Detecting Locally Stable Predicates without
Modifying Application Messages

Ranganath Atreya!, Neeraj Mittal', and Vijay K. Garg?*

! Department of Computer Science, The University of Texas at Dallas, Richardson,
TX 75083, USA
? Department of Electrical and Computer Engineering, The University of Texas at
Austin, Austin, TX 78712, USA

Abstract. In this paper, we give an efficient algorithm to determine
whether a locally stable predicate has become true in an underlying com-
putation. Examples of locally stable predicates include termination and
deadlock. Our algorithm does not require application messages to be mod-
ified to carry control information (e.g., vector timestamps). Once the pred-
icate becomes true, the detection latency (or delay) of our algorithm is
proportional to the time-complexity of computing a (possibly inconsis-
tent) snapshot of the system. Moreover, only O(n) control messages are
required to detect the predicate once it holds, where n is the number of
processes.

1 Introduction

Two important problems in distributed systems are detecting termination of a
distributed computation and detecting deadlock in a distributed database system:.
Termination and deadlock are examples of stable properties. A property is stable
if it never becomes false once it becomes true. For example, once a subset of
processes are involved in a deadlock, they continue to stay in a deadlocked state.
An algorithm to detect a general stable property involves collecting the relevant
states of processes and channels that are consistent with each other and testing
to determine whether the property holds over the collected state. By repeatedly
taking such consistent snapshots of the computation and evaluating the property
over the collected state, it is possible to eventually detect a stable property once
it becomes true.

Several algorithms have been proposed in the literature for computing a consis-
tent snapshot of a computation [1 4]. These algorithms can be broadly classified
into four categories. They either require sending a control message along every
channel in the system [1] or rely on piggybacking control information on appli-
cation messages [2] or assume that messages are delivered in causal order [4, 5]
or are inhibitory in nature [3]. As a result, consistent snapshots of a computa-
tion are expensive to compute. More efficient algorithms have been developed for
termination and deadlock that do not require taking consistent snapshots of the
computation [6 14].

* Supported in part by the NSF Grants ECS-9907213, CCR-9988225, Texas Education
Board Grant ARP-320, an Engineering Foundation Fellowship, and an IBM grant.

Termination and deadlock are examples of stable properties that can be for-
mulated as locally stable predicates [15]. A predicate is locally stable if no process
involved in the predicate can change its state relative to the predicate once the
predicate holds. In this paper, we show that it is possible to detect any locally
stable predicate by repeatedly taking possibly inconsistent snapshots of the com-
putation in a certain manner. Since snapshots are not required to be consistent,
it is not necessary to send a control message along every channel of the system.
Our algorithm does not inhibit any event of the underlying computation nor does
it require channels to be FIFO. Unlike Marzullo and Sabel’s algorithm for de-
tecting a locally stable predicate [15], no control information is required to be
piggybacked on application messages and therefore application messages do not
need to be modified at all. Once the predicate becomes true, the detection latency
(or delay) of our algorithm is proportional to the time-complexity of the fastest
snapshot protocol. Furthermore, since our approach does not require snapshots to
be consistent, it is not necessary to send a control message along every channel of
the system when a snapshot is taken.

Our algorithm also unifies several known algorithms for detecting termination
and deadlock [6,8 11,13]. Some of the examples include termination detection
algorithms by Safra [9] (color-based algorithm) and Mattern et al [10] (sticky flag
algorithm), and deadlock detection algorithm by Ho and Ramamoorthy [6] (two-
phase algorithm). All of these algorithms can be derived as special cases of the
algorithm given in this paper. Note that the two-phase deadlock detection algo-
rithm as described in [6] is actually flawed but can be easily fixed using the ideas
given in this paper. Therefore this paper presents a unifying framework for under-
standing and describing various termination and deadlock detection algorithms.

The paper is organized as follows. Section 2 describes the system model and the
notation used in this paper. An algorithm for detecting a locally stable predicate
is discussed in Section 3. Due to the lack of space, proofs of various lemmas and
theorems have been omitted. In Section 4, we analyze the performance of the
algorithm. We discuss the related work in Section 5. Finally, Section 6 concludes
the paper and also outlines directions for future research.

2 Model and Notation

2.1 Distributed Computations

We assume an asynchronous distributed system comprising of many processes
which communicate with each other by sending messages over a set of channels.
There is no global clock or shared memory. Processes are non-faulty and channels
are reliable. Channels may be non-FIFO. Message delays are finite but unbounded.

Processes execute events and change their states. A local state of a process,
therefore, is given by the sequence of events it has executed so far starting from
the initial state. Events are either internal or external. An external event could be
a send event or a receive event or both. An event causes the local state of a process
to be updated. In addition, a send event causes a message or a set of messages to
be sent and a receive event causes a message or a set of messages to be received.
The event executed immediately before e on the same process (as €) is called the

predecessor event of e and is denoted by pred(e). The successor event of e, denoted
by succ(e), can be defined in a similar fashion.

Although it is possible to determine the exact order in which events were
executed on a single process, it is, in general, not possible to do so for events
executed on different processes. As a result, an execution of a distributed system,
referred to as distributed computation (or simply a computation), is modeled by an
(irreflexive) partial order on a set of events. The partial order, denoted by —, is
given by the Lamport’s happened-before relation (also known as causality relation)
[16] which is defined as the smallest transitive relation satisfying the following
properties:

1. if events e and f occur on the same process, and e occurred before f in real
time then e happened-before f, and

2. if events e and f correspond to the send and receive, respectively, of a message
then e happened-before f.

Intuitively, the Lamport’s happened-before relation captures the maximum
amount of information that can be deduced about ordering of events when the
system is characterized by unpredictable message delays and unbounded relative
processor speeds.

2.2 Cuts, Consistent Cuts and Frontiers

A state of a distributed system, referred to as global state, is the collective state of
processes and channels. (A channel state is given by the set of messages in transit.)
If every process maintains a log of all the messages it has sent and received so far,
then a channel state can be determined by examining the state of the two processes
connected by the channel. Therefore, in this paper, we view a global state as a
collection of local states. The equivalent notion based on events is called cut. A
cut is a collection of events closed under predecessor relation. In other words, a
cut is a set of events such that if an event is in the set, then its predecessor, if it
exists, also belongs to the set. Formally,

Cisacut 2 (Ve,f=u(e=pred(f))A(feC) = ecC)

The frontier of a cut consists of those events of the cut whose successors do
not belong to the cut. Formally,

frontier(C) £ {e¢€ C|succ(e) exists = succ(e) ¢ C'}

Not every cut corresponds to a valid state of the system. A cut is said to be con-
sistent if it contains an event only if it also contains all events that happened-before
it. Formally,

Cis a consistent cut 2 (Ve,fxu(e—= f)AN(fEC) = ecO)

Observe that if a cut is not consistent then it contains an event such that one
or more events that happened-before it do not belong to the cut. Such a scenario,
clearly, cannot occur in a real world. Consequently, if a cut is not consistent then
it is not possible for the system to be in a global state given by the cut. In other
words, only those cuts which are consistent can possibly occur during an execution.

2.3 Global Predicates

A global predicate (or simply a predicate) is defined as a boolean-valued function
on variables of one or more processes. In other words, a predicate maps every
consistent cut of a computation to either true or false. Given a consistent cut, a
predicate is evaluated with respect to the values of the relevant variables in the
state resulting after executing all events in the cut. If a predicate b evaluates to
true for a cut C, we say that C satisfies b or, equivalently, b(C') = true. Hereafter,
we abbreviate expressions b(C') = true and b(C') = false by b(C) and —b(C),
respectively. Also, we denote the value of a variable x resulting after executing all
events in a cut C' by z(C).

In this paper, we focus on a special but important class of predicates called
locally stable predicates [15]. A predicate is stable if once the system reaches a
global state where the predicate holds, the predicate holds in all future global
states as well.

Definition 1 (stable predicate). A predicate b is stable if it stays true once it
becomes true. Formally, b is stable if for all consistent cuts C' and D,

b(C) A (C C D) = b(D)

An example of a stable predicate is termination (of a distributed computation)
which is expressed as: “all processes are passive” and “all channels are empty”.
Another important example of a stable predicate is deadlock which occurs when
two or more processes are involved in some sort of “circular” wait. (Deadlock is
stable under all request models.) A stable predicate is said to be locally stable if
once the predicate becomes true, no variable involved in the predicate changes its
value thereafter. For a predicate b, let vars(b) denote the set of variables on which
b depends.

Definition 2 (locally stable predicate [15]). A stable predicate b is locally
stable if no process involved in the predicate can change its state relative to b once
b holds. Formally, b is locally stable if for all consistent cuts C' and D,

b(C)N(CCD) = (Vaecwvars(h) : x(C) = (D))

Intuitively, once a locally stable predicate becomes true, not only does the
value of the predicate stay the same—which is true, but the values of all variables
involved in the predicate stay the same as well. In this paper, we distinguish be-
tween property and predicate. A predicate is a concrete formulation of a property
in terms of program variables and processors states. In general, there is more than
one way to formulate a property. For example, the mutual exclusion property,
which states that there is at most one process in its critical section at any time,
can be expressed in the following ways.

1. A (—csiV=ces;), where cs; is true if and only if process p; is in its critical
1<i<j<n
segtion.

2. (3] es;) < 1, where cs; is 1 if and only if process p; is in its critical section
i=1
and is 0 otherwise.

Local stability, unlike stability, depends on the particular formulation of a
property. It is possible that one formulation of a property is locally stable while
the other is not. For instance, consider the property “the global virtual time of
the system is at least k”, which is abbreviated as GVT > k [17]. The property
“GVT > k” is true if and only if the local virtual time of each processes is at least
k and there is no message in transit with timestamp less than k. Let lvt; denote the
local clock of process p;. Also, let sent(i, j; k) denote the number of messages that
process p; has sent to process p; so far whose timestamp is at most k. Likewise,
let rcvd(i, j; k) denote the number of messages that process p; has received from
process p; so far whose timestamp is at most k. The property GVT > k can be
expressed as:

GVT >k = (A lvti>k)/\(A sent(z',j;k):rcud(j,i;k))

1<ign 1<4,5<n

The above formulation of the property GVT > k is not locally stable because
local clock of a process may change even after the predicate has become true.
However, we can define an auxiliary variable a; which is true if and only if lvt; > k.
An alternative formulation of the property GVT' > k is:

GVIT >k = (/\ ai) /\(/\ sent(i, j; k) :chd(j,i;k))

1<i<n 1<i,5<n

Unlike the first formulation, the second formulation is actually locally stable.
We say that a property is locally stable if there is at least one predicate repre-
senting the property that is locally stable. Termination, deadlock of a subset of
processes (under single, AND, OR and P-out-of-@) request models) and global vir-
tual time exceeding a given value can all be expressed as locally stable predicates.

3 The Algorithm

In this section, we describe an on-line algorithm to detect a locally stable predi-
cate, that is, to determine whether a locally stable predicate has become true in a
computation in progress. A general algorithm for detecting a stable predicate is to
repeatedly compute consistent snapshots (or consistent cuts) of the computation
and evaluate the predicate for these snapshots until the predicate becomes true.
More efficient algorithms have been developed for detecting special cases of sta-
ble predicates such as termination and deadlock. Specifically, it has been shown
that to detect many stable predicates, including termination and deadlock, it is
not necessary for snapshots to be consistent. In this paper, we show that any lo-
cally stable predicate can be detected by repeatedly taking possibly inconsistent
snapshots of the underlying computation.

3.1 The Main Idea

The main idea is to take snapshots of the computation in such a manner that there
is at least one consistent snapshot lying between any two consecutive snapshots.
To that end, we generalize the notion of consistent cut to the notion of consistent
interval.

Definition 3 (interval). An interval [C, D] is a pair of possibly inconsistent cuts
C and D such that C C D.

An interval is said to be consistent if it contains at least one consistent cut.

Definition 4 (consistent interval). An interval [C, D] is said to be consistent
if there exists a consistent cut G such that C C G C D.

Note that an interval [C, C] is consistent if and only if C' is a consistent cut.
Next, we give the necessary and sufficient condition for an interval to be consistent.

Theorem 1. An interval [C,D] is consistent if and only if all events that
happened-before some event in C belong to D. Formally, [C, D] is consistent if
and only if the following holds:

Ve, fu(e=>fIN(feC) = ee D) (1)

Observe that when C' = D, the necessary and sufficient condition for an interval
to be consistent reduces to the definition of a consistent cut. Now, consider a
cousistent interval [C, D]. Suppose there is no change in the value of any variable in
vars(b) between C and D. We say that the interval [C, D] is quiescent with respect
to b. Clearly, in this case, for every variable z € vars(b), z(C) = z(D) = z(G).
This implies that b(G) = b(C) = b(D). In other words, in order to compute the
value of the predicate b for the consistent cut G, we can instead evaluate b for
either endpoint of the interval, that is, cut C' or cut D. In case b is a stable
predicate and b(D) evaluates to true, we can safely conclude that b has indeed
become true in the underlying computation. Formally,

Theorem 2. If an interval [C, D] is consistent as well as quiescent with respect
to a predicate b, then

b(D) = (3G :G is a consistent cut: b(G))

Based on the idea described above, an algorithm for detecting a locally sta-
ble predicate can be devised as follows. Repeatedly compute possibly inconsistent
snapshots of the computation in such a way that every pair of consecutive snap-
shots forms a consistent interval. After each snapshot is recorded, test whether
any of the relevant variables on which the predicate depends has undergone a
change since the last snapshot was taken. In case the answer is “no”, evaluate
the predicate for the current snapshot. If the predicate evaluates to true, then,
using Theorem 2, it can be deduced that the computation has reached a state
in which the predicate holds, and the detection algorithm terminates with “yes”.
Otherwise, repeat the above steps for the next snapshot and so on.

Theorem 2 establishes that the algorithm is safe, that is, if the algorithm termi-
nates with answer “yes”, then the predicate has indeed become true in the compu-
tation. We need to show that the algorithm is also live, that is, if the predicate has
become true in the computation, then the algorithm terminates eventually with
answer “yes”. To establish liveness, we use the fact that the predicate is locally
stable, which was not required to prove safety. Suppose the predicate b, which is
locally stable, has become true in the computation. Therefore there exists a con-
sistent cut G of the computation that satisfies b. Let C' and D with C' C D be two

snapshots of the computation taken after G. In other words, G C C' C D. Since
b is a locally stable predicate and b(G) holds, no variable in vars(b) undergoes
a change in its value after GG. This implies that the values of all the variables in
vars(b) for D is same as that for G and therefore D satisfies b as well. Formally,

Theorem 3. Given an interval [C, D], a locally stable predicate b and a consistent
cut G such that G C C,

b(G) = (|G, D] is quiescent with respect to b) A b(D)

Observe that if [G, D] is quiescent with respect to b then so is [C, D]. The
algorithm, on detecting that no relevant variable has undergone a change in the
interval [C, D], evaluates b for D. In this case, b(D) evaluates to true and, as a

result, the algorithm terminates with answer “yes”.

3.2 Implementation

To implement the detection algorithm described in the previous section, two issues
need to be addressed. First, how to ensure that every pair of consecutive snapshots
forms a consistent interval. Second, how to detect that no relevant variable has
undergone a change in a given interval, that is, all relevant variables have reached
a state of quiescence. We next discuss solutions to both the problems.

Ensuring Interval Consistency using Barrier Synchronization: First, we
give a condition that is stronger than the condition (1) given in Theorem 1 in the
sense that it is sufficient but not necessary for a pair of cuts to form a consistent
interval. The advantage of this condition is that it can be easily implemented
using only control messages without altering messages generated by the underlying
computation, hereafter referred to as application messages. To that end, we define
the notion of barrier synchronized interval. Intuitively, an interval [C, D] is barrier
synchronized if it is not possible to move beyond D on any process until all events
in C' have been executed.

Definition 5 (barrier synchronized interval). An interval [C, D] is barrier
synchronized if every event contained in C' happened-before every event that does
not belong to D. Formally,

Ve, f::(eeC)N(f¢D) = e— f) (2)
Next, we show that a barrier synchronized interval is also consistent.

Lemma 4 (barrier synchronization = counsistency). If an interval is barrier
synchronized then it is also consistent.

It can be verified that when C' = D, the notion of barrier synchronized interval
reduces to the notion of barrier synchronized cut, also known as inevitable global
state [18]. Now, to implement the algorithm described in the previous section, we
use a monitor which periodically records snapshots of the underlying computation.
One of the processes in the system can be chosen to act as a monitor. In order

to ensure that every pair of consecutive snapshots is barrier synchronized, the
monitor simply needs to ensure that the protocol for recording the next snapshot
is initiated only after the protocol for recording the current snapshot has termi-
nated. Recording a snapshot basically requires the monitor to collect local states
of all processes. Many approaches can be used depending upon the communication
topology and other factors. For instance, the monitor can broadcast a message to
all processes requesting them to send their local states. A process, on receiving
message from the monitor, sends its (current) local state to the monitor [6]. Al-
ternatively, processes in the system can be arranged to form a logical ring. The
mouitor uses a token (sometimes call a probe) which circulates through the entire
ring gathering local states on its way [9,10,15]. Another approach is to impose
a spanning tree on the network with the monitor acting as the root. In the first
phase, starting from the root node, control messages move downward all the way
to the leaf nodes. In the second phase, starting from leaf nodes, control messages
move upward to the root node collecting local states on their way [17]. (The local
states are recorded in the second phase and not in the first phase.) Hereafter, we
refer to the three approaches discussed above as broadcast-based, ring-based and
tree-based, respectively. In all the three approaches, recording of a local state can
be done in a lazy manner [10]. In lazy recording, a process postpones recording
its local state until its current local state is such that it does not preclude the
(global) predicate from becoming true. For instance, in termination detection, a
process which is currently active can postpone recording its local state until it
becomes passive.

Let a session correspond to taking a single snapshot of the computation. For
the k' session, let Sy, refer to the snapshot computed in the session, and let starty,
and end}, denote the events on the monitor that correspond to the beginning and
end of the session. All the above approaches ensure the following:

(Ve:ec€ frontier(Sy) :e = endy) N (Y f: f € frontier(Spi1) : startgsr — f)

Since sessions do not overlap, endy, — startyq. This implies that:

Ve, f:: (e € frontier(Sy)) A (f € frontier(Sgy1)) = e — f) (3)

It can be easily verified that (3) implies (2). Note that non-overlapping of
sessions is only a sufficient condition for interval consistency and not necessary.
It is possible to ensure interval consistency even when sessions overlap. However,
application messages need to be modified to carry control information.

Detecting Interval Quiescence using Dirty Bits: To detect whether one or
more variables have undergone a change in their values in a given interval, we use
dirty bits. Specifically, we associate a dirty bit with each variable whose value the
predicate depends on. Sometimes, it may be possible to associate a single dirty
bit with a set of variables or even the entire local state. Initially, each dirty bit
is in its clean state. Whenever there is a change in the value of a variable, the
corresponding dirty bit is set to an unclean state. When a local snapshot is taken
(that is, a local state is recorded), all dirty bits are also recorded along with the
values of all the variables. After the recording, all dirty bits are reset to their clean

states. Clearly, an interval [C, D] is quiescent if and ouly if all dirty bits in D are
in their clean states.

In case multiple monitors are used to achieve fault-tolerance, a separate set of
dirty bits has to be maintained for each monitor. This is to prevent snapshots pro-
tocols initiated by different monitors from interfering with each other; otherwise
dirty bits may be reset incorrectly.

Combining the Two: To detect a locally stable predicate, the monitor executes
the following steps.

1. Compute a snapshot of the computation.

2. Test whether all dirty bits in the snapshot are in their clean states. If not, go
to the first step.

3. Evaluate the predicate for the snapshot. If the snapshot does not satisfy the
predicate, then go to the first step.

The basic algorithm can be further optimized. In the ring-based approach,
the process currently holding the token can discard the token if the local states
gathered so far indicate that the global predicate has not become true. For ex-
ample, this can happen during termination detection when the token reaches a
process with one or more dirty bits in their unclean states. The process discarding
the token can either inform the monitor or become the new monitor and initiate
the next session for recording a snapshot. When a session is aborted early in this
manner, only a subset of processes may have recorded their local states and have
their dirty bits reset. In this case, the global snapshot for a session, even if it is
aborted early, can be taken to be the collection of last recorded local states on all
processes.

Although our algorithm does not require application messages to be modified,
it does assume that changes in values of relevant variables can be tracked. This
assumption is made by every predicate detection algorithm.

4 Performance Analysis

We now analyze the performance of the three concrete variants of our detection
algorithm, namely broadcast-based, ring-based and tree-based. We evaluate the
three approaches with respect to the following criteria:

— Message Complexity: It refers to the number of (control) messages gen-
erated by the algorithm. These messages are in addition to the application
messages generated by the underlying computation.

— Message Overhead: It refers to the maximum size of a control message
expressed in number of bits.

— Detection Latency (or Delay): It refers to the time, measured as the
number of message hops, elapsed between when the predicate becomes true
to when the detection algorithm terminates.

— Process Load: It refers to the number of control messages exchanged sent
or received by a process.

Let the space-complexity of recording a local state be O(s) bits.

Broadcast-based approach: For this approach, the message complexity per
session is 2(n — 1), where n is the number of processes, and the message overhead
for a control message is O(s). Once the predicate becomes true, the algorithm
requires at most two more sessions to terminate after the current session has
terminated. This is because, after the current session is over, the next session
will reset all dirty bits and the session after that will detect the predicate. This
translates into O(1) message hops. The monitor is involved in 2(n — 1) message
exchanges per session; it sends n — 1 messages and receives n — 1 messages. All
other processes are involved in two message exchanges per session; each one of
them receives one message and sends one message. Therefore the broadcast-based
approach is highly centralized in nature and as such is not suitable for large
systems because the monitor may get swamped by messages from other processes.

Ring-based approach: For this approach, the message complexity per session
is n and the message overhead for a control message is O(ns). Depending on the
property being detected, however, the message overhead may be much lower. For
example, for termination detection, it is not necessary to store the local state of
each process that has been visited by the token separately. It is sufficient to have
one bit to indicate whether all dirty bits seen so far are in their clean states, one bit
to indicate whether all processes seen so far are passive, and one integer to store
the message deficit the number of messages sent minus the number of messages
received summed over all processes visited so far [9]. The detection latency is two
sessions after the current session terminates, which translates into O(n) message
hops. This approach is attractive due to its distributed nature because each process
is involved in two message exchanges per session; it receives one message and sends
one message.

Tree-based approach: This approach lies in between broadcast-based and ring-
based approaches. The message complexity per session is 2(n — 1) and the message
overhead for a control message is O(ns). Again, depending on the predicate, the
message overhead may be much lower. As in other two approaches, the detection
latency is two sessions after the current session terminates. Therefore the detection
latency in terms of message hops is O(h), where h is the height of the tree. For a
process p, let degree(p) denote the number of neighbors of p in the spanning tree.
For example, if p is a leaf node then degree(p) = 1. Clearly, process p exchanges 2
degree(p) messages per session; it sends degree(p) messages and receives degree(p)
messages.

5 Discussion

Marzullo and Sabel give an algorithm for detecting a locally stable predicate using
the notion of weak vector clock [15]. A weak vector clock, unlike the Fidge/Mattern’s
vector clock [19,20], is updated only when an event that is “relevant” with respect
to the predicate is executed. Whenever a process sends a message, it piggybacks
the current value of its local (weak) vector clock on the message. Thus Marzullo
and Sabel’s algorithm requires application messages to be modified to carry a

vector timestamp of size n, where n is the number of processes.

Ho and Ramamoorthy give a two-phase protocol to detect a deadlock in a dis-
tributed database system using AND request model [6]. Their two-phase approach
is similar to our (broadcast-based) approach in the sense that the snapshots com-
puted in the two phases form a consistent interval. However, their methodology
for detecting what part of a process state is quiescent (and what is not) in an
interval is flawed. Specifically, their quiescence detection approach works only if
status tables maintain information about transactions (and not processes) and
transactions follow two-phase locking discipline. Using the results of this paper,
their protocol can be easily fixed to work in a more general scenario.

Termination detection algorithms by Safra [9] and Mattern et al [10] are similar
to our ring-based approach. In Safra’s algorithm, a colour is associated with every
machine and the token. A machine turns black when it transitions from active
to passive (Rule 3’). When a token visits a black machine, it also turns black
(Rule 4). A black machine holding the token turns white after sending the token
to its neighbouring machine (Rule 7). Termination is detected when, after one full
circulation, all machines were in their passive states, the message deficit is zero,
and the token stays white. Mattern et al associate a sticky flag with every process.
A sticky flag normally tracks the state of a process. However, when a process
transitions from active to passive, the flag sticks to active until a control message
“unsticks” it. Termination is detected when, after one full circulation, all processes
along with their sticky flags were in their passive states, and the message deficit
is zero. Colour and sticky flag play the same role in the two algorithms as dirty
bits in ours; both are used to detect if a process went through some activity since
last recording its local state. However, our algorithm is more general in the sense
that it can be used to detect any locally stable predicate and not just termination.
The two termination detection algorithms can be viewed as special cases of our
algorithm.

In addition to the three examples described above, there are several other
algorithms that can be treated as special cases of our approach for detecting
locally stable predicates [8,11,13].

6 Conclusion and Future Work

In this paper, we give an efficient algorithm to detect a locally stable predicate
based on repeatedly taking (possibly inconsistent) snapshots of the computation
in a certain manner. Qur algorithm uses only control messages and thus appli-
cation messages do not need to be modified to carry any control information.
Our algorithm also unifies several known algorithms for detecting two important
locally stable predicates, namely termination and deadlock.

At present, the number of snapshots of the computation taken by our algorithm
before the predicate becomes true is unbounded in the worst-case. This implies
that an unbounded number of control messages may be exchanged in the worst-
case. As future work, we plan to develop a detection algorithm based on the ideas
described in the paper which has bounded message-complexity. Furthermore, in
this paper, we assume that the system is not subject to any failures. In real world,
however, failures do occur. We plan to extend our detection algorithm to faulty
environment when one or more processes can fail by crashing.

References

1.

2.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Chandy, K.M., Lamport, L.: Distributed Snapshots: Determining Global States of
Distributed Systems. ACM Transactions on Computer Systems 3 (1985) 63 75
Lai, T.H., Yang, T.H.: On Distributed Snapshots. Information Processing Letters
(IPL) 25 (1987) 153 158

Hélary, J.M., Jard, C., Plouzeau, N., Raynal, M.: Detection of Stable Properties in
Distributed Applications. In: Proceedings of the ACM Symposium on Principles of
Distributed Computing (PODC). (1987) 125-136

. Acharya, A., Badrinath, B.R.: Recording Distributed Snapshots Based on Causal

Order of Message Delivery. Information Processing Letters (IPL) 44 (1992)
317-321

. Alagar, S., Venkatesan, S.: An Optimal Algorithm for Recording Snapshots using

Casual Message Delivery. Information Processing Letters (IPL) 50 (1994) 311 316
Ho, G.S., Ramamoorthy, C.V.: Protocols for Deadlock Detection in Distributed
Database Systems. IEEE Transactions on Software Engineering 8 (1982) 554-557
Misra, J.: Detecting Termination of Distributed Computations Using Markers. In:
Proceedings of the ACM Symposium on Principles of Distributed Computing
(PODC). (1983) 290 294

Mattern, F.: Algorithms for Distributed Termination Detection. Distributed
Computing (DC) 2 (1987) 161 175

Dijkstra, E.W.: Shmuel Safra’s Version of Termination Detection. EWD
Manuscript 998. Available at http://www.cs.utexas.edu/users/EWD (1987)
Mattern, F., Mehl, H., Schoone, A., Tel, G.: Global Virtual Time Approximation
with Distributed Termination Detection Algorithms. Technical Report
RUU-CS-91-32, University of Utrecht, The Netherlands (1991)

Hélary, J.M., Raynal, M.: Towards the Construction of Distributed Detection
Programs, with an Application to Distributed Termination. Distributed
Computing (DC) 7 (1994) 137 147

Kocalar, E., Khokhar, A.A., Hambrusch, S.E.: Termination Detection: Models and
Algorithms for SPMD Computing Paradigms. In: Proceedings of the Pararllel and
Distributed Conference. (1999)

Brzezinski, J., Hélary, J.M., Raynal, M., Singhal, M.: Deadlock Models and a
General Algorithm for Distributed Deadlock Detection. Journal of Parallel and
Distributed Computing (JPDC) 31 (1995) 112-125

Mahapatra, N.R., Dutt, S.: An Efficient Delay-Optimal Distributed Termination
Detection Algorithm. Submitted to IEEE Transactions on Parallel and Distributed
Systems (2003)

Marzullo, K., Sabel, L.: Efficient Detection of a Class of Stable Properties.
Distributed Computing (DC) 8 (1994) 81 91

Lamport, L.: Time, Clocks, and the Ordering of Events in a Distributed System.
Communications of the ACM (CACM) 21 (1978) 558-565

Tel, G.: Introduction to Distributed Algorithms. Second edn. Cambridge
University Press (US Server) (2000)

Fromentin, E., Raynal, M.: Inevitable Global States: A Concept to Detect
Unstable Properties of Distributed Computations in an Observer Independent
Way. In: Proceedings of the 6th IEEE Symposium on Parallel and Distributed
Processing (SPDP). (1994) 242 248

Mattern, F.: Virtual Time and Global States of Distributed Systems. In: Parallel
and Distributed Algorithms: Proceedings of the Workshop on Distributed
Algorithms (WDAG), Elsevier Science Publishers B. V. (North-Holland) (1989)
215 226

Fidge, C.: Logical Time in Distributed Computing Systems. IEEE Computer 24
(1991) 28-33

