
Dete
ting Lo
ally Stable Predi
ates withoutModifying Appli
ation MessagesRanganath Atreya1, Neeraj Mittal1, and Vijay K. Garg2?1 Department of Computer S
ien
e, The University of Texas at Dallas, Ri
hardson,TX 75083, USA2 Department of Ele
tri
al and Computer Engineering, The University of Texas atAustin, Austin, TX 78712, USAAbstra
t. In this paper, we give an eÆ
ient algorithm to determinewhether a lo
ally stable predi
ate has be
ome true in an underlying
om-putation. Examples of lo
ally stable predi
ates in
lude termination anddeadlo
k. Our algorithm does not require appli
ation messages to be mod-i�ed to
arry
ontrol information (e.g., ve
tor timestamps). On
e the pred-i
ate be
omes true, the dete
tion laten
y (or delay) of our algorithm isproportional to the time-
omplexity of
omputing a (possibly in
onsis-tent) snapshot of the system. Moreover, only O(n)
ontrol messages arerequired to dete
t the predi
ate on
e it holds, where n is the number ofpro
esses.1 Introdu
tionTwo important problems in distributed systems are dete
ting termination of adistributed
omputation and dete
ting deadlo
k in a distributed database system.Termination and deadlo
k are examples of stable properties. A property is stableif it never be
omes false on
e it be
omes true. For example, on
e a subset ofpro
esses are involved in a deadlo
k, they
ontinue to stay in a deadlo
ked state.An algorithm to dete
t a general stable property involves
olle
ting the relevantstates of pro
esses and
hannels that are
onsistent with ea
h other and testingto determine whether the property holds over the
olle
ted state. By repeatedlytaking su
h
onsistent snapshots of the
omputation and evaluating the propertyover the
olle
ted state, it is possible to eventually dete
t a stable property on
eit be
omes true.Several algorithms have been proposed in the literature for
omputing a
onsis-tent snapshot of a
omputation [1{4℄. These algorithms
an be broadly
lassi�edinto four
ategories. They either require sending a
ontrol message along every
hannel in the system [1℄ or rely on piggyba
king
ontrol information on appli-
ation messages [2℄ or assume that messages are delivered in
ausal order [4, 5℄or are inhibitory in nature [3℄. As a result,
onsistent snapshots of a
omputa-tion are expensive to
ompute. More eÆ
ient algorithms have been developed fortermination and deadlo
k that do not require taking
onsistent snapshots of the
omputation [6{14℄.? Supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Edu
ationBoard Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.

Termination and deadlo
k are examples of stable properties that
an be for-mulated as lo
ally stable predi
ates [15℄. A predi
ate is lo
ally stable if no pro
essinvolved in the predi
ate
an
hange its state relative to the predi
ate on
e thepredi
ate holds. In this paper, we show that it is possible to dete
t any lo
allystable predi
ate by repeatedly taking possibly in
onsistent snapshots of the
om-putation in a
ertain manner. Sin
e snapshots are not required to be
onsistent,it is not ne
essary to send a
ontrol message along every
hannel of the system.Our algorithm does not inhibit any event of the underlying
omputation nor doesit require
hannels to be FIFO. Unlike Marzullo and Sabel's algorithm for de-te
ting a lo
ally stable predi
ate [15℄, no
ontrol information is required to bepiggyba
ked on appli
ation messages and therefore appli
ation messages do notneed to be modi�ed at all. On
e the predi
ate be
omes true, the dete
tion laten
y(or delay) of our algorithm is proportional to the time-
omplexity of the fastestsnapshot proto
ol. Furthermore, sin
e our approa
h does not require snapshots tobe
onsistent, it is not ne
essary to send a
ontrol message along every
hannel ofthe system when a snapshot is taken.Our algorithm also uni�es several known algorithms for dete
ting terminationand deadlo
k [6, 8{11, 13℄. Some of the examples in
lude termination dete
tionalgorithms by Safra [9℄ (
olor-based algorithm) and Mattern et al [10℄ (sti
ky
agalgorithm), and deadlo
k dete
tion algorithm by Ho and Ramamoorthy [6℄ (two-phase algorithm). All of these algorithms
an be derived as spe
ial
ases of thealgorithm given in this paper. Note that the two-phase deadlo
k dete
tion algo-rithm as des
ribed in [6℄ is a
tually
awed but
an be easily �xed using the ideasgiven in this paper. Therefore this paper presents a unifying framework for under-standing and des
ribing various termination and deadlo
k dete
tion algorithms.The paper is organized as follows. Se
tion 2 des
ribes the system model and thenotation used in this paper. An algorithm for dete
ting a lo
ally stable predi
ateis dis
ussed in Se
tion 3. Due to the la
k of spa
e, proofs of various lemmas andtheorems have been omitted. In Se
tion 4, we analyze the performan
e of thealgorithm. We dis
uss the related work in Se
tion 5. Finally, Se
tion 6
on
ludesthe paper and also outlines dire
tions for future resear
h.2 Model and Notation2.1 Distributed ComputationsWe assume an asyn
hronous distributed system
omprising of many pro
esseswhi
h
ommuni
ate with ea
h other by sending messages over a set of
hannels.There is no global
lo
k or shared memory. Pro
esses are non-faulty and
hannelsare reliable. Channels may be non-FIFO. Message delays are �nite but unbounded.Pro
esses exe
ute events and
hange their states. A lo
al state of a pro
ess,therefore, is given by the sequen
e of events it has exe
uted so far starting fromthe initial state. Events are either internal or external. An external event
ould bea send event or a re
eive event or both. An event
auses the lo
al state of a pro
essto be updated. In addition, a send event
auses a message or a set of messages tobe sent and a re
eive event
auses a message or a set of messages to be re
eived.The event exe
uted immediately before e on the same pro
ess (as e) is
alled the

prede
essor event of e and is denoted by pred(e). The su

essor event of e, denotedby su

(e),
an be de�ned in a similar fashion.Although it is possible to determine the exa
t order in whi
h events wereexe
uted on a single pro
ess, it is, in general, not possible to do so for eventsexe
uted on di�erent pro
esses. As a result, an exe
ution of a distributed system,referred to as distributed
omputation (or simply a
omputation), is modeled by an(irre
exive) partial order on a set of events. The partial order, denoted by !, isgiven by the Lamport's happened-before relation (also known as
ausality relation)[16℄ whi
h is de�ned as the smallest transitive relation satisfying the followingproperties:1. if events e and f o

ur on the same pro
ess, and e o

urred before f in realtime then e happened-before f , and2. if events e and f
orrespond to the send and re
eive, respe
tively, of a messagethen e happened-before f .Intuitively, the Lamport's happened-before relation
aptures the maximumamount of information that
an be dedu
ed about ordering of events when thesystem is
hara
terized by unpredi
table message delays and unbounded relativepro
essor speeds.2.2 Cuts, Consistent Cuts and FrontiersA state of a distributed system, referred to as global state, is the
olle
tive state ofpro
esses and
hannels. (A
hannel state is given by the set of messages in transit.)If every pro
ess maintains a log of all the messages it has sent and re
eived so far,then a
hannel state
an be determined by examining the state of the two pro
esses
onne
ted by the
hannel. Therefore, in this paper, we view a global state as a
olle
tion of lo
al states. The equivalent notion based on events is
alled
ut. A
ut is a
olle
tion of events
losed under prede
essor relation. In other words, a
ut is a set of events su
h that if an event is in the set, then its prede
essor, if itexists, also belongs to the set. Formally,C is a
ut , h8 e; f :: (e = pred(f)) ^ (f 2 C)) e 2 CiThe frontier of a
ut
onsists of those events of the
ut whose su

essors donot belong to the
ut. Formally,frontier(C) , f e 2 C j su

(e) exists) su

(e) =2 C gNot every
ut
orresponds to a valid state of the system. A
ut is said to be
on-sistent if it
ontains an event only if it also
ontains all events that happened-beforeit. Formally,C is a
onsistent
ut , h8 e; f :: (e! f) ^ (f 2 C)) e 2 CiObserve that if a
ut is not
onsistent then it
ontains an event su
h that oneor more events that happened-before it do not belong to the
ut. Su
h a s
enario,
learly,
annot o

ur in a real world. Consequently, if a
ut is not
onsistent thenit is not possible for the system to be in a global state given by the
ut. In otherwords, only those
uts whi
h are
onsistent
an possibly o

ur during an exe
ution.

2.3 Global Predi
atesA global predi
ate (or simply a predi
ate) is de�ned as a boolean-valued fun
tionon variables of one or more pro
esses. In other words, a predi
ate maps every
onsistent
ut of a
omputation to either true or false. Given a
onsistent
ut, apredi
ate is evaluated with respe
t to the values of the relevant variables in thestate resulting after exe
uting all events in the
ut. If a predi
ate b evaluates totrue for a
ut C, we say that C satis�es b or, equivalently, b(C) = true. Hereafter,we abbreviate expressions b(C) = true and b(C) = false by b(C) and :b(C),respe
tively. Also, we denote the value of a variable x resulting after exe
uting allevents in a
ut C by x(C).In this paper, we fo
us on a spe
ial but important
lass of predi
ates
alledlo
ally stable predi
ates [15℄. A predi
ate is stable if on
e the system rea
hes aglobal state where the predi
ate holds, the predi
ate holds in all future globalstates as well.De�nition 1 (stable predi
ate). A predi
ate b is stable if it stays true on
e itbe
omes true. Formally, b is stable if for all
onsistent
uts C and D,b(C) ^ (C � D)) b(D)An example of a stable predi
ate is termination (of a distributed
omputation)whi
h is expressed as: \all pro
esses are passive" and \all
hannels are empty".Another important example of a stable predi
ate is deadlo
k whi
h o

urs whentwo or more pro
esses are involved in some sort of \
ir
ular" wait. (Deadlo
k isstable under all request models.) A stable predi
ate is said to be lo
ally stable ifon
e the predi
ate be
omes true, no variable involved in the predi
ate
hanges itsvalue thereafter. For a predi
ate b, let vars(b) denote the set of variables on whi
hb depends.De�nition 2 (lo
ally stable predi
ate [15℄). A stable predi
ate b is lo
allystable if no pro
ess involved in the predi
ate
an
hange its state relative to b on
eb holds. Formally, b is lo
ally stable if for all
onsistent
uts C and D,b(C) ^ (C � D)) h8 x 2 vars(b) :: x(C) = x(D)iIntuitively, on
e a lo
ally stable predi
ate be
omes true, not only does thevalue of the predi
ate stay the same|whi
h is true, but the values of all variablesinvolved in the predi
ate stay the same as well. In this paper, we distinguish be-tween property and predi
ate. A predi
ate is a
on
rete formulation of a propertyin terms of program variables and pro
essors states. In general, there is more thanone way to formulate a property. For example, the mutual ex
lusion property,whi
h states that there is at most one pro
ess in its
riti
al se
tion at any time,
an be expressed in the following ways.1. V16i<j6n(:
si_:
sj), where
si is true if and only if pro
ess pi is in its
riti
alse
tion.2. (nPi=1
si) 6 1, where
si is 1 if and only if pro
ess pi is in its
riti
al se
tionand is 0 otherwise.

Lo
al stability, unlike stability, depends on the parti
ular formulation of aproperty. It is possible that one formulation of a property is lo
ally stable whilethe other is not. For instan
e,
onsider the property \the global virtual time ofthe system is at least k", whi
h is abbreviated as GV T > k [17℄. The property\GV T > k" is true if and only if the lo
al virtual time of ea
h pro
esses is at leastk and there is no message in transit with timestamp less than k. Let lvti denote thelo
al
lo
k of pro
ess pi. Also, let sent(i; j; k) denote the number of messages thatpro
ess pi has sent to pro
ess pj so far whose timestamp is at most k. Likewise,let r
vd(i; j; k) denote the number of messages that pro
ess pi has re
eived frompro
ess pj so far whose timestamp is at most k. The property GV T > k
an beexpressed as:GV T > k � � ^16i6n lvti > k�^� ^16i;j6n sent(i; j; k) = r
vd(j; i; k)�The above formulation of the property GV T > k is not lo
ally stable be
auselo
al
lo
k of a pro
ess may
hange even after the predi
ate has be
ome true.However, we
an de�ne an auxiliary variable ai whi
h is true if and only if lvti > k.An alternative formulation of the property GV T > k is:GV T > k � � ^16i6n ai�^� ^16i;j6n sent(i; j; k) = r
vd(j; i; k)�Unlike the �rst formulation, the se
ond formulation is a
tually lo
ally stable.We say that a property is lo
ally stable if there is at least one predi
ate repre-senting the property that is lo
ally stable. Termination, deadlo
k of a subset ofpro
esses (under single, AND, OR and P -out-of-Q request models) and global vir-tual time ex
eeding a given value
an all be expressed as lo
ally stable predi
ates.3 The AlgorithmIn this se
tion, we des
ribe an on-line algorithm to dete
t a lo
ally stable predi-
ate, that is, to determine whether a lo
ally stable predi
ate has be
ome true in a
omputation in progress. A general algorithm for dete
ting a stable predi
ate is torepeatedly
ompute
onsistent snapshots (or
onsistent
uts) of the
omputationand evaluate the predi
ate for these snapshots until the predi
ate be
omes true.More eÆ
ient algorithms have been developed for dete
ting spe
ial
ases of sta-ble predi
ates su
h as termination and deadlo
k. Spe
i�
ally, it has been shownthat to dete
t many stable predi
ates, in
luding termination and deadlo
k, it isnot ne
essary for snapshots to be
onsistent. In this paper, we show that any lo-
ally stable predi
ate
an be dete
ted by repeatedly taking possibly in
onsistentsnapshots of the underlying
omputation.3.1 The Main IdeaThe main idea is to take snapshots of the
omputation in su
h a manner that thereis at least one
onsistent snapshot lying between any two
onse
utive snapshots.To that end, we generalize the notion of
onsistent
ut to the notion of
onsistentinterval.

De�nition 3 (interval). An interval [C;D℄ is a pair of possibly in
onsistent
utsC and D su
h that C � D.An interval is said to be
onsistent if it
ontains at least one
onsistent
ut.De�nition 4 (
onsistent interval). An interval [C;D℄ is said to be
onsistentif there exists a
onsistent
ut G su
h that C � G � D.Note that an interval [C;C℄ is
onsistent if and only if C is a
onsistent
ut.Next, we give the ne
essary and suÆ
ient
ondition for an interval to be
onsistent.Theorem 1. An interval [C;D℄ is
onsistent if and only if all events thathappened-before some event in C belong to D. Formally, [C;D℄ is
onsistent ifand only if the following holds:h8 e; f :: (e! f) ^ (f 2 C)) e 2 Di (1)Observe that when C = D, the ne
essary and suÆ
ient
ondition for an intervalto be
onsistent redu
es to the de�nition of a
onsistent
ut. Now,
onsider a
onsistent interval [C;D℄. Suppose there is no
hange in the value of any variable invars(b) between C and D. We say that the interval [C;D℄ is quies
ent with respe
tto b. Clearly, in this
ase, for every variable x 2 vars(b), x(C) = x(D) = x(G).This implies that b(G) = b(C) = b(D). In other words, in order to
ompute thevalue of the predi
ate b for the
onsistent
ut G, we
an instead evaluate b foreither endpoint of the interval, that is,
ut C or
ut D. In
ase b is a stablepredi
ate and b(D) evaluates to true, we
an safely
on
lude that b has indeedbe
ome true in the underlying
omputation. Formally,Theorem 2. If an interval [C;D℄ is
onsistent as well as quies
ent with respe
tto a predi
ate b, thenb(D)) h9G : G is a
onsistent
ut : b(G)iBased on the idea des
ribed above, an algorithm for dete
ting a lo
ally sta-ble predi
ate
an be devised as follows. Repeatedly
ompute possibly in
onsistentsnapshots of the
omputation in su
h a way that every pair of
onse
utive snap-shots forms a
onsistent interval. After ea
h snapshot is re
orded, test whetherany of the relevant variables|on whi
h the predi
ate depends|has undergone a
hange sin
e the last snapshot was taken. In
ase the answer is \no", evaluatethe predi
ate for the
urrent snapshot. If the predi
ate evaluates to true, then,using Theorem 2, it
an be dedu
ed that the
omputation has rea
hed a statein whi
h the predi
ate holds, and the dete
tion algorithm terminates with \yes".Otherwise, repeat the above steps for the next snapshot and so on.Theorem 2 establishes that the algorithm is safe, that is, if the algorithm termi-nates with answer \yes", then the predi
ate has indeed be
ome true in the
ompu-tation. We need to show that the algorithm is also live, that is, if the predi
ate hasbe
ome true in the
omputation, then the algorithm terminates eventually withanswer \yes". To establish liveness, we use the fa
t that the predi
ate is lo
allystable, whi
h was not required to prove safety. Suppose the predi
ate b, whi
h islo
ally stable, has be
ome true in the
omputation. Therefore there exists a
on-sistent
ut G of the
omputation that satis�es b. Let C and D with C � D be two

snapshots of the
omputation taken after G. In other words, G � C � D. Sin
eb is a lo
ally stable predi
ate and b(G) holds, no variable in vars(b) undergoesa
hange in its value after G. This implies that the values of all the variables invars(b) for D is same as that for G and therefore D satis�es b as well. Formally,Theorem 3. Given an interval [C;D℄, a lo
ally stable predi
ate b and a
onsistent
ut G su
h that G � C,b(G)) ([G;D℄ is quies
ent with respe
t to b) ^ b(D)Observe that if [G;D℄ is quies
ent with respe
t to b then so is [C;D℄. Thealgorithm, on dete
ting that no relevant variable has undergone a
hange in theinterval [C;D℄, evaluates b for D. In this
ase, b(D) evaluates to true and, as aresult, the algorithm terminates with answer \yes".3.2 ImplementationTo implement the dete
tion algorithm des
ribed in the previous se
tion, two issuesneed to be addressed. First, how to ensure that every pair of
onse
utive snapshotsforms a
onsistent interval. Se
ond, how to dete
t that no relevant variable hasundergone a
hange in a given interval, that is, all relevant variables have rea
heda state of quies
en
e. We next dis
uss solutions to both the problems.Ensuring Interval Consisten
y using Barrier Syn
hronization: First, wegive a
ondition that is stronger than the
ondition (1) given in Theorem 1 in thesense that it is suÆ
ient but not ne
essary for a pair of
uts to form a
onsistentinterval. The advantage of this
ondition is that it
an be easily implementedusing only
ontrol messages without altering messages generated by the underlying
omputation, hereafter referred to as appli
ation messages. To that end, we de�nethe notion of barrier syn
hronized interval. Intuitively, an interval [C;D℄ is barriersyn
hronized if it is not possible to move beyond D on any pro
ess until all eventsin C have been exe
uted.De�nition 5 (barrier syn
hronized interval). An interval [C;D℄ is barriersyn
hronized if every event
ontained in C happened-before every event that doesnot belong to D. Formally,h8 e; f :: (e 2 C) ^ (f =2 D)) e! fi (2)Next, we show that a barrier syn
hronized interval is also
onsistent.Lemma 4 (barrier syn
hronization)
onsisten
y). If an interval is barriersyn
hronized then it is also
onsistent.It
an be veri�ed that when C = D, the notion of barrier syn
hronized intervalredu
es to the notion of barrier syn
hronized
ut, also known as inevitable globalstate [18℄. Now, to implement the algorithm des
ribed in the previous se
tion, weuse a monitor whi
h periodi
ally re
ords snapshots of the underlying
omputation.One of the pro
esses in the system
an be
hosen to a
t as a monitor. In order

to ensure that every pair of
onse
utive snapshots is barrier syn
hronized, themonitor simply needs to ensure that the proto
ol for re
ording the next snapshotis initiated only after the proto
ol for re
ording the
urrent snapshot has termi-nated. Re
ording a snapshot basi
ally requires the monitor to
olle
t lo
al statesof all pro
esses. Many approa
hes
an be used depending upon the
ommuni
ationtopology and other fa
tors. For instan
e, the monitor
an broad
ast a message toall pro
esses requesting them to send their lo
al states. A pro
ess, on re
eivingmessage from the monitor, sends its (
urrent) lo
al state to the monitor [6℄. Al-ternatively, pro
esses in the system
an be arranged to form a logi
al ring. Themonitor uses a token (sometimes
all a probe) whi
h
ir
ulates through the entirering gathering lo
al states on its way [9, 10, 15℄. Another approa
h is to imposea spanning tree on the network with the monitor a
ting as the root. In the �rstphase, starting from the root node,
ontrol messages move downward all the wayto the leaf nodes. In the se
ond phase, starting from leaf nodes,
ontrol messagesmove upward to the root node
olle
ting lo
al states on their way [17℄. (The lo
alstates are re
orded in the se
ond phase and not in the �rst phase.) Hereafter, werefer to the three approa
hes dis
ussed above as broad
ast-based, ring-based andtree-based, respe
tively. In all the three approa
hes, re
ording of a lo
al state
anbe done in a lazy manner [10℄. In lazy re
ording, a pro
ess postpones re
ordingits lo
al state until its
urrent lo
al state is su
h that it does not pre
lude the(global) predi
ate from be
oming true. For instan
e, in termination dete
tion, apro
ess whi
h is
urrently a
tive
an postpone re
ording its lo
al state until itbe
omes passive.Let a session
orrespond to taking a single snapshot of the
omputation. Forthe kth session, let Sk refer to the snapshot
omputed in the session, and let startkand endk denote the events on the monitor that
orrespond to the beginning andend of the session. All the above approa
hes ensure the following:h8 e : e 2 frontier(Sk) : e! endki ^ h8 f : f 2 frontier(Sk+1) : startk+1 ! fiSin
e sessions do not overlap, endk ! startk+1. This implies that:h8 e; f :: (e 2 frontier(Sk)) ^ (f 2 frontier(Sk+1))) e! fi (3)It
an be easily veri�ed that (3) implies (2). Note that non-overlapping ofsessions is only a suÆ
ient
ondition for interval
onsisten
y and not ne
essary.It is possible to ensure interval
onsisten
y even when sessions overlap. However,appli
ation messages need to be modi�ed to
arry
ontrol information.Dete
ting Interval Quies
en
e using Dirty Bits: To dete
t whether one ormore variables have undergone a
hange in their values in a given interval, we usedirty bits. Spe
i�
ally, we asso
iate a dirty bit with ea
h variable whose value thepredi
ate depends on. Sometimes, it may be possible to asso
iate a single dirtybit with a set of variables or even the entire lo
al state. Initially, ea
h dirty bitis in its
lean state. Whenever there is a
hange in the value of a variable, the
orresponding dirty bit is set to an un
lean state. When a lo
al snapshot is taken(that is, a lo
al state is re
orded), all dirty bits are also re
orded along with thevalues of all the variables. After the re
ording, all dirty bits are reset to their
lean

states. Clearly, an interval [C;D℄ is quies
ent if and only if all dirty bits in D arein their
lean states.In
ase multiple monitors are used to a
hieve fault-toleran
e, a separate set ofdirty bits has to be maintained for ea
h monitor. This is to prevent snapshots pro-to
ols initiated by di�erent monitors from interfering with ea
h other; otherwisedirty bits may be reset in
orre
tly.Combining the Two: To dete
t a lo
ally stable predi
ate, the monitor exe
utesthe following steps.1. Compute a snapshot of the
omputation.2. Test whether all dirty bits in the snapshot are in their
lean states. If not, goto the �rst step.3. Evaluate the predi
ate for the snapshot. If the snapshot does not satisfy thepredi
ate, then go to the �rst step.The basi
 algorithm
an be further optimized. In the ring-based approa
h,the pro
ess
urrently holding the token
an dis
ard the token if the lo
al statesgathered so far indi
ate that the global predi
ate has not be
ome true. For ex-ample, this
an happen during termination dete
tion when the token rea
hes apro
ess with one or more dirty bits in their un
lean states. The pro
ess dis
ardingthe token
an either inform the monitor or be
ome the new monitor and initiatethe next session for re
ording a snapshot. When a session is aborted early in thismanner, only a subset of pro
esses may have re
orded their lo
al states and havetheir dirty bits reset. In this
ase, the global snapshot for a session, even if it isaborted early,
an be taken to be the
olle
tion of last re
orded lo
al states on allpro
esses.Although our algorithm does not require appli
ation messages to be modi�ed,it does assume that
hanges in values of relevant variables
an be tra
ked. Thisassumption is made by every predi
ate dete
tion algorithm.4 Performan
e AnalysisWe now analyze the performan
e of the three
on
rete variants of our dete
tionalgorithm, namely broad
ast-based, ring-based and tree-based. We evaluate thethree approa
hes with respe
t to the following
riteria:{ Message Complexity: It refers to the number of (
ontrol) messages gen-erated by the algorithm. These messages are in addition to the appli
ationmessages generated by the underlying
omputation.{ Message Overhead: It refers to the maximum size of a
ontrol messageexpressed in number of bits.{ Dete
tion Laten
y (or Delay): It refers to the time, measured as thenumber of message hops, elapsed between when the predi
ate be
omes trueto when the dete
tion algorithm terminates.{ Pro
ess Load: It refers to the number of
ontrol messages ex
hanged|sentor re
eived|by a pro
ess.

Let the spa
e-
omplexity of re
ording a lo
al state be O(s) bits.Broad
ast-based approa
h: For this approa
h, the message
omplexity persession is 2(n� 1), where n is the number of pro
esses, and the message overheadfor a
ontrol message is O(s). On
e the predi
ate be
omes true, the algorithmrequires at most two more sessions to terminate after the
urrent session hasterminated. This is be
ause, after the
urrent session is over, the next sessionwill reset all dirty bits and the session after that will dete
t the predi
ate. Thistranslates into O(1) message hops. The monitor is involved in 2(n � 1) messageex
hanges per session; it sends n � 1 messages and re
eives n � 1 messages. Allother pro
esses are involved in two message ex
hanges per session; ea
h one ofthem re
eives one message and sends one message. Therefore the broad
ast-basedapproa
h is highly
entralized in nature and as su
h is not suitable for largesystems be
ause the monitor may get swamped by messages from other pro
esses.Ring-based approa
h: For this approa
h, the message
omplexity per sessionis n and the message overhead for a
ontrol message is O(ns). Depending on theproperty being dete
ted, however, the message overhead may be mu
h lower. Forexample, for termination dete
tion, it is not ne
essary to store the lo
al state ofea
h pro
ess that has been visited by the token separately. It is suÆ
ient to haveone bit to indi
ate whether all dirty bits seen so far are in their
lean states, one bitto indi
ate whether all pro
esses seen so far are passive, and one integer to storethe message de�
it|the number of messages sent minus the number of messagesre
eived summed over all pro
esses visited so far [9℄. The dete
tion laten
y is twosessions after the
urrent session terminates, whi
h translates into O(n) messagehops. This approa
h is attra
tive due to its distributed nature be
ause ea
h pro
essis involved in two message ex
hanges per session; it re
eives one message and sendsone message.Tree-based approa
h: This approa
h lies in between broad
ast-based and ring-based approa
hes. The message
omplexity per session is 2(n�1) and the messageoverhead for a
ontrol message is O(ns). Again, depending on the predi
ate, themessage overhead may be mu
h lower. As in other two approa
hes, the dete
tionlaten
y is two sessions after the
urrent session terminates. Therefore the dete
tionlaten
y in terms of message hops is O(h), where h is the height of the tree. For apro
ess p, let degree(p) denote the number of neighbors of p in the spanning tree.For example, if p is a leaf node then degree(p) = 1. Clearly, pro
ess p ex
hanges 2�degree(p) messages per session; it sends degree(p) messages and re
eives degree(p)messages.5 Dis
ussionMarzullo and Sabel give an algorithm for dete
ting a lo
ally stable predi
ate usingthe notion of weak ve
tor
lo
k [15℄. A weak ve
tor
lo
k, unlike the Fidge/Mattern'sve
tor
lo
k [19, 20℄, is updated only when an event that is \relevant" with respe
tto the predi
ate is exe
uted. Whenever a pro
ess sends a message, it piggyba
ksthe
urrent value of its lo
al (weak) ve
tor
lo
k on the message. Thus Marzulloand Sabel's algorithm requires appli
ation messages to be modi�ed to
arry ave
tor timestamp of size n, where n is the number of pro
esses.

Ho and Ramamoorthy give a two-phase proto
ol to dete
t a deadlo
k in a dis-tributed database system using AND request model [6℄. Their two-phase approa
his similar to our (broad
ast-based) approa
h in the sense that the snapshots
om-puted in the two phases form a
onsistent interval. However, their methodologyfor dete
ting what part of a pro
ess state is quies
ent (and what is not) in aninterval is
awed. Spe
i�
ally, their quies
en
e dete
tion approa
h works only ifstatus tables maintain information about transa
tions (and not pro
esses) andtransa
tions follow two-phase lo
king dis
ipline. Using the results of this paper,their proto
ol
an be easily �xed to work in a more general s
enario.Termination dete
tion algorithms by Safra [9℄ and Mattern et al [10℄ are similarto our ring-based approa
h. In Safra's algorithm, a
olour is asso
iated with everyma
hine and the token. A ma
hine turns bla
k when it transitions from a
tiveto passive (Rule 3'). When a token visits a bla
k ma
hine, it also turns bla
k(Rule 4). A bla
k ma
hine holding the token turns white after sending the tokento its neighbouring ma
hine (Rule 7). Termination is dete
ted when, after one full
ir
ulation, all ma
hines were in their passive states, the message de�
it is zero,and the token stays white. Mattern et al asso
iate a sti
ky
ag with every pro
ess.A sti
ky
ag normally tra
ks the state of a pro
ess. However, when a pro
esstransitions from a
tive to passive, the
ag sti
ks to a
tive until a
ontrol message\unsti
ks" it. Termination is dete
ted when, after one full
ir
ulation, all pro
essesalong with their sti
ky
ags were in their passive states, and the message de�
itis zero. Colour and sti
ky
ag play the same role in the two algorithms as dirtybits in ours; both are used to dete
t if a pro
ess went through some a
tivity sin
elast re
ording its lo
al state. However, our algorithm is more general in the sensethat it
an be used to dete
t any lo
ally stable predi
ate and not just termination.The two termination dete
tion algorithms
an be viewed as spe
ial
ases of ouralgorithm.In addition to the three examples des
ribed above, there are several otheralgorithms that
an be treated as spe
ial
ases of our approa
h for dete
tinglo
ally stable predi
ates [8, 11, 13℄.6 Con
lusion and Future WorkIn this paper, we give an eÆ
ient algorithm to dete
t a lo
ally stable predi
atebased on repeatedly taking (possibly in
onsistent) snapshots of the
omputationin a
ertain manner. Our algorithm uses only
ontrol messages and thus appli-
ation messages do not need to be modi�ed to
arry any
ontrol information.Our algorithm also uni�es several known algorithms for dete
ting two importantlo
ally stable predi
ates, namely termination and deadlo
k.At present, the number of snapshots of the
omputation taken by our algorithmbefore the predi
ate be
omes true is unbounded in the worst-
ase. This impliesthat an unbounded number of
ontrol messages may be ex
hanged in the worst-
ase. As future work, we plan to develop a dete
tion algorithm based on the ideasdes
ribed in the paper whi
h has bounded message-
omplexity. Furthermore, inthis paper, we assume that the system is not subje
t to any failures. In real world,however, failures do o

ur. We plan to extend our dete
tion algorithm to faultyenvironment when one or more pro
esses
an fail by
rashing.

Referen
es1. Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States ofDistributed Systems. ACM Transa
tions on Computer Systems 3 (1985) 63{752. Lai, T.H., Yang, T.H.: On Distributed Snapshots. Information Pro
essing Letters(IPL) 25 (1987) 153{1583. H�elary, J.M., Jard, C., Plouzeau, N., Raynal, M.: Dete
tion of Stable Properties inDistributed Appli
ations. In: Pro
eedings of the ACM Symposium on Prin
iples ofDistributed Computing (PODC). (1987) 125{1364. A
harya, A., Badrinath, B.R.: Re
ording Distributed Snapshots Based on CausalOrder of Message Delivery. Information Pro
essing Letters (IPL) 44 (1992)317{3215. Alagar, S., Venkatesan, S.: An Optimal Algorithm for Re
ording Snapshots usingCasual Message Delivery. Information Pro
essing Letters (IPL) 50 (1994) 311{3166. Ho, G.S., Ramamoorthy, C.V.: Proto
ols for Deadlo
k Dete
tion in DistributedDatabase Systems. IEEE Transa
tions on Software Engineering 8 (1982) 554{5577. Misra, J.: Dete
ting Termination of Distributed Computations Using Markers. In:Pro
eedings of the ACM Symposium on Prin
iples of Distributed Computing(PODC). (1983) 290{2948. Mattern, F.: Algorithms for Distributed Termination Dete
tion. DistributedComputing (DC) 2 (1987) 161{1759. Dijkstra, E.W.: Shmuel Safra's Version of Termination Dete
tion. EWDManus
ript 998. Available at http://www.
s.utexas.edu/users/EWD (1987)10. Mattern, F., Mehl, H., S
hoone, A., Tel, G.: Global Virtual Time Approximationwith Distributed Termination Dete
tion Algorithms. Te
hni
al ReportRUU-CS-91-32, University of Utre
ht, The Netherlands (1991)11. H�elary, J.M., Raynal, M.: Towards the Constru
tion of Distributed Dete
tionPrograms, with an Appli
ation to Distributed Termination. DistributedComputing (DC) 7 (1994) 137{14712. Ko
alar, E., Khokhar, A.A., Hambrus
h, S.E.: Termination Dete
tion: Models andAlgorithms for SPMD Computing Paradigms. In: Pro
eedings of the Pararllel andDistributed Conferen
e. (1999)13. Brzezinski, J., H�elary, J.M., Raynal, M., Singhal, M.: Deadlo
k Models and aGeneral Algorithm for Distributed Deadlo
k Dete
tion. Journal of Parallel andDistributed Computing (JPDC) 31 (1995) 112{12514. Mahapatra, N.R., Dutt, S.: An EÆ
ient Delay-Optimal Distributed TerminationDete
tion Algorithm. Submitted to IEEE Transa
tions on Parallel and DistributedSystems (2003)15. Marzullo, K., Sabel, L.: EÆ
ient Dete
tion of a Class of Stable Properties.Distributed Computing (DC) 8 (1994) 81{9116. Lamport, L.: Time, Clo
ks, and the Ordering of Events in a Distributed System.Communi
ations of the ACM (CACM) 21 (1978) 558{56517. Tel, G.: Introdu
tion to Distributed Algorithms. Se
ond edn. CambridgeUniversity Press (US Server) (2000)18. Fromentin, E., Raynal, M.: Inevitable Global States: A Con
ept to Dete
tUnstable Properties of Distributed Computations in an Observer IndependentWay. In: Pro
eedings of the 6th IEEE Symposium on Parallel and DistributedPro
essing (SPDP). (1994) 242{24819. Mattern, F.: Virtual Time and Global States of Distributed Systems. In: Paralleland Distributed Algorithms: Pro
eedings of the Workshop on DistributedAlgorithms (WDAG), Elsevier S
ien
e Publishers B. V. (North-Holland) (1989)215{22620. Fidge, C.: Logi
al Time in Distributed Computing Systems. IEEE Computer 24(1991) 28{33

