
Concurrent Regular Expressions and their Relationship to Petri NetsVijay K. Garg 1Department of Electrical and Computer Engineering,University of Texas, Austin, TX 78712-1084M.T.RaghunathComputer Science Division,University of California, BerkeleyBerkeley, CA 94720AbstractWe de�ne algebraic systems called concurrent regular expressions which providea modular description of languages of Petri nets. Concurrent regular expressions areextension of regular expressions with four operators - interleaving, interleaving closure,synchronous composition and renaming. This alternative characterization of Petrinet languages gives us a
exible way of specifying concurrent systems. Concurrentregular expressions are modular and hence easier to use for speci�cation. The proof ofequivalence also provides a natural decomposition method for Petri nets.1 IntroductionFormal models proposed for speci�cation and analysis of concurrent systems can be cat-egorized roughly into two groups: algebra based and transition based. The algebra basedmodels specify all possible behaviors of concurrent systems by means of expressions thatconsist of algebraic operators and primitive behaviors. Examples of such models are pathexpressions[3], behavior expressions[21] and extended regular expressions. Examples of toolsto analyze the speci�cations based on such models are Path Pascal[4], COSY [17], CCS [21]and Paisley [30]. The transition based models provide a computational model in which thebehavior of the system is generally modeled as a con�guration of an automaton from whichone or more transitions are possible. Examples of the transition based models are �nite statemachines[12], S/R Model[1], UCLA graphs[5], and Petri nets[27]. Examples of modeling andanalysis tools based on these models are Spanner [1], A�rm [9] and PROTEAN [2].Algebraic systems promote hierarchical description and veri�cation, whereas transitionbased models have the advantage that they are graphical in nature. For this reason, it issometimes easier to use an algebraic description, and othertimes a transition-based descrip-tion. We believe that a formal description technique should support both styles of descriptions.In this paper, we propose an algebraic model called concurrent regular expressions for mod-eling of concurrent systems. These expressions can be converted automatically to Petri nets,1supported in part by grants from the Bureau of Engineering Research and University Research Institute,University of Texas at Austin 1

and thus all analysis techniques that are applicable to Petri nets can be used. Conversely,any Petri net can be converted to a concurrent regular expression providing further insightsinto its language.The languages of Petri nets have also been studied by [10, 23, 26, 28, 29]. Hack [10]and Peterson [23] studied closure properties of Petri net languages but did not provide anycharacterization of their languages. [26] provides a characterization in terms of Szilard lan-guages of matrix context-free languages. Our characterization is much simpler and providesa clear relationship between regular sets and Petri net languages. Moreover, it uses operatorsthat arise naturally in modeling concurrent systems such as interleaving and synchronouscomposition.All the existing models can also be classi�ed according to their inherent expressive power.For example, a �nite state machine is inherently less expressive than a Petri net. However,the gain in expressive power comes at the expense of analyzability. Analysis questions such asreachability are more computationally expensive for Petri nets than for �nite state machines.A complex system may consist of many components requiring varying expressive power.We believe that a formal description technique should support models of di�erent expressivepowers under a common framework. An example of such a description technique for syntaxspeci�cation is Chomsky hierarchy of models based on grammar. A similar hierarchy isrequired for formal description of distributed systems. The model of concurrent regularexpressions provides such a hierarchy. A regular expression is less expressive than a unitexpression which, in turn, is less expressive than a concurrent regular expression.As mentioned earlier, there are many existing algebraic models for speci�cation of con-current systems. CCS[21], CSP[11] and FRP[13] These models do not have any equivalenttransition based model. Similarly, they do not support a hierarchy of models like we do.Path expressions[17] were shown to be translatable to Petri nets, and thus analyzable forreachability properties [14, 15, 19]. Concurrent regular expressions are more general thanPath expressions as they are equivalent to Petri nets.We have used interleaving semantics rather than true concurrency as advocated by [25]and [27]. This assumption is in agreement with CSP[11] and CCS[21]. In this paper, wehave further restricted ourselves to modeling deterministic systems so that the languagesare su�cient for de�ning behaviors of a concurrent system. We have purposely restrictedourselves from de�ning �ner semantics, such as failures[11], and synchronization trees[21],as the purpose of this paper is to introduce a basic model to which these concepts can beadded later. In particular, it is easy to add a non-deterministic or operator and failuresemantics[11].This paper is organized as follows. Section 2 de�nes concurrent regular expressions.It also describes the properties of operators used in the de�nition. Section 3 gives someexamples of use of concurrent regular expressions for modeling distributed systems. Section4 compares the class of languages de�ned by concurrent regular expressions with regular,and Petri net recognizable languages. 2

2 Concurrent Regular ExpressionsWe use languages as the means for de�ning behaviors of a concurrent system. A languageis de�ned over an alphabet and therefore two languages consisting of the same strings butde�ned over di�erent alphabet sets will be considered di�erent. For example, null languagesde�ned over �1 and �2 are considered di�erent. We will generally indicate the set over whichthe language is de�ned, but may omit it if clear from the context.We next describe operators required for de�nition of concurrent regular expressions.2.1 Choice, Concatenation, Kleene ClosureThese are the usual regular expression operators. Choice denoted by \+" is de�ned asfollows. Let L1 and L2 be two languages de�ned over �1 and �2 thenL1 + L2 = L1 [L2 de�ned over �1 [�2.This operator is useful for modeling the choice that a process or an agent may make.The Concatenation of two languages (denoted by .) is de�ned based on usual concatenationof two strings asL1:L2 = fx1x2jx1 2 L1; x2 2 L2gThis operator is useful to capture the notion of a sequence of action followed by anothersequence. The Kleene closure of a set A is de�ned asA� = Si=0;1;::Aiwhere Ai = A:A:::i timesThis operator is useful for modeling the situations in which some sequence can be repeatedany number of times. For details of these operators, the reader is referred to [12].2.2 InterleavingTo de�ne concurrent operations, it is especially useful to be able to specify the interleavingof two sequences. Consider for example the behavior of two independent vending machinesVM1 and VM2. The behavior of VM1 may be de�ned as (coin:choc)� and the behavior ofVM2 as (coin:coffee)�. Then the behavior of the entire system would be an interleaving ofVM1 and VM2. With this motivation, we de�ne an operator called interleaving, denoted byjj. Interleaving is formally de�ned as follows:ajj� = �jja = fag 8a 2 �a:sjjb:t = a:(sjjb:t)[b:(a:sjjt) 8a; b 2 �; s; t 2 ��Thus, abjjac = fabac; aabc; aacb; acabg:This de�nition can be extended to interleaving between two sets in a natural way, i.e.A jj B = fwj9s 2 A ^ t 2 B;w 2 sjjtgFor example, consider two sets A and B as follows: A = fabg and B = fbag then A jj B= fabba; abab; baab; babag.Note that similar to A jj B, we also get a set A jj A = faabb; ababg. We denote A jj A3

by A(2). We use parentheses in the exponent to distinguish it from the traditional use of theexponent i.e. A2 = A:A.Interleaving satis�es the following properties:(1) A jj B = B jj A (Commutativity)(2) A jj (B jj C) = (A jj B) jj C (Associativity)(3) A jjf�g = A (identity of jj)(4) A jj� = � (zero of jj)(5) (A+B) jj C = (A jj C)+(B jj C) (Distributivity over +)This operator, however, does not increase the modeling power of concurrent regularexpressions as shown by the following Lemma.Lemma 0: Any expression that uses jj can be reduced to a regular expression withoutjj .Proof: This follows from the equivalence between �nite state machines and regular expres-sions and the fact that the interleaving of two �nite state machines can also be simulated bya �nite state machine[12]. �2.3 Alpha-closureConsider the behavior of people arriving at a supermarket. We assume that the populationof people is in�nite. If each person CUST is de�ned as (enter:buy:leave), then the behaviorof the entire population is de�ned as interleaving of any number of people. With thismotivation, we de�ne an analogue of a Kleene-Closure for the interleaving operator, �-closure of a set A, as follows: A� = Si=0;1;::A(i):Then if #(a;w) mean the number of occurrences of the symbol a in the string w, theinterpretation of CUST � is as follows:CUST � = fwj for all prefixes s of w;#(enter; s) � #(buy; s) � #(leave; s), and#(enter; w) = #(buy;w) = #(leave;w)gNote the di�erence between Kleene closure and alpha closure. The language shown abovecannot be accepted by a �nite state machine. This can be shown by the use of the pumpinglemma for �nite state machines [12]. We conclude that alpha closure can not be expressedusing ordinary regular expression operators.Intuitively, the alpha closure lets us model the behavior of an unbounded number ofidentical independent sequential agents. Alpha-closure satis�es the following properties:1) A�� = A� (idempotence)2) (A�)� = A� (absorption of *)3) (A+B)� = A�jjB�2.4 Synchronous CompositionTo provide synchronization between multiple systems, we de�ne a composition operatordenoted by []. Intuitively, this operator ensures that all events that belong to two sets occur4

simultaneously. For example consider a vending machine VM described by the expression(coin:choc)�. If a customer CUST wants a piece of chocolate he must insert a coin. Thusthe event coin is shared between VM and CUST. The complete system is represented byVM[]CUST which requires that any shared event must belong to both VM and CUST.Formally,A[]B =fwjw=�A 2 A;w=�B 2 Bgwhere w=S denotes the restriction of the string w to the symbols in S. For example,acab=fa; bg = aab and acab=fb; cg = cb. If A = fabg and B = fbag, then A[]B = � as therecannot be any string that satis�es ordering imposed by both A and B. Consider another setC = facg. Then A[]C = fabc; acbg.Many properties of [] are the same as those of the intersection of two sets. Indeed, if bothoperands have the same alphabet then [] is identical to intersection.(1) A[]A = A (Idempotence)(2) A[]B = B[]A (Commutativity)(3) A[](B[]C) = (A[]B)[]C (Associativity)(4) A[]NULL = NULL, NULL = (�A; �) (zero of [])(5) A[]MAX = A, MAX = (�A;�A�) (identity of [])(6) A[](B+C) = (A[]B)+(A[]C) (Distributivity over +)2.5 RenamingIn many applications, it is useful to rename the event symbols of a process. Some examplesare:� Hiding: We may want some events to be internal to a process. We can do so by meansof renaming these event symbols to �.� Partial Observation: We may want to model the situation in which two symbols aand b look identical to the environment. In such cases we may rename both of thesesymbols with a common name such as c.� Similar processes: Many system often have \similar" processes. Instead of de�ning eachone of them individually, we may de�ne a generic process which is then transformedto the required process by renaming operator.Let L1 be a language de�ned over �1. Let � represent a function from �1 to �2 [f�g. Then�(L1) is a language de�ned over �(�1) de�ned as follows:�(L1) = f�(s)js 2 L1gA renaming operator labels every symbol a in the string by �(a). We leave it to readers toderive the properties of this operator except for noting that it distributes over all previouslyde�ned operators except for synchronous composition.5

2.6 De�nition of CRE'sA concurrent regular expression is any expression consisting of symbols from a �nite set �and +, ., *, [], jj, �, �(), and � with certain constraints as summarized by the followingde�nition.� Any a that belongs to � is a regular expression (r.e.). A special symbol called � is alsoa regular expression. If A and B are r.e.'s, then so are A.B (concatenation), A+B (or),A� (Kleene closure).� A regular expression is also a unit expression. If A and B are unit expressions then soare AjjB (Interleaving) and A� (Inde�nite Interleaving closure).� A unit expression is also a concurrent regular expression (cre). If A and B are cre'sthen so are AjjB, A[]B (synchronous composition), and �(A)(renaming).The intuitive idea behind above de�nition is as follows. We assume that a system hasmultiple (possibly in�nite) agents. Each agent is assumed to have a �nite number of statesand therefore can be modeled by a regular set. These agents can execute independently(jj and �) and a unit expression models a group of agents (possibly in�nite) which do notinteract with each other. The world is assumed to contain a �nite number of these unitswhich either execute independently (jj) or interact by means of synchronous composition([]).3 Modeling of Concurrent SystemsIn this section, we give some examples of use of concurrent regular examples in modelingconcurrent systems.Example 1: Producer Consumer ProblemThis problem concerns shared data. The producer produces items which are kept in abu�er. The consumer takes these items from the bu�er and consumes them. The solutionrequires that the consumer wait if no item exists in the bu�er. The problem can be speci�edin concurrent regular expressions as follows:producer ::(produce putitem)�consumer :: (getitem consume)�bu�er :: (putitem getitem)�system :: producer [] bu�er [] consumerThe bu�er process ensures that the number of getitem is always less than or equal tothe number of putitem. Note that if � is replaced by � in the description of the bu�er, thesystem will allow at most one outstanding putitem.Example 2: Mutual Exclusion ProblemThe mutual exclusion problem requires that at most one process be executing in theregion called critical. It is speci�ed in cre's as follows:contender :: (noncrit req crit exit) 6

constraint :: (req crit exit)�system :: contender�[]constraintExample 3: Ball Room ProblemConsider a dance ball room where both men and women enter, dance and exit. Theirentry and exit need not be synchronized but it takes a pair to dance. Also we would liketo ensure that the number of women in the room is always greater than or equal to thenumber of men, since idle men are dangerous! This system can easily be represented usinga concurrent regular expression:A man's actions can be represented by the following sequence:man :: menter dance mexitA woman's actions as follows:woman :: wenter dance wexitThe constraint that the number of women always be greater can be expressed as:constraint :: (wenter (menter mexit) � wexit)�Since any number of men and women can enter and exit independently (except for theconstraint) the entire system is modeled as follows:man� [] woman� [] constraintExample 4: (abc)� [] a�b�c� accepts language fanbncnjn � 0g. Note how the use of �operator let us keep track of number of a's that have been seen in the string. This exampleshows the strings that can not be recognized even by push down automata can be representedby cre's.4 Relationship with Petri NetsIn this section, we show that concurrent regular expressions characterize the class of PetriNet languages. The proof of this characterization involves following steps.1. We de�ne an automata theoretic model called Decomposed Petri Nets (DPN). We showthat any Petri net can be converted to a Decomposed Petri Net such that they havethe same language. A DPN consists of one or more units. The decomposition involvespartitioning of places of the original Petri net into various units such that each unitmodels a set of non-interacting processes.2. We show how a DPN can be converted to concurrent regular expressions. Intuitively,each unit consists of interleaving of �nite state processes (possibly an in�nite numberof them) each of which could be characterized by a regular expression.3. We show how any concurrent regular expression can be converted to a Petri net suchthat they have the same language. This transformation uses various closure propertiesof Petri net languages.Thus a system can be expressed in Petri net, DPN, or CRE formalism and transformed toany other formalism. This transformation can be used for systems which are easier to specifyin one formalism but easier to analyze in other.7

The above proof provides a new decomposition method for Petri nets. This method hasthe advantage of separating concurrency and synchronization in Petri nets. The resultingautomata called Decomposed Petri Net and their equivalent concurrent regular expressionssatisfy modularity properties and can be more easily used for speci�cation of concurrentsystems.4.1 Languages of Petri NetsDe�nition: A Petri net N is de�ned as a �ve-tuple (P, T, I, O, �0), where:� P is a �nite set of places;� T is a �nite set of transitions such that P \ T = �� I:T �! P1 is the input function, a mapping from transition to bag of places� O : T �! P1 is the output function, a mapping from transition to bag of places� �0 is the initial net marking, is a function from the set of places to the nonnegative integersN , �0 : P �! N .De�nition: A transition tj 2 T in a Petri net N = (P, T, I, O, �) is enabled if for all pi 2 P ,�(pi) � #(pi; I(tj)) where #(pi; I(tj)) represents multiplicity of the place pi in the bag I(tj).De�nition: The next-state function � : Zn+ � T �! Zn+ for a Petri net N = (P, T, I, O,�) , jP j = n, with transition tj 2 T is de�ned i� tj is enabled. The next-state is equal to �0where:�0(pi) = �(pi)�#(pi; I(tj)) + #(pi; O(tj)) for all pi 2 P:We can extend this function to a sequence of transitions as follows:�(�; tj�) = �(�(�; tj); �);�(�; �) = � where � represents the null sequence.To de�ne the language of a Petri net, we associate a set of symbols called alphabet �with a Petri net by means of a labeling function, � : T �! �. A sequence of transition�rings can be represented as a string of labels. Let F � P designate a particular subset ofplaces as �nal places and we call a con�guration � �nal if�(pi) = 0 8pi 2 P � FThat is, all tokens are in �nal places in a �nal con�guration. If a sequence of transition�rings takes the Petri Net from its initial con�guration to a �nal con�guration, the stringformed by the sequence of labels of these transitions is said to be accepted by the Petri Net.The set of all strings accepted by a Petri Net is called the language of the Petri Net.De�nition: The language L of a Petri net N=(P, T, I, O, �) with alphabet �, labelingfunction � and the set of �nal places F, is de�ned asL = f�(�) 2 ��j� 2 T � and �f = �(�0; �) such that �f (p) = 0 for all p 2 P � FgNote that our notion of �nal con�gurations is di�erent from the traditional de�nition ofPetri net languages which typically use a �nite set of �nal con�gurations (cf. [Peterson 83]).Our de�nition of �nal con�gurations may result in in�nite number of them. Our resultsprovide a strong motivation for using our de�nition of �nal con�gurations.8

4.2 Transformation of PN's to DPN'sAs we said earlier, it is convenient to decompose a given Petri net for the purposes of ourcharacterization. A Petri net is partitioned into multiple units which share all the transitionsof the Petri net. Each unit contains some of the places of the original Petri net. Intuitively,the decomposition is such that the tokens within a unit need to synchronize only withtokens in other units. Each unit is a generalization of �nite state machine. Formally, a DPN(Decomposed Petri Net) D is a tuple (T;U) where� T = a �nite set of symbols called transition alphabet� U = set of units (U1; U2::Un) where each unit is a �ve tuple i.e. Ui = (Pi; Ci;�i; �i; Fi)where:{ Pi is a �nite set of places{ Ci is an initial con�guration which is a function from the set of places to nonneg-ative integers N and a special symbol '*'. i.e.,Ci : Pi� > (N Sf�g). The symbol'*' represents an unbounded number of tokens. A place which has * tokens iscalled a *-place.{ �i is a �nite set of transition labels s.t. �i � T .{ �i is a relation between Pi � �i and Pi, i.e., �i � (Pi � �i) � Pi. �i represents alltransition arcs in the unit.{ Fi is a set of �nal places, Fi � Pi.The con�guration of a DPN can change when a transition is �red. A transition withlabel a is said to be enabled if for all units Ui = (Pi; Ci;�i; �i; Fi) such that a 2 �i thereexists a transition (pk; a; pl) with Ci(pk) � 1. Informally, a transition a is enabled if all theunits that have a transition labeled a, have at least one place with non-zero tokens and anoutgoing edge labeled a. For example, in Figure 1 get-item is enabled only if both p4 and p5have tokens. A transition may �re if it is enabled. The �ring will result in a new markingC 0i for all participating units, and is de�ned byC 0i(pk) = Ci(pk)� 1C 0i(pl) = Ci(pl) + 1:A *-place remains the same after addition or deletion of tokens.As an example of a DPN machine, consider the producer consumer problem. The pro-ducer produces items which are kept in a bu�er. The consumer takes these items from thebu�er and consumes them. The solution requires that the consumer wait if no item exists inthe bu�er. The consumer can execute get-item only if there is a token in the place p4. Notehow the *-place is used to represent an unbounded number of tokens.9

Figure 1: A DPN machine for Producer Consumer ProblemThe de�nition of the language of a DPN is identical to that of a PN.Theorem 1: Every Petri net can be decomposed, i.e., for every PN there exists a DPN suchthat they have the same language.Before we prove this result, we will need the following Lemma which is based on a result byHack [10].Lemma 1 : For every Petri net P, there exists an ordinary Petri net such that they havethe same language.Proof: We can use a construction provided by [10] to convert any Petri net to an ordinaryPetri net such that its language is preserved. This construction replaces a place with max-imum multiplicity of k by a ring of k places each having multiplicity of 1. The tokens canmove freely within this ring by means of � labeled transition. A similar result has also beenshown by [16].Proof of Theorem 1: We will show that any ordinary Petri net can be decomposed to a DPNand then using Lemma 1 we can assert this result for any Petri net.(1) Construction of a DPN from an Ordinary Petri netLet N be a Petri net = (P; T; I;O; �; F) with the usual meaning of the notation. Every placein the Petri net is also a place in the DPN. These places, however, may belong to di�erentunits depending on the unit assignment function. A unit assignment function is any functionf : P� > f1; 2; ::kg such that8t 2 T; p1; p2 2 P : ((p1; p2) � I(t)) _ ((p1; p2) � O(t)) => f(p1) 6= f(p2)This condition implies that places belonging to the same unit cannot be input(output) tothe same transition. It holds trivially if all places belong to di�erent units.We de�ne the DPN D as D = (T; fU1; U2; :::UKg) where Ui = (Pi;�i; Ci; �i; Fi) is de�nedas follows:� Pi contains all the places that are assigned the unit number i, and a *-place denoted byspi. Pi = fp 2 P jf(p) = ig [fspig� �i contains as transition symbols all those transitions in which places belonging to unit iparticipate. �i = ft 2 T j9p 2 Pi; p 2 I(t) [O(t)g� The con�guration of the DPN (Ci : Pi� > N [f�g) is the same as the marking functionin the Petri net, i.e. Ci(p) = �(p) 8p 2 Pi; Ci(spi) = �:� �i � Pi � �i � Pi. If a unit has an input place as well as an output place for a transition,an arc is added between them. If a unit has only an input place for a transition then an arcis added between the input place and its *-place. If a unit has only an output place for atransition then an arc is added between its *-place and the output place. Formally,�i = f(pj ; t; pk)j9t : (pj 2 I(t)) ^ (pk 2 O(t))g[f(pj ; t; spi)j9t : pj 2 I(t); 6 9pk; pk 2 O(t)g 10

[f(spi; t; pk)j9t : pk 2 O(t); 6 9pj; pj 2 I(t)g� Fi is the set of �nal places. Fi = (Pi \ F) [fspigThus, *-places are always �nal places.The size of the resulting DPN is of the same order as the size of the Petri net. Also, thetransformation of the given Petri net structure can be done in linear time.The set of sequences of transitions is identical for both structures because:(1) Initially, both the Petri net and the DPN have the same con�guration.(2) The set of transitions that is enabled for equal con�gurations is identical.(3) Both machines starting from equal con�gurations reach equal con�gurations on takingthe same transition. �4.3 Transformation of DPN's to Concurrent Regular Expres-sionsWe next show that there exists an algorithm to derive a concurrent regular expression thatdescribes the set of strings accepted by a DPN. We need the following Lemmas before wecan prove the required result.Lemma 2.1: Any unit with multiple *-places can be converted to an equivalent unit witha single *-place.Proof: Merge all *-places into a single *-place. All input arcs and output arcs in the unitare combined. Since the tokens in *-places do not change and the bag of transitions enabledfor any con�guration is identical, we conclude that the language remains the same. �Lemma 2.2: Any unit U is equivalent to another unit which has at most two connectedcomponents - one with *-place and the other with a single token.Proof : From Lemma 2.1, we can assume, without loss of generality, that there is at mostone *-place in U. U may have one or more connected components. Let the connected com-ponent C have the *-place. C may have tokens at some non-* places too. As tokens moveindependently of each other within a unit, C can be written as two components- one withtokens only in the non-* places and the other with the *-place. All the connected compo-nents of U with no *-places can be combined into a single connected component - a �nitestate machine. This is because there is a �nite number of invariant tokens residing in �nitenumber of places, resulting in only a �nite number of possible con�gurations. Therefore, a�nite state machine can simulate the behavior of these components. �Lemma 2.3: Let U be a unit with a single *-place having no tokens in its simple places.Then its language can be written as a (regular expression)�.Proof: Let U = (P;C;�; �; F) with C(pi) = *. We construct the �nite state machineA = (P; pi;�; �; F), with pi as the initial state. Let L(X) represent the language accepted byautomata X. We will show that L(U) = L(A)�.Case 1: L(U) � L(A)�Let a string s belong to the language of the unit U. In accepting s, a �nite number of tokens,say n, must have moved from the *-place to some �nal place. Let s1; s2::sn be the strings11

that are traced by tokens 1::n, respectively, such that one of their interleaving is s. Eachof the strings s1::sn also belongs to the regular set. Therefore, their interleaving belongs to�-closure of the regular set.Case 2: L(A)� � L(U)Consider any string s in L(A)�. This string s can be written as s1jjs2jj::jjsn where each sibelong to A. As si belong to A, it also represents a path from the initial place to a �nal placein U. Hence s can be simulated by n tokens which simulate s1; ::sn respectively. �Theorem 2: There exists an algorithm to derive a concurrent regular expression that de-scribes the set of strings accepted by a DPN.Proof : To derive the expression for a unit, we use Lemma 2.2 to convert it into a unit withat most two components, one with *-place and one with a single token. From Lemma 2.3,the language of any such unit can be written as interleaving of a regular expression and atmost one (regular expression)�. The concurrent expression equivalent to the DPN will bethe unit expressions for units composed by the [] operator. We can �nally apply the labelingfunction used for de�ning the Petri net's language as the renaming function. �An example of equivalent Petri net, DPN and concurrent regular expression is shownin Figure 2. Note that, it is easy to show that number of a's in any pre�x is greater thannumber of c's by considering the language of unit 2. Similarly, from unit 1 it is clear thatthe events b and d alternate in the system.Figure 2: PN => DPN => CRE4.4 Transformation of a CRE to a PNTo show that every CRE can be converted to a Petri Net, we need the following Lemmas.Lemma 3.1: Let A and B be two regular expressions, then(a) A�jjB� = (A+B)�(b) (AjjB�)� = A�jjB�Proof:(a) Let string s 2 A�jjB�=> s 2 a1jja2jj::jjanjjb1jjb2jj::jjbmfor ai 2 A; i = 1::n; bj 2 B; j = 1::m n;m � 0� (A+B)� (because each string belongs to A+B)Let string s 2 (A+B)�.=> s 2 c1jjc2jj::jjcn, where ci 2 A+BIf ci 2 A we call it ai, otherwise we call it bi.On rearranging terms so that all strings that belong to A come before strings that do notbelong to A (and therefore must belong to B), we get s 2 A�jjB�.12

(b) (AjjB�)� = A�jjB�We �rst show that s 2 (AjjB�)� => s 2 A�jjB�.Let s 2 (AjjB�)�=> s 2 s1jjs2jjs3::sm where m � 0 and each si � (aijjbi;1jjbi;2::jjbi;ni)where bi;j 2 B for i = 1:::m and j = 1:::niSince jj is commutative and associative all strings from set A can be moved to left andtherefore s also belongs to A�jjB�We now show that s 2 A�jjB� => s 2 (AjjB�)�Let s 2 A�jjB�=> s 2 a1jja2::jjamjjb1jj::jjbnwhere m; n � 0 and ai's and bi's belong to A and B respectively.=> s 2 (a1jj�)jj(a2jj�)jj:::jj(am�1jj�)jj(amjjb1jjb2jj::jjbn)=> s 2 (AjjB�)��Lemma 3.2: Any unit expression U is equivalent to another unit expression which is theinterleaving of a regular expression and (regular expression)�. Expressions of these formsare called normalized unit expressions.Proof: To show this Theorem, we use induction on the number of times jj or � occurs in aunit expression. The Lemma is clearly true when the expression does not have any occur-rence of jj or � as a regular expression is always normalized. Assume that the Theorem holdsfor unit expressions with at most k� 1 occurrences of jj or �. Let U be a expression with atmost k occurrences of jj or �. Then U can be written as U1jjU2 or U�1 where U1 and U2 canbe normalized by the induction hypothesis. We will show that U can also be normalized.(1) U = U1jjU2U1 = A1jjB�1 and U2 = A2jjB�2where A1; A2; B1 and B2 are regular expressions.Therefore, U1jjU2 = (A1jjB�1)jj(A2jjB�2)= (A1jjA2)jj(B�1 jjB�2) (jj is associative and commutative)= (A1jjA2)jj(B1 +B2)� (by Lemma 3(a))therefore, U can be normalized.(2) U = U�1U = U�1 = (AjjB�)�where A and B are some regular expressions.U = A�jjB� (by Lemma 3(b))= (A+B)� (by Lemma 3(a))= C� for some regular expression C.therefore, U can be normalized. �Lemma 3.3: If L1 and L2 are Petri net languages de�ned over �1 and �2, then(1) L1jjL2 is a Petri net language de�ned over �1 [�2.(2) L1[]L2 is a Petri net language de�ned over �1 [�2.(3) �(L1) is a Petri net language de�ned over �(�1).13

Proof:Any Petri net N = (P; T; I;O; �) with alphabet �, labeling � and the set of �nal placesF can be converted to a Petri net which has token initially at only one place, say ps. Todo this, construct a special place called ps, and a null labeled transition which ensures thatthe initial number of tokens are put after it �res. Therefore, we can construct Petri nets instandard form that accept L1 and L2.(1) A new start place is de�ned from which a token goes to start places of both the Petrinets.(2) At a given point in the string if a transition �res in a Perti net and its label is in �1\�2,then a transition in the other Petri net with the same label must also �re. Thus, a new tran-sition is created by combining the two transition with the same label in the two Petri nets.When more than one transition exists with the same label, all possible pairs of transitionsmust be considered.(3) The new language can be generated by the old Petri net with the labeling function as :� where is the old labeling function. �Theorem 3: There exists an algorithm to derive a Petri net that describes the set of stringsdescribed by a concurrent regular expression.Proof: Note that a concurrent regular expression is either a unit expression or concurrentregular expressions composed with [], jj, and �(). Since by Lemma 3.3, Petri net languagesare closed under all these operators, it is su�cient to derive a Petri net for a unit expression.By Lemma 3.2 any unit expression can be converted to a unit automaton such that theyaccept the same language. It is easy to construct a Petri net from a unit by treating eacharc label as a transition and deleting the *-places. �5 Comparison with Other Classes of LanguagesFrom the de�nition of concurrent regular expressions, we derive two new classes of languages- unit languages and concurrent regular languages. A language is called a unit language if aunit expression can describe it. Concurrent regular languages are similarly de�ned. In thissection we study both the classes and their relationship with other classes of languages such
14

as regular, context-free and Petri net languages.
Figure 3: A Queueing Network and its Equivalent CREUnit languages strictly contain regular languages and are strictly contained in Petri netlanguages. These languages are useful for capturing behavior of independent �nite stateagents which may potentially be from an in�nite population. An application of such lan-guages is the description of logical behavior of a queueing network. For example, Figure3 shows a queueing network and a unit expression that describes the language of logicalbehavior of customers in it.We are now ready to explore the structure of unit languages.Theorem 4: The unit languages properly contains the regular languages.Proof: The containment is obvious. To see that the inclusion is proper, consider the language(a:b)� which cannot be accepted by a �nite state machine. �All unit languages are also concurrent regular languages. We next show that this con-tainment is also proper. To show this we need to de�ne i-closed and i-open sets.De�nition: A set A is called closed under repeated interleaving, or simply i-closed, if forany two strings s1 and s2 (not necessarily distinct) that belong to A, s1jjs2 is a subset of A.By de�nition � must also belong to an i-closed set.Some examples of i-closed sets are: f�g, f�; a; a2; a3::g, fsj#(a; s) = #(b; s)g. As Kleeneclosure of a set A is the smallest set containing A and closed under concatenation, alphaclosure of a set A is the smallest set containing A and closed under interleaving. Moreformally,Lemma 5.1: Let A be a set of strings. Let B be the smallest i-closed set containing A.Then B = A�.Proof: A� contains A and is also i-closed. Since B is smallest set with this property, weget B � A�.Since B is i-closed and it contains A, it must also contain A(i) for all i. This implies thatB contains A�. Combining with our earlier argument we get B = A�. �The above Lemma tells us that as Kleene closure captures the notion of doing some actionany number of times in series, alpha closure captures the notion of doing some action any15

number of times in parallel. Note that if a set A is i-closed, it is also concatenation closed.This is because if s1 and s2 belong to A then so does s1jjs2, and in particular s1:s2.We leave it to readers to verify that another de�nition of alpha-closure of a language Acan be given as the least solution of the equationX = (AjjX) + �.Clearly taking interleaving-closure of an already i-closed set does not change it. This isformalized as follows:Corollary: A set A is i-closed if and only if A = A�.Proof: If A is i-closed, it is also the smallest set containing A and i-closed. By Lemma5.1, it follows that A = A�.Conversely, A = A� and A� is i-closed therefore A is also i-closed. �The above corollary tells us that if a set is i-closed, then its alpha closure is the same asitself. As an application of this corollary, we get A�� = A�.A language is called i-open if there does not exist any non-null string s such that if t belongsto a language then so does sjjt.Example: All �nite languages are i-open. a�; (a+b)�; (ab)� are not i-open because a; aba,and ab are strings respectively such that their interleaving with any string in the languagekeeps it in the language. Recall that i-closed languages are set of strings that are closedunder interleaving. All i-closed languages are not i-open and all i-open languages are noti-closed. However, there are languages that are neither i-open nor i-closed. An example isa�b�jjc� which is not i-open as any interleaving with c keeps a string in the language. It isnot i-closed because abcjjabc does not belong to the language.Theorem 5: A unit expression cannot describe a non-regular i-open language.Proof: Let L be a non-regular i-open language. Assume if possible that a unit expressionU describes L. By Lemma 3.2, U can be normalized to the formAjjB�. Since L is non-regular,the unit expression must contain at least one application of alpha-closure and therefore B isnon-empty. The resulting set is not i-open as it is closed under interleaving with respect toany string in B, a contradiction.� For example, consider the language fanbncnjn � 0g. The language is i-open becausethere is no non-null string, such that its inde�nite interleaving exists in the language. ByTheorem 5, we cannot construct a unit expression to accept this language. This language isconcurrent regular as shown by Example 4 in Section 3.Now we show that there exists i-closed languages which cannot be recognized by a singleunit.Theorem 6: There are i-closed concurrent regular languages that cannot be accepted by aunit.Proof: Consider the concurrent regular language L = (a1b1)�[](a2a�1b2)�. Assume if possiblethat it can be characterized by a unit expression U. Since L is an i-closed language U is alsoi-closed. This implies that the language described by U is the same as that described by U�(Lemma 5.1). Using Lemma 3.2, U can be written as C� where C is a regular language. Wewill show that no such regular set exists. 16

Note that L contains strings starting with a2 only. This implies that C also containsstring starting with a2 only. Further any string in L containing a single a2 must belong toC because such a string cannot be an interleaving of two or more strings in C. Therefore, Ccontains all strings of the form a2an1bn1b2 but not a2an+k1 bn1b2 for any k > 0. This implies thatC is not regular.From the above discussion, we conclude thatregular languages � unit languages � concurrent regular languages6 ConclusionsThis paper makes two contributions to Petri Net theory. First, it provides an alternativedescription of Petri net languages. This description is in terms of natural operators such asinterleaving and synchronization. Based on this description it is easier to understand thebehavior of systems modeled by Petri nets.Secondly, it provides a decomposition of Petri nets. The resulting model, DPN possessesmodular properties. Each module or unit de�nes a set of non-interacting processes andtherefore can be modeled and studied in isolation from rest of the system. Similarly, DPN'shave a closer correspondence with state machines and since the notion of state arises inmany contexts, they are easier to use for speci�cation and analysis of concurrent systems.Applications of DPN for speci�cation of concurrent systems are shown in [6,7]. Concurrentregular expressions are used for modeling synchronization constraints in the language ConC[8].7 References[1] S.Aggarwal, D. Barbara, K.Z. Meth, "SPANNER: A Tool for Speci�cation, Analysis, andEvaluation of Protocols", IEEE Transactions on Software Engineering, Vol 13, 12 December1987, pp 1218-1237.[2] J.Billington,G.R.Wheeler, M.C.Wilbur-Ham, "PROTEAN: A High-Level Petri Net Toolfor the Speci�cation and Veri�cation of Communication Protocols", IEEE Transactions onSoftware Engineering, Vol 14, 3 March 1988, pp 301-316.[3] R.H.Campbell, A.N.Habermann, "The Speci�cation of Process Synchronization by PathExpressions", Lecture Notes in Computer Science, vol 16, Springer Verlag, New York 1974,pp 89-102.[4] R.H.Campbell, R.B.Kolstad, "Path Expressions in Pascal", Proc. 4th International Con-ference on Software Engineering, Munich, IEEE New York, 1979, pp 212-219.[5] V.Cerf, "Multiprocessors, Semaphores, and a Graph model of Computation," Ph.D. dis-sertation, Computer Science Department, University of California, Los Angeles, California,April 1972.[6] V.K.Garg, "Speci�cation and Analysis of Distributed Systems with a Large number ofProcesses", Ph.D. Dissertation, University of California, Berkeley, 1988.17

[7] V. Garg, \Modeling of Distributed Systems by Concurrent Regular Expressions", Proc.2nd International Conference on Formal Description Techniques for Distributed Systems andCommunication Protocols, Vancouver, Dec 1989.[8] V. Garg, C.V. Ramamoorthy, \ConC: A Language for Concurrent Programming", ac-cepted for Computer Languages Journal.[9] S.L.Gerhart, et al., "An Overview of A�rm: A Speci�cation and Veri�cation System",Proc. IFIP 80, pp 343-348, Australia, October 1980.[10] M. Hack, \Petri Net languages," Computation Structures Group Memo 124, ProjectMac, Massachusetts Institute of Technology , June, 1975.[11] C.A.R. Hoare, Communicating Sequential Processes, Prentice-Hall, Inc., EnglewoodCli�s, New Jersey 1985.[12] J.Hopcroft and J.Ullman, "Introduction to Automata Theory, Languages, and Compu-tation", Addison-Wesley Pub. Co., Reading.[13] K. Inan and P. Varaiya, \Finitely Recursive Processes for Discrete Event Systems",IEEE Transactions on Automatic Control, 33(7):626-639, July 1988.[14] R.Karp, and R.Miller, "Parallel Program Schemata", RC-2053, IBM T.J. Watson Re-search Center, Yorktown Heights, New York (April 1968).[15] R.Kosaraju, \Decidability of reachability in vector addition systems", Proc. 14th Ann.ACM Symposium on Theory of Computing, 1982, pp 267-280.[16] S. Lafortune,\On Petri Net Languages", EECS Department, University of Michigan atAnn Arbor.[17] P.E. Lauer, P.R. Torrigiani, M.W.Shields, "COSY: A System Speci�cation LanguageBased on Paths and Processes", Acta Informatica 12, pp 109-158, 1979.[18] B. Liskov,"The Argus Language and System", Proc. Advanced Course on DistributedSystems - Methods and Tools for Speci�cation, TU Munchen, Apr. 1984.[19] E.W.Mayr, "An Algorithm for the General Petri Net Reachability Problem", SIAMJournal of Comput., Vol. 13, No.3 pp 441-460, August 1984.[20]G.J.Milne,"CIRCALand the Representation of Communication, Concurrency and Time,"ACM TOPLAS, 7(2), pp 270-298, April 1985.[21] A Calculus of Communicating Systems, Lecture Notes in Computer Science, Vol 92,Springer-Verlag 1980.[22] T. Murata, "Modeling and Analysis of Concurrent Systems", in book Handbook ofSoftware Engineering, ed. C.R.Vick and C.V.Ramamoorthy, Publ.Van Nostrand Reinhold,pp 39-63, 1984.[23] J. Peterson, \Computation Sequence Sets," Journal of Computer and System Sciences,Volume 13, Number 1, 1976, pp 1-24.[24] J. Peterson, Petri-Net Theory and Modeling of Systems, Prentice Hall, Inc., EnglewoodCli�s, New Jersey 1981.[25] V. Pratt, \Modeling Concurrency with Partial Orders", International Journal of Paral-lel Programming, Vol. 15, No. 1, February 1986, pp 33-71.[26] S. Crespi-Reghizzi and D. Mandrioli, \Petri Nets and Szilard Languages," Informationand Control, Volume 33, Number 2, 1977, pp 177-19218

[27] W. Reisig, Petri Nets, An Introduction, lecture notes in Computer Science, Springer-Verlag, 1985.[28] P. Starke, \Free Petri Net Languages," Seventh Symposium on Mathematical Founda-tions of Computer Science, 1978.[29] R. Valk and G. Vidal-Naquet, \Petri Nets and Regular Languages," Journal of Com-puter and System Sciences, Volume 23, 1981, pp 229-325.[30] P.Zave, "A Distributed Alternative to Finite-State-Machine Speci�cations", ACMTrans-actions on Programming Languages and Systems Vol 7, No 1, January 1985, pp 10-36.

19

