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Monitoring Multithreaded Distributed Computations

Motivation: Software Faults

• Software faults are dominant reasons for system outages

• Approx 2 to 3 bugs per 1000 lines of code! [Gray and Reuter 93]

Testing and Debugging:

• Distributed programs are prone to errors.

• Traces need to be analyzed to locate bugs.

Software Fault-Tolerance:

• Software fault detection

• Rollback Recovery
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Our Approach

• Three abstractions defined: predicate detection, predicate control and
slicing.

Predicate

MonitorProgram

Slicer

Observe

Control
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Talk Outline

• Motivation

• Predicate Detection

• Computation Slicing

• Predicate Control

• Ongoing and Future Work
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System Model

Y X

p1

p2

a b

dc

m

computation: a set of events ordered by “happened before” relation

consistent cut: subset of events that have been executed so far

e.g., X is a consistent cut but Y is not
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Predicate Detection Problem

Predicate: A global condition expressed using variables on processes

e.g., more than one process is in critical section,
there is no token in the system

Problem: find a consistent cut that satisfies the given predicate

Exponential algorithm for general predicate [Cooper and Marzullo 91]
Polynomial algorithm for conjunctive predicate [Garg and Waldecker 91]

X Y

p1

p2

critical sections
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Motivation for Predicate Detection

Dear Watson, you see but you do not observe...

• Distributed Debugging, Testing

– stop when the predicate q is true
predicate q = (P1 is in critical section) and (P2 is in critical section).

– Detect if the program violates any invariant

• Fault-tolerance

– Monitoring while the program is operational

• Distributed Active Rules

– On global condition p, trigger rule a

• General paradigm for observing Distributed Algorithms

– Termination detection, deadlock detection, loss of token
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The Main Difficulty

a b
p1

c d e
p2

{a}

{}

{c}

{a, c}{a, b}

{a, b, c}

{a, b, c, d}

{a, c, d}

{a, c, d, e}

{a, b, c, d, e}

• NP-complete for a conjunction of clauses such that each clause is a
disjunction of at most two variables [Mittal and Garg 01]

e.g., (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ · · · ∧ (xn−1 ∨ xn)

Problem: Too many consistent cuts (global states)

A computation may contain as many as O(kn) consistent cuts
k: maximum number of events on a process, n: number of processes
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Predicate Detection for Special Cases

Exploit the structure of the predicate:

• stable predicate: [Chandy and Lamport 85]

once the predicate becomes true, it stays true

e.g., deadlock

• unstable predicate:

– observer independent predicate [Charron-Bost et al 95]

occurs in one interleaving ⇒ occurs in all interleavings

e.g., any local predicate

– relational predicate: x1 + x2 + · · ·+ xn > k [Chase and Garg 95]

e.g., violation of mutual exclusion

– linear predicate [Chase and Garg 95]

closed under intersection, e.g., conjunctive predicates such as there is
no leader in the system
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Conjunctive Predicates

A predicate that can be expressed as l1 ∧ l2 ∧ . . . ∧ ln, where li is local to Pi.

Examples:

• mutual exclusion problem: (P1 in CS) and (P2 in CS)

• missing primary: (P1 is secondary) and (P2 is secondary) and (P3 is
secondary)

Detect errors that may be hidden in some run due to race conditions.
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Importance of Conjunctive Predicates

Sufficient for detection of any global

• boolean expression of local predicates which can be expressed as a
disjunction of a small number of conjunctions.

Example: x, y and z are in three different processes. Then,
even(x) ∧ ((y < 0) ∨ (z > 6))
≡
(even(x) ∧ (y < 0))∨ (even(x) ∧ (z > 6))

• predicate satisfied by only a small number of values Example: x and y
are in different processes.
(x = y) is not a local predicate but x and y are binary.
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Conditions for Conjunctive Predicates

local predicate is false

local predicate is true

Predicate is true on this cut

Possibly (l1 ∧ l2 ∧ . . . ln) is true iff there exist si in Pi such that li is true in
state si, and si and sj are incomparable for distinct i, j.
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Tracking Causality: Clocks in a Distributed System

(0,0,0,2)

(1,0,0,0)

(0,0,1,0)

P1

P2

P3

P4

(0,1,0,0) (0,2,0,0)

(0,0,0,1)

(2,1,0,0) (3,1,0,0)

(0,0,2,1) (2,1,3,1)

(2,3,3,1)

(2,1,4,1)

Result: s happened before t iff the vector at s is less than the vector at t.
Vector Clocks [Fidge 89, Mattern 89]
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Dynamic Chain Clocks

Problem with vector clocks: scalability

Idea: Computing the “chains” in an online fashion [Aggarwal and Garg 04]

p1

a b c d

e f g h

(1) (2) (3) (4,1)

(0,1) (0,2) (0,3) (4,4)

p2

p3

p4

a

f

e

b

d

c

h

g

(b)(a)

Figure 1: (a) A computation with 4 processes (b) The relevant subcomputation
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Experimental Results

Simulation of a computation with 1% relevant events
Measured

• number of components vs number of threads

• total time overhead vs number of threads
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Weak Conjunctive Predicates: Centralized Algorithm

Application
Process 1

Application Application
Process 2 Process n

queue 1
queue n

Process

Checker

Checker

[Garg and Waldecker 92] Each non-checker process maintains its local vector
and sends to the checker process the chain clock whenever

• local predicate is true

• at most once in each message interval.
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Overhead: Checker processes

Space complexity: n queues, each containing at most m vectors

Time complexity:

• The algorithm for checker requires at most O(n2m) comparisons.

• Any algorithm which determines whether there exists a set of
incomparable vectors of size n in n chains of size at most m, makes at
least mn(n− 1)/2 comparisons. [Garg and Waldecker 94]
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Predicate Detection in General

{a}

{}

{c}

{a, c}{a, b}

{a, b, c}

{a, b, c, d}

{a, c, d}

{a, c, d, e}

{a, b, c, d, e}

Construct the state-space (need to examine all consistent cuts)

• breadth first manner [Cooper and Marzullo 91]
space-complexity: number of consistent cuts

• depth first manner [Alagar and Venkatesan 94]
space-complexity: number of events

• lexical order [Garg 03]
space-complexity: number of processes
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Talk Outline

• Motivation

• Predicate Detection Problem

• Computation Slicing

• Predicate Control

• Ongoing and Future Work
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The Main Idea of Computation Slicing

slicing

computation

slice

retain all red
consistent cuts
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How does Computation Slicing Help?

slicing cuts that satisfy b1

computation

slice for b1

detect b1 ∧ b2

detect b2

retain all consistent

satisfy b1
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Example

Detect predicate (x1 ∗ x2 + x3 < 5) ∧ (x1 ≥ 1) ∧ (x3 ≤ 3)

{w} {g}

{a,e,f,u,v} {b}

x2P2

x3P3

x1P1

2

(a)

0

4 4

1 −1 02

2

1

1 3

a b c d

e hf g

xwvu

(b)

Slice with respect to (x1 ≥ 1) ∧ (x3 ≤ 3)
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Computation Slice

computation slice: a sub-computation such that: [Mittal and Garg 01]

(1) it contains all consistent cuts of the computation satisfying the given
predicate, and

(2) it contains the least number of consistent cuts

sub-computation
e.g.

computation
e.g.

{b}{c} {a, d}

a b

c d

e.g.

all sent messages have been received

predicate

Slicer
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Example: Conjunctive Predicate

{e, f}

2−11y = 0

−1 2 1x = 0

c

e (x > 0) ∧ (y > 0)

slicing

{d}

{a, b} {c}
p1

p2

a b

fd
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Example: Channel Predicate

{d, f}

slicing

no messages in transit

d

f

{b}{a, c}

{e}

a

c

e

p1

p2

p3

b
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Third Example

?

2−11y = 0

−1 2 1x = 0

c

e

slicing

x + y 6 2

p1

p2

a b

fd
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Slicing Example

d

f

=⇒

a

c

e

p1

p2

p3

b

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d, e}{a, b, c, d}

{a, b, c, d, e} {a, c, d, e, f}

{a, b, c, e}

{a, b, c, d, e, f}
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Characterization of Consistent Cuts

The set of consistent cuts of a computation forms a distributive lattice

(1) The set forms a lattice

• if X and Y are consistent cuts then so are X ∩ Y and X ∪ Y

• meet (infimum, greatest lower bound) → intersection

• join (supremum, least upper bound) → union

(2) The lattice is distributive

• meet distributes over join
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Join-irreducible Elements

A join-irreducible element has exactly one incoming edge

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d, e}{a, b, c, d}

{a, b, c, d, e} {a, c, d, e, f}

{a, b, c, e}

{a, b, c, d, e, f}
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Birkhoff’s Representation Theorem

A distributive lattice can be recovered exactly from the set of its
join-irreducible elements

Y

Z

⇐⇒

U V

W X

Y

Z

WU

X

V

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d, e}{a, b, c, d}

{a, b, c, d, e} {a, c, d, e, f}

{a, b, c, e}

{a, b, c, d, e, f}
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What about a Subset of Consistent Cuts?

X Y

X ∩ Y

X ∪ Y

{e}

{}

{a}

{a, c} {a, e}{a, b}

{a, b, c} {a, b, e} {a, c, d} {a, c, e}

{a, c, d, e}{a, b, c, d}

{a, b, c, d, e} {a, c, d, e, f}

{a, b, c, e}

{a, b, c, d, e, f}

X in subset and

Y in subset

⇒

X ∩ Y in subset and

X ∪ Y in subset

sublattice: subset of consistent cuts closed under intersection and union
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Representing a Sublattice

A sublattice of a distributive lattice is also a distributive lattice

⇒
A sublattice has a succinct representation

{d, f}Z

⇐⇒⇐⇒

W X

Z

Y

{b}{a, c}

{e}X

YW

{e}{a, c}

{a, b, c}

{a, c, d, e, f}

{}

{a, c, e}

{a, b, c, e}

{a, b, c, d, e, f}

January 3, 2005 ECE Dept., Univ. Texas at Austin Page 32



Monitoring Multithreaded Distributed Computations

What if the Subset is not a Sublattice?

Add consistent cuts to complete the sublattice

=⇒

{e}{a, c}

{a, b, c}

{a, c, d, e, f}

{a, c, e}

{}

{e}{a, c}

{a, b, c}

{a, c, d, e, f}{a, b, c, e}

{a, b, c, d, e, f}

{a, c, e}

{}
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Computing the Slice

Algorithm:

(1) Find all consistent cuts that satisfy the predicate

(2) Add consistent cuts to complete the sublattice

(3) Find the basis elements of the sublattice

Can we find the basis elements without computing the sublattice?
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Regular Predicate

regular predicate: the set of consistent cuts satisfying the predicate is closed
under intersection and union [Garg and Mittal 01]

Examples:

• conjunctive predicate—conjunction of local predicates

• there are at most (or at least) k messages in transit from process i to
process j

• every “request” message has been “acknowledged” in the system

The class of regular predicates is closed under conjunction:

If b1 and b2 are regular predicates then so is b1 ∧ b2
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Computing the Slice for Regular Predicate

x

z

vu

w

y

p1

p2

p3

b = “no messages in transit”

Algorithm:

Step 1: Compute the least consistent cut L that satisfies b

L = {}

Step 2: Compute the greatest consistent cut G that satisfies b

G = {u, v, w, x, y, z}
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Computing the Slice for Regular Predicate

Algorithm:

Step 3: For every event e ∈ G− L, compute L(e) defined as:

(1) L(e) contains e

(2) L(e) satisfies b

(3) L(e) is the least consistent cut satisfying (1) and (2)

x

z

vu

w

y

p1

p2

p3

L(u) = L(w)

L(u) = {u, w}
L(v) = {u, v, w}
L(w) = {u, w} (duplicate)
L(x) = {u, w, x, y, z}
L(y) = {y}
L(z) = {u, w, x, y, z} (duplicate)
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Results

Efficient polynomial-time algorithms for computing the slice for:

• regular predicate: [Garg and Mittal 01]

time-complexity:

– general: O(n2m)

– special cases (e.g., conjunctive predicate): O(m)

• general predicate:

Theorem: Given a computation, if a predicate b can be detected
efficiently then the slice for b can also be computed efficiently. [Mittal,
Sen and Garg 02]

n: number of processes
m: number of events
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Experimental Evaluation: Dining Philosophers Verification

POTA: Partial Order Trace Analyzer (based on slicing) [Sen and Garg 03]
SPIN: A widely used model checking tool [Holzmann 97]
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SPIN: 250 seconds for n = 6, runs out of memory for n > 6.
POTA: can handle n= 200. Used 400 seconds.
Predicate: Two neighboring dining philosophers do not eat concurrently
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Talk Outline

• Motivation

• Predicate Detection Problem

• Computation Slicing

• Predicate Control

• Ongoing and Future Work
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Motivation for Control

Who controls the past controls the future, who controls the present controls

the past...

George Orwell,

Nineteen Eighty-Four.

• maintain global invariants or proper order of events
Examples: Distributed Debugging

– ensure that busy1 ∨ busy2 is always true

– ensure that m1 is delivered before m2

• Resource Allocation

– maintain ¬CS1 ∨ ¬CS2

• Fault tolerance

– On fault, rollback and execute under control

• Adaptive policies
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Rollback Recovery for Software Faults

faulty state

p3

p2

p1

restored state

Re-execution Problem:

To re-execute in order to avoid a recurrence of a previously detected
failure

– Progressive Retry [Wang et al 97]

– Controlled Re-execution [Tarafdar and Garg 98]
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Controlled Re-execution

a c

bd

a c

bd

p1

p2

X

p1

p2

X

critical sections

Add the synchronization necessary to maintain safety property

e.g., mutual exclusion
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The Main Difficulty

a b

dc

a b

dc

fault-free

a b

c d

p1

p2

p1

p2

p1

p2

deadlock
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Results

Efficient algorithms for computing the synchronization for:

• Locks [Tarafdar and Garg 98]

– time-complexity: O(nm)

• disjunctive predicate [Mittal and Garg 00]

e.g., (n− 1)-mutual exclusion

– time-complexity: O(m2)

– minimizes the number of synchronization arrows

• region predicate [Mittal and Garg 00]

e.g., virtual clocks of processes are “approximately” synchronized

– time-complexity: O(nm2)

– maximizes the concurrency in the controlled computation

n: number of processes, m: number of events
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Ongoing and Future Work

• Predicate Detection: Temporal logic predicates (Anurag Agarwal), Online
relational predicates (Selma Ikiz)

• Slicing: Distributed and online algorithms (Vinit Ogale)

• Predicate Control: Controlling message order (Arindam Chakraborty)

• Model Checking: Based on predicate detection and slicing (Sujatha
Kashyap)
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