2

!
14

<°

Fig. 6: Total runtime on graphs of various types/scales -
Speedup vs Dijkstra’s algorithm (higher is better))

As we can observe from Fig. 6 SP, always strictly
outperforms Dijskstra’s algorithm, presenting speedups from
1.07 up to 1.46, or between 7 and 46% faster. Perhaps
more interesting is that, while SP, is consistently better
than Dijkstra’s algorithm, SP;’s performance varies quite
a bit more, including actually being slower than Dijkstra’s
algorithm in for the coPapersDBLP graph. This implies that

Time (microseconds) (log scale)
"
5

Dijkstra Par. SP2 (8T)
Par. SP2 (2T) Par. SP2 (16T) o
Par. SP2 (4T) Par. SP2 (32T) »
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Graphséo 1.2M

Graph560 45M

Fig. 7: Total runtime - ST vs MT (lower is better, log scale)
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5

Speedup
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Fig. 8: Speedup: ST vs MT (higher is better)

Graph500 1.2 M Graph500 4.5 M

Figures 7 and 8 shows the results of this experiment. Note
that times are displayed in a logarithmic scale.

When executing with two threads, ParSP, is marginally
faster than Dijkstra’s algorithm in terms of total runtime, but
it is able to mark the median vertex as fixed about 50% faster
(not displayed). Looking the different types of graphs, we can
see that parS P, scales well with the increase of number of
threads, particularly in the case of the DAG graph. Note also
that on graphs of the same morphology but different sizes,
(Graph500 1.2M and 4.5M), the speedup of ParS P, increases
from Graph500 1.2M to Graph500 4.5M for the same number



of threads. This happens because there are more opportunities
for parallellism as the graph is bigger. We will explore this
aspect more thoroughly in the next experiment.

Big Kronecker Graphs - Median time to fix nodes - Speedup
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Fig. 9: Median time to ’fix’ vertices - Speedup vs A-stepping
(higher is better)

The final experiment that we performed was to evaluate the
scalability of ParSP, as we increase the number of threads
and the size of the graphs. We chose graphs of identical
morphologies but different scales and compared all graphs
with A-stepping. A-stepping is well known for displaying a
good ability to scale to multiple threads as can be seen in Figure
9. However this ability doesn’t translate well when the size
of the graph increases. As we can see the speedup relative to
Dijkstra’s algorithm Mean time to fixedness remains constant as
the graph size increases. On the other hand ParSPs’s speedup
increases with the size of the graph, for the same number of
threads. This makes sense since as the graph gets bigger there
are more opportunities to keep nodes in the R list and thus
mark nodes as fixed while bypassing the heap. We can thus
conclude that, while A-stepping scales better with the number
of threads for the same size graph, our algorithm scales better
with the size of the graph, for the same number of threads.

XI. CONCLUSIONS AND FUTURE WORK

In this paper we presented and experimentally evaluated
three novel label-setting algorithms for the Shortest Path
problem: SP; and SP, are single-threaded algorithms that
take advantage of available information about the graph to
mark nodes as fixed, avoiding heap insertions and removals;
ParSP, is a multi-threaded algorithm that leverages the
parallelism opportunities created by SP; and SP». We present
an implementation of our algorithms and an evaluation that
shows how they demonstrate significant speedups in several
types of graphs, not only in terms of total runtime, but also
in the median time that it takes to calculate the shortest path
from the source vertex to any given node.

In future work, we will explore possible improvements
to label-correcting algorithms like A-stepping, using similar
techniques, namely the possibility of using fixedness as a

prioritization metric that drives what is processed in each
round, together with the currently used distance.
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