
Deteting Loally Stable Prediates withoutModifying Appliation MessagesRanganath Atreya1, Neeraj Mittal1, and Vijay K. Garg2?1 Department of Computer Siene, The University of Texas at Dallas, Rihardson,TX 75083, USA2 Department of Eletrial and Computer Engineering, The University of Texas atAustin, Austin, TX 78712, USAAbstrat. In this paper, we give an eÆient algorithm to determinewhether a loally stable prediate has beome true in an underlying om-putation. Examples of loally stable prediates inlude termination anddeadlok. Our algorithm does not require appliation messages to be mod-i�ed to arry ontrol information (e.g., vetor timestamps). One the pred-iate beomes true, the detetion lateny (or delay) of our algorithm isproportional to the time-omplexity of omputing a (possibly inonsis-tent) snapshot of the system. Moreover, only O(n) ontrol messages arerequired to detet the prediate one it holds, where n is the number ofproesses.1 IntrodutionTwo important problems in distributed systems are deteting termination of adistributed omputation and deteting deadlok in a distributed database system.Termination and deadlok are examples of stable properties. A property is stableif it never beomes false one it beomes true. For example, one a subset ofproesses are involved in a deadlok, they ontinue to stay in a deadloked state.An algorithm to detet a general stable property involves olleting the relevantstates of proesses and hannels that are onsistent with eah other and testingto determine whether the property holds over the olleted state. By repeatedlytaking suh onsistent snapshots of the omputation and evaluating the propertyover the olleted state, it is possible to eventually detet a stable property oneit beomes true.Several algorithms have been proposed in the literature for omputing a onsis-tent snapshot of a omputation [1{4℄. These algorithms an be broadly lassi�edinto four ategories. They either require sending a ontrol message along everyhannel in the system [1℄ or rely on piggybaking ontrol information on appli-ation messages [2℄ or assume that messages are delivered in ausal order [4, 5℄or are inhibitory in nature [3℄. As a result, onsistent snapshots of a omputa-tion are expensive to ompute. More eÆient algorithms have been developed fortermination and deadlok that do not require taking onsistent snapshots of theomputation [6{14℄.? Supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas EduationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.

Termination and deadlok are examples of stable properties that an be for-mulated as loally stable prediates [15℄. A prediate is loally stable if no proessinvolved in the prediate an hange its state relative to the prediate one theprediate holds. In this paper, we show that it is possible to detet any loallystable prediate by repeatedly taking possibly inonsistent snapshots of the om-putation in a ertain manner. Sine snapshots are not required to be onsistent,it is not neessary to send a ontrol message along every hannel of the system.Our algorithm does not inhibit any event of the underlying omputation nor doesit require hannels to be FIFO. Unlike Marzullo and Sabel's algorithm for de-teting a loally stable prediate [15℄, no ontrol information is required to bepiggybaked on appliation messages and therefore appliation messages do notneed to be modi�ed at all. One the prediate beomes true, the detetion lateny(or delay) of our algorithm is proportional to the time-omplexity of the fastestsnapshot protool. Furthermore, sine our approah does not require snapshots tobe onsistent, it is not neessary to send a ontrol message along every hannel ofthe system when a snapshot is taken.Our algorithm also uni�es several known algorithms for deteting terminationand deadlok [6, 8{11, 13℄. Some of the examples inlude termination detetionalgorithms by Safra [9℄ (olor-based algorithm) and Mattern et al [10℄ (stiky agalgorithm), and deadlok detetion algorithm by Ho and Ramamoorthy [6℄ (two-phase algorithm). All of these algorithms an be derived as speial ases of thealgorithm given in this paper. Note that the two-phase deadlok detetion algo-rithm as desribed in [6℄ is atually awed but an be easily �xed using the ideasgiven in this paper. Therefore this paper presents a unifying framework for under-standing and desribing various termination and deadlok detetion algorithms.The paper is organized as follows. Setion 2 desribes the system model and thenotation used in this paper. An algorithm for deteting a loally stable prediateis disussed in Setion 3. Due to the lak of spae, proofs of various lemmas andtheorems have been omitted. In Setion 4, we analyze the performane of thealgorithm. We disuss the related work in Setion 5. Finally, Setion 6 onludesthe paper and also outlines diretions for future researh.2 Model and Notation2.1 Distributed ComputationsWe assume an asynhronous distributed system omprising of many proesseswhih ommuniate with eah other by sending messages over a set of hannels.There is no global lok or shared memory. Proesses are non-faulty and hannelsare reliable. Channels may be non-FIFO. Message delays are �nite but unbounded.Proesses exeute events and hange their states. A loal state of a proess,therefore, is given by the sequene of events it has exeuted so far starting fromthe initial state. Events are either internal or external. An external event ould bea send event or a reeive event or both. An event auses the loal state of a proessto be updated. In addition, a send event auses a message or a set of messages tobe sent and a reeive event auses a message or a set of messages to be reeived.The event exeuted immediately before e on the same proess (as e) is alled the

predeessor event of e and is denoted by pred(e). The suessor event of e, denotedby su(e), an be de�ned in a similar fashion.Although it is possible to determine the exat order in whih events wereexeuted on a single proess, it is, in general, not possible to do so for eventsexeuted on di�erent proesses. As a result, an exeution of a distributed system,referred to as distributed omputation (or simply a omputation), is modeled by an(irreexive) partial order on a set of events. The partial order, denoted by !, isgiven by the Lamport's happened-before relation (also known as ausality relation)[16℄ whih is de�ned as the smallest transitive relation satisfying the followingproperties:1. if events e and f our on the same proess, and e ourred before f in realtime then e happened-before f , and2. if events e and f orrespond to the send and reeive, respetively, of a messagethen e happened-before f .Intuitively, the Lamport's happened-before relation aptures the maximumamount of information that an be dedued about ordering of events when thesystem is haraterized by unpreditable message delays and unbounded relativeproessor speeds.2.2 Cuts, Consistent Cuts and FrontiersA state of a distributed system, referred to as global state, is the olletive state ofproesses and hannels. (A hannel state is given by the set of messages in transit.)If every proess maintains a log of all the messages it has sent and reeived so far,then a hannel state an be determined by examining the state of the two proessesonneted by the hannel. Therefore, in this paper, we view a global state as aolletion of loal states. The equivalent notion based on events is alled ut. Aut is a olletion of events losed under predeessor relation. In other words, aut is a set of events suh that if an event is in the set, then its predeessor, if itexists, also belongs to the set. Formally,C is a ut , h8 e; f :: (e = pred(f)) ^ (f 2 C)) e 2 CiThe frontier of a ut onsists of those events of the ut whose suessors donot belong to the ut. Formally,frontier(C) , f e 2 C j su(e) exists) su(e) =2 C gNot every ut orresponds to a valid state of the system. A ut is said to be on-sistent if it ontains an event only if it also ontains all events that happened-beforeit. Formally,C is a onsistent ut , h8 e; f :: (e! f) ^ (f 2 C)) e 2 CiObserve that if a ut is not onsistent then it ontains an event suh that oneor more events that happened-before it do not belong to the ut. Suh a senario,learly, annot our in a real world. Consequently, if a ut is not onsistent thenit is not possible for the system to be in a global state given by the ut. In otherwords, only those uts whih are onsistent an possibly our during an exeution.

2.3 Global PrediatesA global prediate (or simply a prediate) is de�ned as a boolean-valued funtionon variables of one or more proesses. In other words, a prediate maps everyonsistent ut of a omputation to either true or false. Given a onsistent ut, aprediate is evaluated with respet to the values of the relevant variables in thestate resulting after exeuting all events in the ut. If a prediate b evaluates totrue for a ut C, we say that C satis�es b or, equivalently, b(C) = true. Hereafter,we abbreviate expressions b(C) = true and b(C) = false by b(C) and :b(C),respetively. Also, we denote the value of a variable x resulting after exeuting allevents in a ut C by x(C).In this paper, we fous on a speial but important lass of prediates alledloally stable prediates [15℄. A prediate is stable if one the system reahes aglobal state where the prediate holds, the prediate holds in all future globalstates as well.De�nition 1 (stable prediate). A prediate b is stable if it stays true one itbeomes true. Formally, b is stable if for all onsistent uts C and D,b(C) ^ (C � D)) b(D)An example of a stable prediate is termination (of a distributed omputation)whih is expressed as: \all proesses are passive" and \all hannels are empty".Another important example of a stable prediate is deadlok whih ours whentwo or more proesses are involved in some sort of \irular" wait. (Deadlok isstable under all request models.) A stable prediate is said to be loally stable ifone the prediate beomes true, no variable involved in the prediate hanges itsvalue thereafter. For a prediate b, let vars(b) denote the set of variables on whihb depends.De�nition 2 (loally stable prediate [15℄). A stable prediate b is loallystable if no proess involved in the prediate an hange its state relative to b oneb holds. Formally, b is loally stable if for all onsistent uts C and D,b(C) ^ (C � D)) h8 x 2 vars(b) :: x(C) = x(D)iIntuitively, one a loally stable prediate beomes true, not only does thevalue of the prediate stay the same|whih is true, but the values of all variablesinvolved in the prediate stay the same as well. In this paper, we distinguish be-tween property and prediate. A prediate is a onrete formulation of a propertyin terms of program variables and proessors states. In general, there is more thanone way to formulate a property. For example, the mutual exlusion property,whih states that there is at most one proess in its ritial setion at any time,an be expressed in the following ways.1. V16i<j6n(:si_:sj), where si is true if and only if proess pi is in its ritialsetion.2. (nPi=1 si) 6 1, where si is 1 if and only if proess pi is in its ritial setionand is 0 otherwise.

Loal stability, unlike stability, depends on the partiular formulation of aproperty. It is possible that one formulation of a property is loally stable whilethe other is not. For instane, onsider the property \the global virtual time ofthe system is at least k", whih is abbreviated as GV T > k [17℄. The property\GV T > k" is true if and only if the loal virtual time of eah proesses is at leastk and there is no message in transit with timestamp less than k. Let lvti denote theloal lok of proess pi. Also, let sent(i; j; k) denote the number of messages thatproess pi has sent to proess pj so far whose timestamp is at most k. Likewise,let rvd(i; j; k) denote the number of messages that proess pi has reeived fromproess pj so far whose timestamp is at most k. The property GV T > k an beexpressed as:GV T > k � � ^16i6n lvti > k�^� ^16i;j6n sent(i; j; k) = rvd(j; i; k)�The above formulation of the property GV T > k is not loally stable beauseloal lok of a proess may hange even after the prediate has beome true.However, we an de�ne an auxiliary variable ai whih is true if and only if lvti > k.An alternative formulation of the property GV T > k is:GV T > k � � ^16i6n ai�^� ^16i;j6n sent(i; j; k) = rvd(j; i; k)�Unlike the �rst formulation, the seond formulation is atually loally stable.We say that a property is loally stable if there is at least one prediate repre-senting the property that is loally stable. Termination, deadlok of a subset ofproesses (under single, AND, OR and P -out-of-Q request models) and global vir-tual time exeeding a given value an all be expressed as loally stable prediates.3 The AlgorithmIn this setion, we desribe an on-line algorithm to detet a loally stable predi-ate, that is, to determine whether a loally stable prediate has beome true in aomputation in progress. A general algorithm for deteting a stable prediate is torepeatedly ompute onsistent snapshots (or onsistent uts) of the omputationand evaluate the prediate for these snapshots until the prediate beomes true.More eÆient algorithms have been developed for deteting speial ases of sta-ble prediates suh as termination and deadlok. Spei�ally, it has been shownthat to detet many stable prediates, inluding termination and deadlok, it isnot neessary for snapshots to be onsistent. In this paper, we show that any lo-ally stable prediate an be deteted by repeatedly taking possibly inonsistentsnapshots of the underlying omputation.3.1 The Main IdeaThe main idea is to take snapshots of the omputation in suh a manner that thereis at least one onsistent snapshot lying between any two onseutive snapshots.To that end, we generalize the notion of onsistent ut to the notion of onsistentinterval.

De�nition 3 (interval). An interval [C;D℄ is a pair of possibly inonsistent utsC and D suh that C � D.An interval is said to be onsistent if it ontains at least one onsistent ut.De�nition 4 (onsistent interval). An interval [C;D℄ is said to be onsistentif there exists a onsistent ut G suh that C � G � D.Note that an interval [C;C℄ is onsistent if and only if C is a onsistent ut.Next, we give the neessary and suÆient ondition for an interval to be onsistent.Theorem 1. An interval [C;D℄ is onsistent if and only if all events thathappened-before some event in C belong to D. Formally, [C;D℄ is onsistent ifand only if the following holds:h8 e; f :: (e! f) ^ (f 2 C)) e 2 Di (1)Observe that when C = D, the neessary and suÆient ondition for an intervalto be onsistent redues to the de�nition of a onsistent ut. Now, onsider aonsistent interval [C;D℄. Suppose there is no hange in the value of any variable invars(b) between C and D. We say that the interval [C;D℄ is quiesent with respetto b. Clearly, in this ase, for every variable x 2 vars(b), x(C) = x(D) = x(G).This implies that b(G) = b(C) = b(D). In other words, in order to ompute thevalue of the prediate b for the onsistent ut G, we an instead evaluate b foreither endpoint of the interval, that is, ut C or ut D. In ase b is a stableprediate and b(D) evaluates to true, we an safely onlude that b has indeedbeome true in the underlying omputation. Formally,Theorem 2. If an interval [C;D℄ is onsistent as well as quiesent with respetto a prediate b, thenb(D)) h9G : G is a onsistent ut : b(G)iBased on the idea desribed above, an algorithm for deteting a loally sta-ble prediate an be devised as follows. Repeatedly ompute possibly inonsistentsnapshots of the omputation in suh a way that every pair of onseutive snap-shots forms a onsistent interval. After eah snapshot is reorded, test whetherany of the relevant variables|on whih the prediate depends|has undergone ahange sine the last snapshot was taken. In ase the answer is \no", evaluatethe prediate for the urrent snapshot. If the prediate evaluates to true, then,using Theorem 2, it an be dedued that the omputation has reahed a statein whih the prediate holds, and the detetion algorithm terminates with \yes".Otherwise, repeat the above steps for the next snapshot and so on.Theorem 2 establishes that the algorithm is safe, that is, if the algorithm termi-nates with answer \yes", then the prediate has indeed beome true in the ompu-tation. We need to show that the algorithm is also live, that is, if the prediate hasbeome true in the omputation, then the algorithm terminates eventually withanswer \yes". To establish liveness, we use the fat that the prediate is loallystable, whih was not required to prove safety. Suppose the prediate b, whih isloally stable, has beome true in the omputation. Therefore there exists a on-sistent ut G of the omputation that satis�es b. Let C and D with C � D be two

snapshots of the omputation taken after G. In other words, G � C � D. Sineb is a loally stable prediate and b(G) holds, no variable in vars(b) undergoesa hange in its value after G. This implies that the values of all the variables invars(b) for D is same as that for G and therefore D satis�es b as well. Formally,Theorem 3. Given an interval [C;D℄, a loally stable prediate b and a onsistentut G suh that G � C,b(G)) ([G;D℄ is quiesent with respet to b) ^ b(D)Observe that if [G;D℄ is quiesent with respet to b then so is [C;D℄. Thealgorithm, on deteting that no relevant variable has undergone a hange in theinterval [C;D℄, evaluates b for D. In this ase, b(D) evaluates to true and, as aresult, the algorithm terminates with answer \yes".3.2 ImplementationTo implement the detetion algorithm desribed in the previous setion, two issuesneed to be addressed. First, how to ensure that every pair of onseutive snapshotsforms a onsistent interval. Seond, how to detet that no relevant variable hasundergone a hange in a given interval, that is, all relevant variables have reaheda state of quiesene. We next disuss solutions to both the problems.Ensuring Interval Consisteny using Barrier Synhronization: First, wegive a ondition that is stronger than the ondition (1) given in Theorem 1 in thesense that it is suÆient but not neessary for a pair of uts to form a onsistentinterval. The advantage of this ondition is that it an be easily implementedusing only ontrol messages without altering messages generated by the underlyingomputation, hereafter referred to as appliation messages. To that end, we de�nethe notion of barrier synhronized interval. Intuitively, an interval [C;D℄ is barriersynhronized if it is not possible to move beyond D on any proess until all eventsin C have been exeuted.De�nition 5 (barrier synhronized interval). An interval [C;D℄ is barriersynhronized if every event ontained in C happened-before every event that doesnot belong to D. Formally,h8 e; f :: (e 2 C) ^ (f =2 D)) e! fi (2)Next, we show that a barrier synhronized interval is also onsistent.Lemma 4 (barrier synhronization) onsisteny). If an interval is barriersynhronized then it is also onsistent.It an be veri�ed that when C = D, the notion of barrier synhronized intervalredues to the notion of barrier synhronized ut, also known as inevitable globalstate [18℄. Now, to implement the algorithm desribed in the previous setion, weuse a monitor whih periodially reords snapshots of the underlying omputation.One of the proesses in the system an be hosen to at as a monitor. In order

to ensure that every pair of onseutive snapshots is barrier synhronized, themonitor simply needs to ensure that the protool for reording the next snapshotis initiated only after the protool for reording the urrent snapshot has termi-nated. Reording a snapshot basially requires the monitor to ollet loal statesof all proesses. Many approahes an be used depending upon the ommuniationtopology and other fators. For instane, the monitor an broadast a message toall proesses requesting them to send their loal states. A proess, on reeivingmessage from the monitor, sends its (urrent) loal state to the monitor [6℄. Al-ternatively, proesses in the system an be arranged to form a logial ring. Themonitor uses a token (sometimes all a probe) whih irulates through the entirering gathering loal states on its way [9, 10, 15℄. Another approah is to imposea spanning tree on the network with the monitor ating as the root. In the �rstphase, starting from the root node, ontrol messages move downward all the wayto the leaf nodes. In the seond phase, starting from leaf nodes, ontrol messagesmove upward to the root node olleting loal states on their way [17℄. (The loalstates are reorded in the seond phase and not in the �rst phase.) Hereafter, werefer to the three approahes disussed above as broadast-based, ring-based andtree-based, respetively. In all the three approahes, reording of a loal state anbe done in a lazy manner [10℄. In lazy reording, a proess postpones reordingits loal state until its urrent loal state is suh that it does not prelude the(global) prediate from beoming true. For instane, in termination detetion, aproess whih is urrently ative an postpone reording its loal state until itbeomes passive.Let a session orrespond to taking a single snapshot of the omputation. Forthe kth session, let Sk refer to the snapshot omputed in the session, and let startkand endk denote the events on the monitor that orrespond to the beginning andend of the session. All the above approahes ensure the following:h8 e : e 2 frontier(Sk) : e! endki ^ h8 f : f 2 frontier(Sk+1) : startk+1 ! fiSine sessions do not overlap, endk ! startk+1. This implies that:h8 e; f :: (e 2 frontier(Sk)) ^ (f 2 frontier(Sk+1))) e! fi (3)It an be easily veri�ed that (3) implies (2). Note that non-overlapping ofsessions is only a suÆient ondition for interval onsisteny and not neessary.It is possible to ensure interval onsisteny even when sessions overlap. However,appliation messages need to be modi�ed to arry ontrol information.Deteting Interval Quiesene using Dirty Bits: To detet whether one ormore variables have undergone a hange in their values in a given interval, we usedirty bits. Spei�ally, we assoiate a dirty bit with eah variable whose value theprediate depends on. Sometimes, it may be possible to assoiate a single dirtybit with a set of variables or even the entire loal state. Initially, eah dirty bitis in its lean state. Whenever there is a hange in the value of a variable, theorresponding dirty bit is set to an unlean state. When a loal snapshot is taken(that is, a loal state is reorded), all dirty bits are also reorded along with thevalues of all the variables. After the reording, all dirty bits are reset to their lean

states. Clearly, an interval [C;D℄ is quiesent if and only if all dirty bits in D arein their lean states.In ase multiple monitors are used to ahieve fault-tolerane, a separate set ofdirty bits has to be maintained for eah monitor. This is to prevent snapshots pro-tools initiated by di�erent monitors from interfering with eah other; otherwisedirty bits may be reset inorretly.Combining the Two: To detet a loally stable prediate, the monitor exeutesthe following steps.1. Compute a snapshot of the omputation.2. Test whether all dirty bits in the snapshot are in their lean states. If not, goto the �rst step.3. Evaluate the prediate for the snapshot. If the snapshot does not satisfy theprediate, then go to the �rst step.The basi algorithm an be further optimized. In the ring-based approah,the proess urrently holding the token an disard the token if the loal statesgathered so far indiate that the global prediate has not beome true. For ex-ample, this an happen during termination detetion when the token reahes aproess with one or more dirty bits in their unlean states. The proess disardingthe token an either inform the monitor or beome the new monitor and initiatethe next session for reording a snapshot. When a session is aborted early in thismanner, only a subset of proesses may have reorded their loal states and havetheir dirty bits reset. In this ase, the global snapshot for a session, even if it isaborted early, an be taken to be the olletion of last reorded loal states on allproesses.Although our algorithm does not require appliation messages to be modi�ed,it does assume that hanges in values of relevant variables an be traked. Thisassumption is made by every prediate detetion algorithm.4 Performane AnalysisWe now analyze the performane of the three onrete variants of our detetionalgorithm, namely broadast-based, ring-based and tree-based. We evaluate thethree approahes with respet to the following riteria:{ Message Complexity: It refers to the number of (ontrol) messages gen-erated by the algorithm. These messages are in addition to the appliationmessages generated by the underlying omputation.{ Message Overhead: It refers to the maximum size of a ontrol messageexpressed in number of bits.{ Detetion Lateny (or Delay): It refers to the time, measured as thenumber of message hops, elapsed between when the prediate beomes trueto when the detetion algorithm terminates.{ Proess Load: It refers to the number of ontrol messages exhanged|sentor reeived|by a proess.

Let the spae-omplexity of reording a loal state be O(s) bits.Broadast-based approah: For this approah, the message omplexity persession is 2(n� 1), where n is the number of proesses, and the message overheadfor a ontrol message is O(s). One the prediate beomes true, the algorithmrequires at most two more sessions to terminate after the urrent session hasterminated. This is beause, after the urrent session is over, the next sessionwill reset all dirty bits and the session after that will detet the prediate. Thistranslates into O(1) message hops. The monitor is involved in 2(n � 1) messageexhanges per session; it sends n � 1 messages and reeives n � 1 messages. Allother proesses are involved in two message exhanges per session; eah one ofthem reeives one message and sends one message. Therefore the broadast-basedapproah is highly entralized in nature and as suh is not suitable for largesystems beause the monitor may get swamped by messages from other proesses.Ring-based approah: For this approah, the message omplexity per sessionis n and the message overhead for a ontrol message is O(ns). Depending on theproperty being deteted, however, the message overhead may be muh lower. Forexample, for termination detetion, it is not neessary to store the loal state ofeah proess that has been visited by the token separately. It is suÆient to haveone bit to indiate whether all dirty bits seen so far are in their lean states, one bitto indiate whether all proesses seen so far are passive, and one integer to storethe message de�it|the number of messages sent minus the number of messagesreeived summed over all proesses visited so far [9℄. The detetion lateny is twosessions after the urrent session terminates, whih translates into O(n) messagehops. This approah is attrative due to its distributed nature beause eah proessis involved in two message exhanges per session; it reeives one message and sendsone message.Tree-based approah: This approah lies in between broadast-based and ring-based approahes. The message omplexity per session is 2(n�1) and the messageoverhead for a ontrol message is O(ns). Again, depending on the prediate, themessage overhead may be muh lower. As in other two approahes, the detetionlateny is two sessions after the urrent session terminates. Therefore the detetionlateny in terms of message hops is O(h), where h is the height of the tree. For aproess p, let degree(p) denote the number of neighbors of p in the spanning tree.For example, if p is a leaf node then degree(p) = 1. Clearly, proess p exhanges 2�degree(p) messages per session; it sends degree(p) messages and reeives degree(p)messages.5 DisussionMarzullo and Sabel give an algorithm for deteting a loally stable prediate usingthe notion of weak vetor lok [15℄. A weak vetor lok, unlike the Fidge/Mattern'svetor lok [19, 20℄, is updated only when an event that is \relevant" with respetto the prediate is exeuted. Whenever a proess sends a message, it piggybaksthe urrent value of its loal (weak) vetor lok on the message. Thus Marzulloand Sabel's algorithm requires appliation messages to be modi�ed to arry avetor timestamp of size n, where n is the number of proesses.

Ho and Ramamoorthy give a two-phase protool to detet a deadlok in a dis-tributed database system using AND request model [6℄. Their two-phase approahis similar to our (broadast-based) approah in the sense that the snapshots om-puted in the two phases form a onsistent interval. However, their methodologyfor deteting what part of a proess state is quiesent (and what is not) in aninterval is awed. Spei�ally, their quiesene detetion approah works only ifstatus tables maintain information about transations (and not proesses) andtransations follow two-phase loking disipline. Using the results of this paper,their protool an be easily �xed to work in a more general senario.Termination detetion algorithms by Safra [9℄ and Mattern et al [10℄ are similarto our ring-based approah. In Safra's algorithm, a olour is assoiated with everymahine and the token. A mahine turns blak when it transitions from ativeto passive (Rule 3'). When a token visits a blak mahine, it also turns blak(Rule 4). A blak mahine holding the token turns white after sending the tokento its neighbouring mahine (Rule 7). Termination is deteted when, after one fullirulation, all mahines were in their passive states, the message de�it is zero,and the token stays white. Mattern et al assoiate a stiky ag with every proess.A stiky ag normally traks the state of a proess. However, when a proesstransitions from ative to passive, the ag stiks to ative until a ontrol message\unstiks" it. Termination is deteted when, after one full irulation, all proessesalong with their stiky ags were in their passive states, and the message de�itis zero. Colour and stiky ag play the same role in the two algorithms as dirtybits in ours; both are used to detet if a proess went through some ativity sinelast reording its loal state. However, our algorithm is more general in the sensethat it an be used to detet any loally stable prediate and not just termination.The two termination detetion algorithms an be viewed as speial ases of ouralgorithm.In addition to the three examples desribed above, there are several otheralgorithms that an be treated as speial ases of our approah for detetingloally stable prediates [8, 11, 13℄.6 Conlusion and Future WorkIn this paper, we give an eÆient algorithm to detet a loally stable prediatebased on repeatedly taking (possibly inonsistent) snapshots of the omputationin a ertain manner. Our algorithm uses only ontrol messages and thus appli-ation messages do not need to be modi�ed to arry any ontrol information.Our algorithm also uni�es several known algorithms for deteting two importantloally stable prediates, namely termination and deadlok.At present, the number of snapshots of the omputation taken by our algorithmbefore the prediate beomes true is unbounded in the worst-ase. This impliesthat an unbounded number of ontrol messages may be exhanged in the worst-ase. As future work, we plan to develop a detetion algorithm based on the ideasdesribed in the paper whih has bounded message-omplexity. Furthermore, inthis paper, we assume that the system is not subjet to any failures. In real world,however, failures do our. We plan to extend our detetion algorithm to faultyenvironment when one or more proesses an fail by rashing.

Referenes1. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States ofDistributed Systems. ACM Transations on Computer Systems 3 (1985) 63{752. Lai, T.H., Yang, T.H.: On Distributed Snapshots. Information Proessing Letters(IPL) 25 (1987) 153{1583. H�elary, J.M., Jard, C., Plouzeau, N., Raynal, M.: Detetion of Stable Properties inDistributed Appliations. In: Proeedings of the ACM Symposium on Priniples ofDistributed Computing (PODC). (1987) 125{1364. Aharya, A., Badrinath, B.R.: Reording Distributed Snapshots Based on CausalOrder of Message Delivery. Information Proessing Letters (IPL) 44 (1992)317{3215. Alagar, S., Venkatesan, S.: An Optimal Algorithm for Reording Snapshots usingCasual Message Delivery. Information Proessing Letters (IPL) 50 (1994) 311{3166. Ho, G.S., Ramamoorthy, C.V.: Protools for Deadlok Detetion in DistributedDatabase Systems. IEEE Transations on Software Engineering 8 (1982) 554{5577. Misra, J.: Deteting Termination of Distributed Computations Using Markers. In:Proeedings of the ACM Symposium on Priniples of Distributed Computing(PODC). (1983) 290{2948. Mattern, F.: Algorithms for Distributed Termination Detetion. DistributedComputing (DC) 2 (1987) 161{1759. Dijkstra, E.W.: Shmuel Safra's Version of Termination Detetion. EWDManusript 998. Available at http://www.s.utexas.edu/users/EWD (1987)10. Mattern, F., Mehl, H., Shoone, A., Tel, G.: Global Virtual Time Approximationwith Distributed Termination Detetion Algorithms. Tehnial ReportRUU-CS-91-32, University of Utreht, The Netherlands (1991)11. H�elary, J.M., Raynal, M.: Towards the Constrution of Distributed DetetionPrograms, with an Appliation to Distributed Termination. DistributedComputing (DC) 7 (1994) 137{14712. Koalar, E., Khokhar, A.A., Hambrush, S.E.: Termination Detetion: Models andAlgorithms for SPMD Computing Paradigms. In: Proeedings of the Pararllel andDistributed Conferene. (1999)13. Brzezinski, J., H�elary, J.M., Raynal, M., Singhal, M.: Deadlok Models and aGeneral Algorithm for Distributed Deadlok Detetion. Journal of Parallel andDistributed Computing (JPDC) 31 (1995) 112{12514. Mahapatra, N.R., Dutt, S.: An EÆient Delay-Optimal Distributed TerminationDetetion Algorithm. Submitted to IEEE Transations on Parallel and DistributedSystems (2003)15. Marzullo, K., Sabel, L.: EÆient Detetion of a Class of Stable Properties.Distributed Computing (DC) 8 (1994) 81{9116. Lamport, L.: Time, Cloks, and the Ordering of Events in a Distributed System.Communiations of the ACM (CACM) 21 (1978) 558{56517. Tel, G.: Introdution to Distributed Algorithms. Seond edn. CambridgeUniversity Press (US Server) (2000)18. Fromentin, E., Raynal, M.: Inevitable Global States: A Conept to DetetUnstable Properties of Distributed Computations in an Observer IndependentWay. In: Proeedings of the 6th IEEE Symposium on Parallel and DistributedProessing (SPDP). (1994) 242{24819. Mattern, F.: Virtual Time and Global States of Distributed Systems. In: Paralleland Distributed Algorithms: Proeedings of the Workshop on DistributedAlgorithms (WDAG), Elsevier Siene Publishers B. V. (North-Holland) (1989)215{22620. Fidge, C.: Logial Time in Distributed Computing Systems. IEEE Computer 24(1991) 28{33

