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Abstract

Monitoring global predicates is a fundamental concern in distributed and concurrent sys-
tems for its importance during the design, testing and debugging phases of program develop-
ment. In this paper, we present a generalization of local predicates called the chain predicates.
In the context of multithreaded programs, these predicates can be thought of as predicates
defined over shared variables instead of local variables as in the case of local predicates. We
present a new vector clock algorithm, called the chain vector clock, which tracks only the
variables relevant to the predicate. This results in a vector clock of size equal to the number of
variables being tracked instead of the number of threads in the system. Based on the chain vec-
tor clocks, we modify the algorithm for detecting conjunctive predicates to detect conjunction
of chain predicates under the possibly modality. The other algorithms for predicate detection
which were based on the local predicates can also be generalized for chain predicates. We also
present a lattice theoretic characterization of chain predicates which could be useful in further
understanding of the properties of these predicates.

1 Introduction

A multithreaded program involves parallel execution of multiple threads. This invariably leads
to problems due to potentially infinite ways of interleaving between the threads. Testing and
debugging is an important and practical way to ensure reliability and dependability of such
systems. For this purpose, predicate detection is a useful abstraction for analyzing the executions
of multithreaded programs. For example, while debugging a mutual exclusion algorithm, detecting
concurrent accesses to a shared resource is useful.

Our analysis of the multithreaded programs is based on a partial order model of the compu-
tation. Partial order model, by ordering the events based on causality, takes into consideration
multiple possible executions of the system through one actual run. Thus, it gives us the capa-
bility to predict errors by observing even error-free executions. On the other hand, the partial
order model also leads to combinatorial explosion problem - the number of global states that the
system could have passed through could be exponential in terms of the number of local states.
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So a simple traversal of all the global states is not good enough. Chase and Garg [GC95] proved
that detecting a predicate in 3-CNF is NP-complete in general. This was later generalized by
Mittal and Garg [MG01] to prove that the detecting a predicate in k-CNF, k > 1, in which no
two clauses contain variables from the same process is NP-complete in general. As a consequence
of these hardness results, the algorithms for solving the general version of the problem are ex-
ponential [CM91, RJN95, SDSL00]. One way to get around this problem is to consider certain
special classes of useful predicates for which the problem can be solved efficiently such as stable
[CL85, Bou87, SK86], conjunctive [GW94, MHS96], linear and semi-linear [CG98], and relational
[TG97] predicates. Stoller and Schneider [SS95] presented an algorithm for detecting a predicate
by decomposing it into multiple predicates each of which could be solved by using the algorithm
in [GW94].

In this paper, we present a new class of predicates called chain predicates and give algorithms
for their detection. The chain predicates are generalization of the local predicates based on the
idea of generalizing a “process” to any chain in the poset representation of the computation. The
conjunction of such predicates constitutes a large class of predicates which are normally required
to be detected, especially for multi-threaded programs. Although these predicates are also regular
predicates [GM01], but it is useful to study them separately as it leads to more efficient and simple
algorithms.

The approach used in this paper is based on a modified version of vector clocks [Fid89, Mat89],
called the chain vector clocks. Vector clocks play an important role in many distributed algorithms
for they provide a means of ordering events and finding dependencies. They have also been used for
many predicate detection and runtime verification algorithms [GC95, SRA04]. The conventional
vector clock consists of a component for every process or thread in the system. As opposed to
this, the size of our vector clock does not depend on the number of processes. Instead the chain
vector clock is based on the number of shared variables (and local variables) that need to be
monitored for predicate detection. This could be very useful for systems which have large number
of threads but the predicate to be detected is based on a few variables. It also ameliorates the
need to fix the number of threads apriori which is unrealistic for many systems. Chain vector
clock provides the same guarantees as the original vector clocks with respect to events involving
shared variables. As a result, it could also be integrated with other algorithms based on vector
clocks without much change. Using the chain vector clocks, we present an algorithm based on
the Garg and Waldecker’s WCP algorithm [GW94] for detecting conjunction of chain predicates
under the possibly modality [CM91]. The algorithm given by Stoller and Schneider [SS95] can
also be used without much change for detecting an even larger class of predicates. This essentially
allows us to detect the same classes of predicates for shared variables that were possible with local
variables. Although the paper talks mainly about the multithreaded programs, similar techniques
would apply to distributed computations as well.

We also present a lattice theoretic characterization of such predicates. This characterization
is based on the global state lattice of the computation rather than the poset. It could be useful
for further exploring the properties of this class of predicates.
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2 Model and Notation

A multithreaded system consists of a set of threads P = p1, p2, . . . , pn. Each thread executes a
predefined program. The threads communicate with each other via a set of shared variables. A
local computation of a thread is defined by a sequence of events that transforms the initial state
of the thread to the final state. At each step, the local state of a thread is captured by the initial
state and the sequence of events that have been executed till that step. We use the terms thread
and process interchangeably.

Each event is an internal event, a write event, or a read event. Read and write events are
the read and write of the shared (and local) variables respectively and generically they would be
referred to as access events. Every event causes the local state of the thread to be updated. The
order of events on thread pi is denoted by <pi and let <P = ∪1≤i≤n <pi .Furthermore, we associate
the following variables with an event e :

• e(p) : The process on which e occurred.

• e(ν) : The variable accessed in e.

Let X = x1, x2, . . . , xm be the set of shared variables. Here, local variables can be considered
as a special case of shared variables and can be treated in a similar way. The access to the
shared variables is assumed to be atomic. The access order of shared variables also generates
dependencies between events. The precedence relation defined by xi ∈ X is denoted by <xi . For
events e, f , e <xi f if and only if e and f are access events to the variable xi and e happened
before f . The happened before relation is uniquely defined due to the atomicity of access events.
Let <X= ∪1≤i≤m <xi . The set of access events for variable xi is denoted by Ψ(xi). For Y ⊆ X,
Ψ(Y ) =

⋃
x∈Y Ψ(x) i.e. Ψ(Y ) is the set of access events for all the variables in set Y .

A multithreaded computation is modeled by an irreflexive partial order on the set of events of
the underlying program’s execution. We use (E,≺) to denote a multithreaded computation with
the set of events E and the partial order ≺. The partial order ≺ is the smallest transitive relation
which includes <P and <X . A run of a multithreaded computation (E,≺) is some total order of
events in E consistent with the partial order ≺. We use the terms “multithreaded computation”
and “computation” interchangeably.

Given a set F ⊆ E, the restriction of ≺ to F , denoted ≺F , is the partial order obtained by
restricting ≺ to F . If ≺F is a total order then it is called a chain. We use (F,≺F ) to denote the
subcomputation corresponding to the set of events F . If the partial order is clear from the context,
we would simply use F to refer to the poset (F,≺F ). Therefore, Ψ(xi) denotes the subcomputation
on the access events for variable xi. Since access to a shared variable is atomic, any two access
events can be ordered and hence, this subcomputation is a chain. Such a subcomputation for a
shared variable would be called access chain for xi.

A global state of a computation is a collection of local states, one from each process. Only the
global states which respect causality can arise in the computation. A cut can be used to represent
a global state and a consistent cut represents a possible global state. A cut C is consistent iff, for
every event e in C, all its preceding events are also in C.
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Figure 1: Two representations of the same computation

A predicate is a boolean-valued function defined on a cut or global state. The truth value
of predicate Φ at the global state g is denoted by Φ(g). The set of variables on which value of
predicate Φ depends is given by Π(Φ). A predicate is local iff it is a function of variables of a
single thread.

The predicate detection problem can be defined under two modalities, namely possibly and
definitely [CM91]. The predicate possibly: Φ is true in a computation iff there is a consistent
cut that satisfies Φ. The predicate definitely: Φ holds in a computation iff Φ eventually becomes
true in all runs of the computation. In this paper, we would mainly focus on observing predicates
under possibly modality and would omit the word “possibly” from the predicate possibly: Φ.

3 Generalizing Threads and Chain Predicates

We generalize the notion of a “thread” in the definition of local predicates for a computation
to obtain chain predicates. In the poset (E,≺), threads are certain predefined chains. We can
generalize a thread to any chain in the poset (E,≺). In fact, we can rearrange the whole set of
events to form a new set of “threads” while keeping the same dependencies. For example, consider
the Figure 1. In the Figure 1(a) we represent the computation in the normal way - the threads
p1, p2, and p3 are represented as chains and there are dependencies between the chains as well. We
could equivalently represent the same computation as Figure 1(b). Here our threads, g1, g2, and
g3, are some other chains in the previous poset while maintaining the same dependencies between
events. In terms of the poset model, these are equivalent representations of the poset and all the
properties and algorithms of the former model would work with this new model as well. At the
same time, thinking about the threads in terms of any chain of the poset provides new insights
into analyzing the computations and through chain predicates, we present one such application.
A chain predicate is defined as follows:

Definition 1 A predicate Φ is a chain predicate iff the poset Ψ(Π(Φ)) is a chain.

Informally, a predicate which is a function of variables having all their access events along
one generalized thread is called a chain predicate. For example, consider the multithreaded
computation given in Figure 2. It involves three threads, t1, t2 and t3. There is a variable x local
to thread t1 and a shared variable y. The access events of y are the circled events - e, f, g, h. In
this computation, the set of circled events form a chain and so any predicate on y, like y > 0,
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Figure 2: A multithreaded computation

can be considered to be a chain predicate. The events for t1 also form a chain and therefore, any
predicate on x is also a chain predicate. In general, any predicate defined on a shared variable is
a chain predicate.

A chain predicate may involve more than one shared variable as well. For example, consider
a computation in which the access to a set of shared variables, S, is guarded through one lock.
By the property of the locks, no two threads can access any variable in S concurrently. The
acquisition and release of the lock creates a dependency between any two accesses by different
threads. As a result any predicate defined over S is a chain predicate. Due to these features, chain
predicates can be very useful for a programming language like Java which guarantees atomicity of
shared variable access and uses monitors for synchronization among various threads. Informally,
a monitor is a lock associated with an object which a thread has to acquire before executing
a synchronized region. A typical shared object in Java would have synchronized methods for
accessing its member variables. As a result, in many cases the predicates defined on an object
(with multiple member variables) would be chain predicates.

A chain predicate can be detected very easily. Any thread which is supposed to write to one
of the variables involved in the predicate checks if the predicate is true, both before and after
writing to the variable. This ensures that the predicate is checked whenever there is a possible
change in its value.

4 Chain Vector Clocks

Vector clocks [Fid89, Mat89] provide a simple mechanism for tracking dependency between the
events in a computation. In some scenarios like predicate detection, we need to track dependencies
only between the relevant events. These relevant events are a subset of all the events in the
computation e.g. the events where the value of some variable involved in the predicate changes.
For this purpose, we describe a vector clock for tracking dependencies between a set of chains in
the poset E, called the chain vector clocks. Such a vector clock could be particularly useful for
tracking the dependencies between the access chains for shared variables. Rather than having a
component for every process in the vector clock, we have a component for every chain that needs
to be tracked. This could result in substantial savings when the number of processes involved in
the computation is significantly higher than the number of chains that need to be monitored.

For the purpose of this paper, we describe the chain vector clocks in terms of the access chains
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of variables but any other description of the chains would work equally well. A chain vector clock,
V (M, θ), is associated with a set of variables, M ⊆ X, and a function θ. The variables in M are
the variables that we are interested in monitoring. Function θ provides a mapping from a variable
to its chain (or more precisely to the chain number) i.e. for a variable x ∈ M , θ(x) is the chain to
which the variable belongs. For a set S ⊆ M , θ(S) = {θ(x) : x ∈ S}. For an event e, θ(e) would
mean θ(e(ν)). We also define the relevant set of events, R, as R =

⋃
xi∈M Xi.

The chain vector clock V is a m-dimensional vector of natural numbers with a component for
every chain. A thread pi maintains a local vector, V , and every shared variable xi ∈ X maintains
a vector, Vxi . For an event e on thread pi, V (e) denotes the value of vector clock at thread pi when
it executes event e. By maxV, V ′, we denote the vector with max{V, V ′}[j] = max {V [j], V ′[j]}
for each 1 ≤ j ≤ m. Also, for two m-dimensional vectors we define the ’less than’ relation as
follows :

V < V ′ ≡ (V 6= V ′) ∧ (∀k : 1 ≤ k ≤ n : V [k] ≤ V ′[k])

The rules for updating the chain vector clock on occurrence of an event e are given in Figure
3.

Pi::
var

V : array[1 . . . m] of integer
initially (∀j : V [j] = 0)

On occurrence of event e :

If e ∈ R :
V [θ(e)] := V [θ(e)] + 1

If e is access of variable x :
V := max(V, Vx)
Vx := V

Figure 3: Chain vector clock algorithm

The following lemmas state the crucial properties satisfied by chain vector clock algorithm:

Lemma 1 If θ(e) = θ(f), then either e ≺ f or f ≺ e.

Proof: θ(e) = θ(f) implies that both e and f access some variable of the same chain. Therefore,
the events e and f are comparable and hence, the result follows.
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Lemma 2 If e, f ∈ R and f 6→ e, then V (e)[θ(f)] < V (f)[θ(f)].

Proof: If θ(e) = θ(f), then by the given condition and Lemma 1, e ≺ f . Since the component
corresponding to θ(f) is increased after every event, V (e)[θ(f)] < V (f)[θ(f)]. So consider the
case when θ(e) 6= θ(f). Since V (f)[θ(f)] is the component for the chain θ(f) and e could not
have seen this value as f 6≺ e, it follows that V (e)[θ(f)] < V (f)[θ(e)].

Lemma 3 If e, f ∈ E and e ≺ f , then V (e) ≤ V (f).

Proof: If e ≺ f , then there is a path from e to f . For the events along a process the vector clock’s
value never decreases and on access events we update the vector clock by taking component wise
maximum, so :

∀k : V (e)[k] ≤ V (f)[k]

Hence, V (e) ≤ V (f).

The following theorem shows that the chain vector clock satisfies the strong clock condition
for the relevant events.

Theorem 1 For e, f ∈ R, e ≺ f ≡ V (e) < V (f)

Proof: We first prove that (e ≺ f) implies (V (e) < V (f)). If e ≺ f , then by Lemma 3,
V (e) ≤ V (f). Moreover, since f 6≺ e, from Lemma 2, V (e)[θ(f)] < V (f)[θ(f)]. Hence,

(∀k : V (e)[k] ≤ V (f)[k]) ∧ (V (e)[θ(f)] < V (f)[θ(f)])

Thus e ≺ f ⇒ V (e) < V (f). The converse follows from Lemma 2.

5 Predicate Detection Algorithms for Chain Predicates

In this section we present a brief description of modifications required to the existing algorithms
for predicate detection.

5.1 Conjunctive Chain Predicates

A conjunction of chain predicates is referred to as conjunctive chain predicate (CCP). So we can
write a CCP Φ as Φ = ∧m

i=1Φi, where Φi is a chain predicate and m is the total number of chains.
For example, in Figure 2 the predicate x > 0 ∧ y > 0 is a CCP. CCP is a generalization of the
conjunctive predicates which are defined in a similar way for local predicates. Here we adapt the
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algorithm given by Garg and Waldecker [GW92] to use the chain vector clocks and obtain an
algorithm for CCP detection.

For a given CCP Φ, we maintain a chain vector clock V (M, θ). Here M = Π(Φ) and for
x ∈ M, θ(x) = i such that x ∈ Π(Φi). In the algorithm, one of the threads serves as a checker.
Each of the chain predicate to be detected is associated with a variable li for storing the last
thread which accessed the chain. At the start of the trace, li is set to 1. When a thread pi

accesses a variable x ∈ Π(Φj), the variable lj is set to i. On access to any shared variable, a
thread pi checks for the truthness of Φj , for all j such that lj = i. If Φj is true, then pi sends a
message to the checker thread containing the vector clock timestamp of the present event. The
setting of li, checking for the predicates and the sending of the appropriate messages must be done
atomically with the access of the variable. If the variable accesses are synchronized (say by using
the synchronized keyword in Java), then this can be achieved by simply adding the appropriate
code in the synchronized section. Otherwise, we need to associate a lock with every chain and
make the execution of these group of statements atomic.

The checker thread collects the responses from the threads and finds a consistent cut that
satisfies the CCP. This algorithm is the same as described in the original paper with a slight
modification and we would describe it very briefly. The checker process maintains a queue of
timestamps for every chain to be monitored and a vector cut of timestamps which is a potential
global state of the computation. On receiving a timestamp from a thread, the checker thread
puts it in the queue corresponding to the chain to which it belongs. The vector cut is repeatedly
checked for inconsistency. On finding a local state which happened before some other local state
in cut, the former is removed from the cut and the next local state from the same chain is inserted
in cut. This is repeated till we manage to find a consistent cut.

5.2 Other Predicate Classes

Stoller and Schneider [SS95] presented an algorithm for detecting a predicate Φ by decomposing
the problem into multiple detection problems, each solvable using the Garg and Waldecker algo-
rithm. The same algorithm could be used with predicates based on shared variables by using the
algorithm for CCP detection instead of the original Garg and Waldecker algorithm.

6 Lattice Theoretic Characterization of Chain Predicates

In distributed systems, a local predicate is defined as a predicate which depends on the variables
of just one process and therefore, can be observed locally. Posets and lattices are widely used for
representing a distributed computation and the set of global states in a distributed computation
respectively. However, the notion of processes is not defined for lattices or posets in general and
the definition of local predicates in these structures is less intuitive. The chain predicates provide
a generalization of local predicates and in this section we provide a characterization of chain
predicates based on the global state lattice of the computation.
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6.1 Notation and Standard Results

In this section we review the notation and some basic results in lattice theory [DP90]. Let X be
any finite set. A pair (X, P ) is called a partially ordered set or poset if X is a set and P is a
reflexive, antisymmetric, and transitive binary relation on X. We call X the ground set while P
is a partial order on X. We simple write P as a poset when X is clear from the context. Let
e, f ∈ X. We write e ≤ f in P when (e, f) ∈ P . We say that f covers e if e < f and there is no
g such that e < g < f . If either e < f or f < e, e and f are comparable. On the other hand, if
neither e < f nor f < e, then e and f are incomparable. A poset (X, P ) is called chain if every
distinct pair of points from X is comparable in P . Similarly, a poset in an antichain if every
distinct pair of points from X is incomparable in P .

A lattice is a poset L such that for all x, y ∈ L, the least upper bound of x and y exists,
called the join of x and y (denoted by x ∨ y); and the greatest lower bound of x and y exists,
called the meet of x and y (denoted by x∧ y). A sublattice is a subset of L closed under join and
meet. A sublattice for which there exists two elements c and d such that it includes all x which
lie between c and d (i.e. c ≤ x ≤ d) is called an interval lattice and denoted by [c, d]. A lattice L
is distributive if for all x, y, z ∈ X : x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z).

Next we provide the definition of order ideals or down-set of a poset P . Let (X, P ) be a poset
and let G ⊆ X. G is called an order ideal in (X, P ) if e ∈ G whenever f ∈ G and e ≤ f in P . We
simple use ideal for order ideal in this paper. Dually, G is an up-set in (X, P ) if e ∈ G whenever
f ∈ G and e ≥ f . Given x ∈ X, we define ↓ x := {y ∈ X|y ≤ x} and ↑ x := {y ∈ X|y ≥ x}

Let L denote the family of all ideals of P . Define a partial order on L by G ≤ H in L if and
only if G ⊆ H. It is well known that the set of ideals forms a distributive lattice and conversely
every finite distributive lattice can be constructed in this manner. Given a finite distributive
lattice L, one can determine the poset that generates L as follows. An element e ∈ L is join-
irreducible if it cannot be written as joins of two elements different from e. Pictorially, in a finite
lattice, an element is join-irreducible iff it has exactly one lower cover, that is, there is exactly
one edge coming into the element. For any e ∈ P , we use J(e) to denote the least ideal in L
that contains e. It is easy to show that J(e) is join-irreducible. Let J (L) denote the set of all
join-irreducible elements in L. Birkhoff’s theorem states that any finite distributive lattice L is
isomorphic to the set of ideals of the poset J (L). Meet-irreducible elements of L can be defined
in an analogous manner. M(f), the greatest ideal that does not contain f , is meet-irreducible.
The set of all meet-irreducible elements of L are denoted by M(L) and Birkhoff’s theorem can
also be stated using M(L).

The following lemma shows the way to find a meet-irreducible corresponding to a join-
irreducible. It forms the basis of the theory of chain predicates.

Lemma 4 Let L be a finite distributive lattice. Let x ∈ J (L). Then x̂ = ∨(L\ ↑ x) ∈M(L).

6.2 Characterization

Definition 2 A meet irreducible cover of x ∈ J (L) is defined as an upper cover of x̂ in Q, where
Q is the partial order defined on the set of elements in M(L). If x̂ is a maximal element in Q,
then the top element of L can be considered to be meet irreducible cover of x.
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Clearly, the meet irreducible cover of an element in J (L) is not unique. For our purposes,
only one of the meet irreducible cover suffices. So we define the following mapping :

Definition 3 Given a chain C ⊆ J (L), we define a injection µC : C →M(L) with µC(x) as a
meet irreducible cover of x for x ∈ C. This mapping would be called the interval mapping.

Based on this, we define an event predicate.

Definition 4 Let P be a poset and L be the lattice of ideals of P . Let e ∈ P . Then, an event
predicate E(e) for e is defined as the interval sublattice [J(e), µC(J(e))] with C = J(e).

Intuitively, these are precisely the set of states in which we have executed event e but not
executed one of its successors. This successor corresponds to the next event on the “process”
which executed e. Although the definition of the event predicate was given with respect to an
event e, we can also define an event predicate EC(x) corresponding to x ∈ J (L) and a suitable
chain C of elements in M(L).

Now a chain predicate is a collection of event predicates with an event predicate for every
event on which the chain predicate is true. By definition of chain predicates, all these events
must form a chain. In terms of the global state lattice, a chain of events would be a chain of
elements in J (L) and a corresponding chain of elements in M(L). These two chains must satisfy
the following property (referred to as Lattice Chain Property (LCP) ) :

Definition 5 A chain C = x1, x2, . . . , xm (of elements in J (L)) and an interval mapping µC are
said to satisfy the lattice chain property iff

∀i, j : i > j : xi /∈ [xj , µC(xj)]

At this point it is not clear if it is possible to find an interval mapping for a chain such that
it satisfies LCP. The following theorem shows that it is indeed possible to do so.

Theorem 2 Consider a chain C = x1, x2, . . . , xm of elements in J (L) and an interval mapping
µC satisfying LCP. If C is extended by adding an element xm+1 satisfying the property :

∀i : i < m + 1 : xm+1 /∈ [xi, µC(xi)]

then µC can also be extended for xm+1.

Proof: Let B(C) =
⋃m

i=1[xi, µC(xi)]. Suppose we can find a suitable xm+1 that does not
belong to the previously chosen intervals and is greater than x′is. Since ∀i : i < m + 1 : xm+1 /∈
[xi, µC(xi)] ∧ xm+1 > xi, B(C) ⊆ (L\ ↑ xm+1). Hence ∀i : ˆxm+1 ≥ µC(xi). So we can extend
the mapping µC by choosing an appropriate covering meet-irreducible element. Such a successor
would exist as we could choose xm+1 indicating that B(C) did not include the top element of L.
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With the guarantee provided by the above theorem, we can define the chain predicate as
follows :

Definition 6 : Let L be a distributive lattice. Let C = x1, x2, . . . , xm be a chain of elements in
J (L) and an interval mapping µC satisfying LCP. Then, a local predicate B(C) is defined to be

B(C) =
m⋃

i=1

[xi, µC(xi)]

This definition conforms to the following important property of a local predicate :
If S is the sublattice of L formed by a local predicate B, then the complement of S, Sc, is also a
sublattice.
This again stresses the closeness between the concepts of local and chain predicates.

The next two theorems establish this important property satisfied by the chain predicates.

Theorem 3 Let B(C) be a chain predicate of a distributive lattice L for some chain C of J (L)
and an interval mapping µC satisfying LCP. Then B(C) forms a sublattice of L.

Proof: Let y, z ∈ B(C). Since B(C) =
⋃k

i=1[xi, µC(xi)], y ∈ [xa, µC(xa)] and z ∈ [xb, µC(xb)]
for some a, b ∈ [k]. As xa, xb ∈ C, without loss of generality assume xa < xb. This implies that
µC(xa) < µC(xb). Hence, z ≥ xa and y ≤ µC(xb). Now consider, y ∧ z. Since y ≥ xa and z ≥ xa,
y ∧ z ≥ xa. Moreover, y ∧ z ≤ y and therefore, y ∧ z ≤ µC(xi). Hence, y ∧ z ∈ [xa, µC(xa)].
Similarly, y ∨ z ∈ [xb, µC(xb)]. This shows that the join and meet of any two elements in B(C)
belongs to B(C). Hence, B(C) is a sublattice.

Theorem 4 Let B(C) be a local predicate of a distributive lattice L for some chain C of elements
in J (L) and an interval mapping µC satisfying LCP. Then Bc(C), the complement of B(C), forms
a sublattice of L.

Proof: Suppose that Bc(C) is not a sublattice. Then there exist elements y, z ∈ Bc(C) such that
either y ∧ z /∈ Bc(C) or y ∨ z /∈ Bc(C). First suppose that y ∨ z /∈ Bc(C).

y ∨ z /∈ Bc(C)
⇒ y ∨ z ∈ [xa, µC(xa)] for some xa ∈ C
⇒ y ∨ z ≥ xa

⇒ y ≥ xa or z ≥ xa

Without loss of generality, assume that y ≥ xa.

y ∨ z ∈ [xa, µC(xa)]
⇒ y ∨ z ≤ µC(xa)
⇒ y ≤ µC(xa)
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⇒ y ∈ [xa, µC(xa)]

This gives us a contradiction as we assumed that y ∈ Bc(C). Hence, y∨ z ∈ Bc(C). Similarly,
y ∧ z ∈ Bc(C). Therefore, Bc(C) is a sublattice.

Note that in the above proofs we never used the relationship between x and µC(x). We only
exploited the ordering between the join-irreducibles and meet-irreducibles involved. This shows
that any interval involving join-irreducible and meet-irreducible elements with required ordering
property would give us similar results.

6.3 Relation with Simple Predicates

In [Gar02], simple predicates are defined as follows :
Definition : A predicate B is simple if there exists e, f ∈ P such that

∀G ∈ I(P ) : B(G) ≡ ((f ∈ G) ⇒ (e ∈ G))

This predicate is denoted by S(e, f). Intuitively, a cut G satisfies B iff whenever it includes f
it includes e. It was also shown that ¬S(e, f) ≡ [J(f),M(e)].

Using this definition, we find that for an event e, E(e) = ¬S(succµ(e), e) where succmu(e) is
the successor of the event conforming to the interval mapping µC .

In [Gar02], a regular predicate B was defined as :

B =
∧

e,f∈EB

S(e, f)

This implies that,
¬B =

∨
e,f∈EB

[J(f),M(e)]

In other words, the complement of a sublattice can be written as the union of interval lattices
of the form [x, y] where x ∈ J (L) and y ∈ M(L). If the complement of the sublattice is also a
sublattice, then the sublattice can itself be written as the union of such interval lattices. This is
the best characterization that we know of for a sublattice whose complement is also a sublattice.
Note that the chain predicates also have a representation very similar to the negation of regular
predicates.

7 Conclusion

In this paper, we presented a technique to analyze shared variables in a way similar to the local
variables. For this purpose, we defined a generalization of local predicates called the chain predi-
cates. We also defined the chain vector clock which could be used for tracking dependency only
between the relevant chains in the computation. Chain vector clock was then used for developing
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an algorithm for detecting conjunction of chain predicates. The algorithms for detecting other
classes of predicates based on local predicates can also be modified in a similar way to obtain
algorithms for corresponding classes of predicates for chain predicates. We also presented a lattice
theoretic characterization of chain predicates.
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