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Abstract

Consider a distributed system with n processors, in which each processor receives some
triggers from an external source. The distributed trigger counting problem is to raise an alert
and report to a user when the number of triggers received by the system reaches w, where w
is a user-specified input. The problem has applications in monitoring, global snapshots and
other distributed settings. The main result of the paper is a decentralized and randomized
algorithm with expected message complexity O(n log w). Moreover, every processor in this
algorithm receives no more than O(log w) messages with high probability. It is known that
any deterministic algorithm has message complexity Ω(n log w) and maximum processor load
Ω log(w/n).



1 Introduction

In this paper, we study the distributed trigger counting (DTC) problem. Consider a distributed
system with n processors, in which each processor receives some triggers from an external source.
The distributed trigger counting problem is to raise an alert and report to a user when the number
of triggers received by the system reaches w, where w is a user specified input. The sequence of
processors receiving the w triggers is not known apriori to the system. Moreover, the number of
triggers received by each processor is also not known. We are interested in designing distributed
algorithms for the DTC problem that are communication efficient and are also decentralized.

The DTC problem arises in applications such as distributed monitoring and global snapshots.
Monitoring is an important issue in networked systems such as sensor networks and data networks.
Sensor networks are typically employed to monitor physical or environmental conditions such as
traffic volume, wildlife behavior, troop movements and atmospheric conditions, among others For
example, in traffic management, one may be interested in raising an alarm when the number of
vehicles on a highway exceeds a certain threshold. Similarly, one may wish to monitor a wildlife
region for the sightings of a particular species, and raise an alert, when the number crosses a
threshold. In the case of data networks, example applications are monitoring the volume of traffic
or the number of remote logins. See, for example, [9] for a discussion of applications of distributed
monitoring. In the context of global snapshots (example, checkpointing), a distributed system must
record all the in-transit messages in order to declare the snapshot to be valid. Garg et al. [6] showed
the problem of determining whether all the in-transit messages have been received can be reduced
to the DTC problem (they call this the distributed message counting problem).

Most prior work (e.g. [4, 9, 8]) primarily consider the DTC problem in a centralized setting
where one of the processors acts as a master and coordinates the system, and the other processors
act as slaves. The slaves can communicate only with the master (they cannot communicate among
themselves). Such a scenario applies where a communication network linking the slaves does not
exist or the slaves have only limited computational power. Prior work addresses various issues aris-
ing in such a setup, such as message complexity. They also consider variations and generalizations
of the DTC problem. One such variation is approximate threshold computation, where system need
not raise an alert on seeing exactly w triggers; it suffices if the alert raised upon seeing at most
(1 + ǫ)w triggers, where ǫ is some user specified tolerance parameter. Prior work also considers
aggregate function more general than counting. Here, each input trigger i is associated with a
value αi. The goal is to raise an alert when some aggregate of these values crosses the threshold
(an example, aggregate function is sum).

Note that the Echo or Wave algorithms [2, 13, 14] and the framework of repeated global
computation[7] are not easily applicable for the DTC problem because the triggers arrive at proces-
sors asynchronously at unknown times. Computing the sum of all the trigger counts just once is not
enough and repeated computation results in an excessive number of messages. The DTC problem is
also different from the distributed resource controller problem studied in [1, 10, 5]. In the resource
controller problem, there are a fixed number of permits (or resources), M , at the root node and the
goal of the resource controller algorithm is to serve the request for a resource either with a permit
or a reject. Their protocol guarantees that the request for a permit is rejected only if there are
at least M − W requests that are eventually going to be satisfied, where W is a parameter that
gives a bound on the maximum number of “wasted” permits. The resource controller problem may
appear similar to DTC problem because counting each trigger may be considered as consuming
a permit. However, the ability to reject a request makes the resource controller problem quite
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different from the DTC problem. For example, in the resource controller problem, the number of
permits stored outside the root never exceeds W . The communication complexity of their protocol
is O(n log2 n log(M/(W + 1))).

In this paper, we consider a general distributed system where any processor can communicate
with any other processor and all the processors are capable of performing basic computations.
We also assume that all messages are delivered reliably in first-in-first-out order. This setting is
common in data networks. In such a scenario, a decentralized algorithm would be desirable, given
that a centralized system suffers from congestion issues.

Our goal is to design a distributed algorithm for the DTC problem that is communication
efficient and decentralized. We shall use the following two natural parameters that measure these
two important aspects.

• The message complexity, which is defined to be the number of messages exchanged between
the processors.

• The MaxLoad, which is defined to be the maximum number of messages received by any
processor in the system.

Garg et al. [6] studied the DTC problem for a general distributed system. They presented
two algorithms 1. (i) A centralized algorithm with message complexity O(n log w). However, the
MaxLoad of this algorithm can be as high as Ω(n log w). (ii) a tree-based heuristic algorithm with
message complexity O(n log n log w). This algorithm is more decentralized, but its MaxLoad can
be as high as O(n log n log w), in the worst case. They also proved a lowerbound on the message
complexity. They showed that any deterministic algorithm for the DTC problem should exchange
Ω(n log(w/n)) messages (i.e., for any deterministic algorithm, the message complexity must be
Ω(n log(w/n))). So, the message complexity of the centralized algorithm is optimal asymptotically.
However, this algorithm has MaxLoad as high as the message complexity.

In this paper, we present a randomized algorithm that is optimal in terms of both the mes-
sage complexity and MaxLoad. Its expected message complexity is O(n log w). Moreover, with
constant probability (arbitrarily close to 1) the MaxLoad is O(log w). We call this algorithm
OptRand. In the light of the lowerbound of Garg et al. [6], notice that OptRand is optimal in
terms of both the message complexity and MaxLoad, when w ≥ n2.

For 1 ≤ i ≤ w, the external source delivers the ith trigger to some processor xi. We call the
sequence x1, x2, . . . , xw as a trigger pattern. We note that the above bounds for the OptRand

algorithm hold for any trigger pattern, even if fixed by an adversary. The main result of the paper
is formally stated below.

Theorem 1.1 Fix any trigger pattern. Assume that w ≥ n. The expected number of messages
exchanged in the OptRand algorithm is O(n log w). Furthermore, there exists a constant c such
that the following is true. For any ǫ > 0, with probability at least 1 − ǫ, every processor receives at
most c(1/ǫ) log w messages (meaning, the MaxLoad is at most the above quantity).

We note that the OptRand algorithm works for any value of w. When w ≤ n, the message
complexity is O(n log n) and the MaxLoad is O(log n). However, for the ease of exposition, we
will assume throughout the paper that w ≥ n.

1They prove slightly better bounds for the two algorithms. But, for w ≥ n
2, the bounds stated here are the same

as their actual bounds
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For the sake of better exposition, we will not present the OptRand algorithm directly. In-
stead, we will first present two precursors: CoinPass algorithm and SemiRand algorithm. Coin-

Pass algorithm is a randomized algorithm with expected message complexity O(n log w), but high
MaxLoad. The SemiRand algorithm has expected message complexity O(n log w) and MaxLoad

O(log w), taking into account only certain type of messages. The OptRand algorithm will con-
sider all types of message and we will analyze it completely, taking all these types of messages in
to account. The advantage with first presenting CoinPass and SemiRand algorithms is that they
provide us with a simpler setup to explain two key aspects of the OptRand algorithm and its
analysis.

2 A Deterministic Algorithm

For the DTC problem, Garg et al. [6] presented an algorithm with the message complexity of
O(n log w). In this section, we describe an alternative deterministic algorithm which is similar to
theirs and has the same message complexity. The aim of presenting this algorithm is to highlight the
difficulties in designing an optimal algorithm with message complexity O(n log w) and MaxLoad

O(log w), simultaneously.
A naive algorithm for the DTC problem works as follows. One of the processors acts as a master

and every processor sends a message to the master upon receiving each trigger. The master keeps
count on the total number of triggers received. When the count reaches w, the user is informed and
the protocol ends. The disadvantage with this algorithm is that its message complexity is O(w).

A natural idea is avoid sending a message to the master for every trigger received. Instead, a
processor will send one message for every B triggers received. Clearly, setting B to a high value
will reduce the number of messages. However, care should taken to ensure that the system does
not enter the dead state For instance, suppose we set B = w/2. Then, the adversary can send
w/4 triggers to some selected four processors. Notice that none of these processors would send a
message to the master. Thus, even though all the w triggers have been delivered by the adversary,
the system will not detect the termination. We say that the system is the dead state. Naturally, it
is critical to avoid entering the dead state.

Our deterministic algorithm with message complexity O(n log w) is described next. A prede-
termined processor would serve as the master. The algorithm works in multiple rounds. We start
by setting two parameters: ŵ = w and B = ŵ/(2n). Each processor would send a message to the
master for every B triggers received. The master will keep count of the triggers reported by other
processors and the triggers received by itself. When the count reaches ŵ/2, it declares end-of-round
and sends a message to all the processors to this effect. In return, each processor sends the number
of unreported triggers to the master (namely, the triggers not reported to the master). This way,
the master can compute w′, the total number of triggers received so far in the system. It recom-
putes ŵ = ŵ −w′; the new ŵ is the number of triggers yet to be received. The master recomputes
B = ŵ/(2n) and sends this number to every processor. The next round starts. When ŵ < (2n),
we set B = 1.

We now argue that the system never enters a dead state. Consider the state of the system in
the middle of any round. Each processor has less than ŵ/(2n) unreported triggers. Thus, the total
number of unreported triggers is less than ŵ/2. The master’s count of reported triggers is less than
ŵ/2. Thus, the total number of triggers delivered so far is less than ŵ. So, some more triggers are
yet to be delivered. It follows that the system is never in a dead state and the system will correctly
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terminate upon receiving all the w triggers.
Notice that in each round, ŵ decreases at least by a factor of 2. So, the algorithm terminates

after log w rounds. Consider any single round. A message is sent to the master for every B triggers
received and the rounds gets completed when the master’s count reaches ŵ/2. Thus, the number
of messages sent to the master is ŵ/(2B) = n. At the end of each round, the O(n) messages are
exchanged between the master and the other processors. Thus, the number of messages per round
is O(n). The total number messages exchanged during all the rounds is O(n log w).

The above algorithm is optimal in terms of message complexity. However, the master may
receive upto O(n log w) messages and so, the MaxLoad of the algorithm is O(n log w). In the next
few sections, we present a randomized algorithm which achieves both the message complexity and
MaxLoad of an optimal deterministic algorithm.

3 CoinPass Algorithm

In this Section, we present a randomized algorithm, called the CoinPass algorithm, that has
expected message complexity O(n log w). The ideas developed in this section will be applied in the
OptRand algorithm.

For the ease of exposition, let us assume that n = 2k − 1, for some k. The processors are
arranged in the form of a complete binary tree (See Figure 1). We will imagine that each processor
occupies a node position in the tree. The configuration of the tree (namely, the information of
which node occupies which position), is predetermined and known to all the processors.

The depth of the tree is d = log(n + 1). Let ℓ = d − 1. The tree has 2ℓ leaf nodes. We will
identify these nodes using bit-strings of length ℓ. Scanning leaf nodes from left to right, we assign
bit-strings in the lexicographic order. For a leaf node u, let sigu denote the bitstring assigned to
the node u; sigu is called the signature of u. See Figure 1, where the signatures are shown below
the leaf nodes. For 1 ≤ i ≤ ℓ, let sigu[i] denote the ith bit of sigu. For an internal node u, let
level(u) denote the level number at which u appears. For instance, the root node appears in level
number 1 and its two children appear in level number 2.

The CoinPass algorithm proceeds in multiple rounds. To start with, we set parameters ŵ = w
and B = ŵ/(2n). The algorithm works by using the notion of coins. Each processor x keeps count
of the number of triggers received. For each batch of B triggers received, the processor x generates
a coin. Then the processor x considers the set of all processors occupying the leaf nodes of the tree
and chooses one of these processors at random, say the processor y. (The processor x knows which
processors occupy the leaf node positions, since the configuration of the tree is known to all the
processors.) The processor x sends the newly generated coin to the processor y. The coin will then
be passed through various nodes in the tree, before being deposited at one of the nodes.

The process would maintain the following invariant: if an internal node has a coin deposited
in it, then both its children nodes have coins deposited in them. We now describe the procedure
followed by a processor x occupying a node u:

• For each batch of B triggers received, the processor x generates a coin. It then chooses one of
the processors occupying the leaf nodes at random and sends the coin to the chosen processor.
Let y be the chosen processor and v be the leaf node occupied by y. We will say that the
coin is generated by x at node u and it is initiated by y at node v. The signature of initiating
node sigv is associated with the coin.
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Figure 1: Example for the CoinPassAlgorithm

• Suppose x receives a coin from some other node:
(Case 1) Suppose the node u already has a coin deposited in it: In this case, the coin is
forwarded to the parent of u.
(Case 2) Suppose the node u does not possess a coin. If u is a leaf node, the coin is consumed
by x and deposited at u. On the other hand, if u is an internal node, then the following
procedure is applied.
(Case 2.1) Suppose both the children of u have coins. In this case, the coin is deposited at
u. (Case 2.2) Suppose only one of the children of u possesses a coin. In this case, the coin is
passed on to the child that does not have a coin.
(Case 2.3) Suppose both the children of u do not have coins 2. In this case, we consider the
leaf node v where the coin was initiated (Recall that this information is associated with the
coin itself). We consider the bit b = sigv[i], where i = level [u]. If b = 0, the coin is passed to
the left child; and if b = 1, then the coin is passed to the right child.

Example: See Figure 1. Suppose a coin gets initiated at node u10; it will be deposited at node
u2. On the other hand, suppose a coin gets initiated at node u13; it will get deposited at node u15

�

The action of the processor x occupying the root node of the tree is important. Eventually, when
a coin gets deposited at the root node, the processor x declares end-of-round. Then it computes
the total number of triggers received in the system by contacting all the processors; let this number
be w′. Then the processor x resets ŵ = ŵ − w′. The value B is recomputed as B = ŵ/(2n) and
sent to all the processors. The next round starts. The process of collecting the number of triggers
received by each processor can be performed in a recursive fashion; this would avoid increasing the
load on the processor occupying the root node.

When ŵ becomes less than 2n, we switch to a much simpler algorithm called PlainTree,
described next. For each trigger received, a coin is generated and initiated at some leaf node. The
coin is then passed up the tree until it reaches the root node, where it is deposited. The root node
keeps count of the number of coins deposited. Once the count reaches ŵ, the protocol is terminated
and the user is sent an alert.

We shall first argue that the system never enters the dead state. This is easy to see for the
PlainTree algorithm. Now, consider the system in the middle of any round. Notice that once
n coins are generated, all the nodes get a coin each. In particular, in this case, the root node

2In a practical setting, this case can be handled by passing the coin to a randomly chosen child of u. But, we

adopt this specific procedure, since it simplifies the analysis of the algorithm.
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gets a coin and initiates the next round. So, consider the scenario where at most (n − 1) coins
have been generated. Each such coin represents ŵ/(2n) triggers received. On the other hand, at
each processor, the number of unreported triggers is < B (because, for each B triggers a coin is
generated). Thus, the total number triggers received so far in the system is at most

(n − 1)
ŵ

2n
+ n

ŵ

2n
< ŵ.

It follows that the system enters the next round at least when all the ŵ messages are received.
Next, let us count the number of rounds taken by the algorithm. The system enters the next

round only when n coins are generated. This happens only when at least n(ŵ/(2n)) triggers are
received. Thus, w′ ≥ n(ŵ/(2n)) = ŵ/2. Hence, in each round, ŵ goes down by a factor of at least
two. So, the maximum number of rounds involved is at most log w.

Now, let us analyze the number of messages exchanged. The number of coins generated in each
round is exactly n. Each coin generated may climb up all the way to the root and climb down to
the leaf level. The depth of the tree is O(log n) and so, each coin passes through at most O(log n)
nodes. Passing a coin from one node to another node can be accomplished using a constant number
of messages. Thus, the number of messages exchanged in a single round is O(n log n). Also for
the PlainTree algorithm, the number of messages exchanged is O(n log n). Summed up over all
the rounds and the PlainTree algorithm, the number of messages is O(n log n log w). Notice that
this is a factor log n higher than the optimal message complexity of O(n log w).

Using a more refined analysis of the CoinPass algorithm, we prove the following theorem, which
shows that in each round, the expected number of messages is only O(n). The proof is presented
in Appendix A.

Theorem 3.1 For any trigger pattern, in any round, the expected number of messages exchanged
is O(n).

We can apply the linearity of expectation and get the expected number of messages for all the
rounds put together.

Corollary 3.2 Consider the CoinPass algorithm. For any trigger pattern, the expected number
of messages exchanged is O(n log w).

Though the CoinPass algorithm is good in terms of message complexity, it may have poor load
balanching. We can show that its MaxLoad is expected to be Ω(

√
n). Recall that our main result

aims for an algorithm with MaxLoad O(log w). When w is polynomial in n, this algorithm should
have MaxLoad O(log n). Thus, the plain CoinPass algorithm has MaxLoad much higher than
what we are aiming for. In the next section, we modify the CoinPass algorithm and describe a
new algorithm called SemiRand that makes progress towards rectifying this issue.

4 The SemiRand Algorithm

In this section, we present an algorithm called SemiRand. As discussed in the previous section, the
main issue with the CoinPass algorithm is that certain node positions are hot-spots that receive a
lot of messages. The key idea behind the SemiRand algorithm is swapping: the idea is to regularly
move out the processors occupying the hot-spot positions. This is accomplished by picking some
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other processor at random and swapping the node positions of the two processors. The algorithm
is described next.

The SemiRand algorithm is a modification of the CoinPass algorithm. The SemiRand algo-
rithm introduces some additional type of messages. We will refer to the original messages exchanged
in the CoinPass algorithm as the coin related messages.

We start with a randomly chosen tree configuration; namely, which processor occupies which
position is fixed randomly. The algorithm is driven by a threshold parameter ∆ to be fixed later.
In addition, for each node position u, we will keep track of the number of coin related messages
received at this node position in a counter δu. Consider a processor x occupying a node position u.
Whenever δu crosses ∆, the processor initiates a swap process. The processor x chooses a processor
y uniformly at random. Let v be the node position occupied by y. Then the processors x and
y swap their node positions. This involves the following steps. First, the nodes exchange state
information associated with the original node positions; the state information includes information
such as the current neighbors (i.e., processors occupying the children and parent nodes), whether
the node has a coin or not, and the δ value of the node. Once the swap happens, the processor y
will continue executing the code or procedure associated with the node u (from where x left off);
similarly, the processor x will continue executing the code associated node v (from where y left
off). We will call u the source-end node of the swap and v the destination-end node of the swap.

An interesting implication of swapping is that the processors occupying the parent and children
nodes of u and v must be informed about the swap. This is necessary because these neighboring
processors should thereafter communicate with the new processors. All these can be accomplished
using O(1) message exchanges, per swap. We call these the swap related messages.

Another interesting issue arises due to swapping and it is related to the process of initiating a
coin. Recall that when a processor x generates a coin, the coin must be initiated at some random
leaf node position. However, x does not know the current set of processors occupying the leaf
nodes (since the set of processors occupying the leaf node positions may keep changing because of
swapping). To overcome the issue, we use a leaf polling process. The process uses a hot-potato-
like algorithm, described next. The processor x will randomly pick a processor y and pass the
coin to y. If y is occupying a leaf node, it will initiate the coin; otherwise, y will chose another
processor y′ at random and pass the coin to it. These trials are continued until the coin reaches
a processor occupying a leaf node position. Luckily, the process does not increase the message
complexity much. Since there are n/2 leaf node positions, each trial has a probability of 1/2 to
succeed. So, the expected number of trials or polls is only 2. We will call the messages associated
with this polling process as poll related message. This completes the description of the SemiRand

algorithm.
We now analyze the SemiRand algorithm and show that with high probability, no processor

receives more than O(log w) coin related messages. Notice that this claim does not bound the swap
related and poll related messages received by the processors. Handling these messages requires
modifying the algorithm and leads to a more involved analysis. This is done in Section 5, where we
describe the OptRand algorithm and show that in the OptRand algorithm, with high probability,
the total number of messages received by any processor is only O(log w).

The following theorem gives a probabilistic bound on the maximum number of coin related
messages received by any processor. The crux of the analysis lies in proving that the random
variables denoting the processors receiving the sequence of coin related messages satisfy certain
independence properties. To this effect, we consider a probabilistic ball game that captures the
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essence of the SemiRand algorithm and analyze it. The results obtained for the ball game are then
used to derive the theorem. The ball game and the proof of the theorem are given in Appendix B.

Theorem 4.1 Consider the SemiRand algorithm. There exists a constant c such that the following
is true. Fix any 0 < ǫ < 1. Then,

Pr[Mmax ≥ (1/ǫ)4c∆ log w] ≤ 2ǫ,

where Mmax denote the maximum number of coin related messages received by any processor.

Thus with high probability the MaxLoad is O(log w).
Remark: The parameter ∆ used by the SemiRand algorithm is not very critical. We can set

it to, say ∆ = 6. The value of ∆ will be important in the analysis of the OptRand algorithm.

5 OptRand Algorithm

In this section, we describe the OptRand algorithm. This is designed by modifying the SemiRand

algorithm of the previous section. Here, we will take into account all types of messages (coin related,
poll related and swap related messages) and present a complete analysis. We will show that with
high probability, OptRand has message complexity O(n log w) and MaxLoad O(log w).

For most part, the OptRand algorithm is similar to the SemiRand algorithm. However,
interesting issues arise when we start accounting for swap related messages. For instance, when a
node initiates a swap, it sends a swap information message to its neighbors. A node v may receive a
lot of such messages even though it does not receive many coin related messages. Such a node may
also become a hot-spot. To overcome the issue, we increment the δ counter also for swap related
messages at the source end. However, the swap related messages exchanged at the destination
end and the leaf polling messages should not increment the δ counters. The reason is that node
positions that receive these later messages cannot be derived from the initiation configuration (these
are determined by the randomness used in swapping). Only the messages whose node position can
be determined from the initiation configuration incremen the δ counters; these will be accounted
for using the ball game. A separate analysis will be performed for the other messages.

The pseudocode for the OptRand algorithm is presented in Figures 2, 3 and 3. For the ease of
exposition, the pseudocode is presented from a node position perspective. This code is executed by
whichever processor occupies the particular node position at any given instance of time. Suppose
a processor x occupying a node position u performs a swap with a processor y occupying a node
position v. Once the swap happens, the processor y will continue executing the code of node u
(from where x left off) and similarly, the processor x will continue executing the code of node v
(from where y left off). We will call u the source node of the swap and v the destination node of
the swap.

The ProcessEvent procedure is invoked whenever a message is received. This procedure pri-
marily handles unsolicited events. The solicited events (acknowledgements) are handled within the
other procedures explicitly.

We start by describing the process of initiating a coin. Recall that when a processor x generates
a coin, the coin has to be initiated at some leaf node. We will employ the same hot-potato-like
procedure used in the SemiRand algorithm. To do this, the processor x picks a processor y at
random and sends the coin to y using a LeafPoll message. Upon receiving the LeafPoll message, the
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processor y works as follows. (See ProcessLeafPoll procedure). Let v be the node position occupied
by y. Then, y checks if v is a leaf node position. If not, it just forwards the message again to another
processor picked uniformly at random. If v is indeed a leaf node position, it either consumes the
coin or passes the coin to its parent using a CoinMsg, depending on whether v already has a coin
or not.

The initiated coin is passed from one node to the other using the Coin message, until it gets
deposited at some node position. When a node receives a Coin message, it follows a procedure
similar to the CoinPass algorithm. This is shown in the ProcessCoin procedure. First consider
the case when the node already has a coin. If the coin is received from the parent, the procedure
returns back a CoinReject to the parent as the subtree is already full of coins. On the other hand
if the coin is received from a child, it is simply forwarded to the parent. Now consider the case
when the node does not have a coin. In this case, it tries to push the coin down its subtree, and if
it fails, it simply consumes the coin. The coin gets deposited at the current node position.

We now describe the process of swapping node positions. Recall that in each node position u,
we maintain a counter δu to keep track of the number of messages received at u. The procedures
ProcessCoin and ProcessLeafPoll also increment the δ counter. In case the counter crosses the
specific threshold ∆, the node initiates a swap procedure (by invoking InitiateSwap). Suppose
a processor x occupying a node position u initiates a swap. The processor x picks a processor
y uniformly at random and sends it a SwapRequest message along with the state information of
u. Let v be the node position occupied by y. The processor y upon receiving the SwapRequest,
invokes the ProcessSwapReq procedure. The processor y sends out a SwapInfoD message to all the
three neighbors of v informing them of the new processor x that is taking over the node position
v. (Thus, SwapInfoD message is used to inform destination-side neighbors about the swap.) The
processor y then sends back a SwapAccept to x along with state information of v. The processor
x upon receiving the SwapAccept, copies the state information. Note that at this point (marked
by bullets in the InitiateSwap and ProcessSwapReq procedures), the processors x and y exchange
their roles (node positions). The state information for a node position u consists of all the variables
that are associated with u such as the identity of the processors that are neighbors of u, the δu

counter, whether u has a coin or not, etc. Note that the processor x executing the InitiateSwap
procedure of u, on execution of the statement marked with the bullet would continue execution
from the statement marked with the bullet in the ProcessSwapReq procedure (of the node position
v). Similarly, y suspends executing the code of v and starts executing the code of u. In practice,
this can also be encoded as part of the state.

ProcessEvent(Msg,Sender)
switch (Msg type)
LeafPoll: ProcessLeafPoll(Msg,Sender);
Coin: ProcessCoin(Msg,Sender);
SwapReq: ProcessSwapReq(Msg,Sender);
SwapInfoS: ProcessSwapInfoS(Msg,Sender);
SwapInfoD:

Update neighbor information from Msg;
endswitch

Figure 2: Main Event Processing Procedure
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ProcessLeafPoll(Msg,Sender)
if (I am not a leaf node)

Pick a processor y uniformly at random;
Send LeafPoll to y;

else
δ + +;
Associate signature with coin;
if (δ ≥ ∆) InititateSwap(true);
if (haveCoin==true)

send Coin to parent;
waitFor(CoinAccept);

else set haveCoin=true;
endif

endif

ProcessCoin(Msg,Sender)
δ + +;
if (δ ≥ ∆) InititateSwap(true);
if (haveCoin==true)

if (Sender==parent)
return CoinReject to parent;

else /* sender is child */
send CoinAccept to Sender;
send Coin to parent;
waitFor(CoinAccept);

endif
else /* Don’t have a coin */

send CoinAccept to Sender;
if (Sender==child)

send Coin to otherChild;
waitFor(CoinAccept or CoinReject);
if (CoinReject) set haveCoin=true;

else /* Sender is parent */
Determine child from signature;
send Coin to child;
waitFor(CoinAccept or CoinReject);
if (CoinReject)

send Coin to otherChild;
waitFor(CoinAccept or CoinReject);
if (CoinReject) set haveCoin=true;

endif
endif

endif

InitiateSwap(flag)
set GenerateBaton=flag;
set δ = 0;
Pick a processor y uniformly at random;
Send SwapRequest to y with state;
• WaitFor(SwapAccept) & copy state;

Send SwapInfoS to neighbors;
if (GenerateBaton==true)

Generate Baton;
Send Baton to left child;
WaitFor(Baton); δ + +;
Send Baton to right child;
WaitFor(Baton); δ + +;
Send Baton to Parent;
WaitFor(Baton); δ + +;
Destory Baton;

else /* I was passed Baton */
if (Sender 6= left child)

Send Baton to left child;
WaitFor(Baton); δ + +;

endif
if (Sender 6= right child)

Send Baton to right child;
WaitFor(Baton); δ + +;

endif
if (Sender 6= parent)

Send Baton to parent;
WaitFor(Baton); δ + +;

endif
endif

ProcessSwapReq(Msg,Sender)
Send SwapInfoD to neighbors;
• Send SwapAccept to Sender with

state and copy state from Msg;

ProcessSwapInfoS(Msg,Sender)
δ + +;
Update neighbor information from Msg;
waitFor(Baton); δ + +;
if ( δ ≥ ∆ ) InitiateSwap(false);
return Baton to Sender;

(a) Coin Passing Procedures (b) Swap Handling Procedures

Figure 3: Coin Passing and Swap Handling Procedures
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Source-end Swap Processing via Baton Passing: After a swap has successfully taken
place, the processor y (now occupying the node position u) sends out a SwapInfoS message to the
neighbors of u informing them of the processor change. (Thus, the SwapInfoS message is used
to inform source-side neighbors about the swap). An interesting aspect of the source-end swap
processing is that the process can give rise to a chain of more swaps, as discussed next. When
the neighbors receive SwapInfoS messages, they must increment their δ counters (see procedure
ProcessSwapInfoS). This may cause the neighbors to hit the ∆ threshold and initiate a new swap.
In general, a chain of swaps may ensue. However, we would like to avoid simultaneous swaps
happening in the system. For this purpose a baton passing mechanism is used. The originator
node u now generates a baton. The baton will be passed to other nodes in a sequential manner.
Another node can perform a subsequent swap only when it receives the baton. In other words, a
neighboring node receiving the SwapInfoS message does not immediately initiate swap, even if it
hits the threshold ∆. Instead it waits for the Baton to come it. Starting at the node u, the baton
is passed in a recursive manner. When a node z1 receives a baton from a node z2, the node z1

behaves as follows. The node z1 checks if its δ counter has hit the ∆ threshold. If not, the baton
is passed back immediately to the node z2. On the other hand, suppose the δ counter of z1 has
indeed hit the ∆ threshold. In this case, z1 performs the swap. Then, z1 informs its neighbors
about the swap. Next, the node z1 will recursively send out the baton by giving the baton to its
neighbors. The baton will eventually be returned to z, which it returns back to z2. This way, the
baton will eventually be returned to the originator u, which destroys the baton. (see procedure
ProcessSwapInfoS). This completes the description of the OptRand algorithm.

Remark 1: Note that while a node is waiting for a message (e.g. in WaitFor(Baton)), it may
receive a request for a swap. In this case, the node services the swap, i.e., the corresponding
processors exchange their node positions. Note that in this case, this node (waiting for Baton),
is at the receiving end of the swap request and therefore generates SwapInfoD messages for its
neighbors. This is not a cause for concern since these messages (exchanged at the receiving end of
the swap) do not increment the δ counter and therefore, do not cause more swaps.

Remark 2: Note that the InitiateSwap procedure does not check δ against the threshold on
receiving the baton. This is acceptable since δ has been set to 0 at the start of the procedure
and the node may receive the baton back at most 3 times during the execution of this procedure.
This can be handled by simply setting ∆ to a sufficiently large constant. Also note that the
ProcessSwapInfoS procedure may perform a swap when δ = ∆ + 1 (instead of δ = ∆) since it waits
for the baton. We will account for this in our analysis.

Remark 3: We now discuss how to set the parameter ∆. The parameter ∆ has to large enough
to account for the following two phenomena. First, notice that whenever δu of a node u hits ∆, u
initiates a swap. The process results in generating SwapInfoD, SwapInfoS and Baton messages. The
number of such messages is bounded by some constant, for a given swap (discounting the recursive
swaps). The parameter ∆ has to be large enough so that the number of swaps is minimized; and
hence we can get a bound on the total number of messages generated. Secondly, suppose a node u
passes the baton to a neighbor. It will immediately reset its counter δu to 0. The node u will get
back the baton in a Baton message. Moreover, a neighbor of u may also perform a swap and send
a SwapInfoS message to u. For each of the above Baton messages and the SwapInfoS messages, the
node u will increment the counter δu. We should ensure that this does not result in δu hitting the
threshold ∆ again. Because, such an occurence may result in the baton being passed indefinitely
in the tree. Thus, ∆ has to be large enough. Setting ∆ to any constant greater than 20 suffices.

11



Remark 4: As in the case of CoinPass algorithm, when ŵ gets below 2n, we switch to a variant
of the PlainTree algorithm that involves swapping. A δ counter is maintained with each node
position u. When the counter hits the threshold of ∆, the processor x occupying u picks a processor
y random and the two swap their positions.

Analysis of OptRand - An Overview:

We will now present an overview of the analysis. The full analysis is described in Appendix C,
where Theorem 1.1 is proved. We will classify the messages to a few categories and analyze each
category separately.

First consider the LeafPoll messages related to the leaf polling process. The number of coins
generated is N = O(n log w). The number of leaf nodes is n/2. For each coin, the number of
LeafPoll messages generated follows the geometric distribution with success probability p = 1/2.
Let X denote the total number of LeafPoll messages for all the N coins put together. Then, X
follows the negative binomial distribution. By appealing to a known Chernoff-like bound [12] for
the negative binomial distribution, we will show that with high probability, every processor receives
only O(log w) LeafPoll messages.

Next consider the messages related to coin passing and swapping. Corollary 3.2 gives us a
bound of O(n log w) for the messages related to the original CoinPass algorithm (namely, Coin,
CoinAccept and CoinReject); call these coin-related messages. Regarding the swap process, consider
only the messages related to source end of the swap (namely, SwapInfoS, SwapAccept and Baton);
call these source-end swap messages. When a node u receives ∆ (or ∆ + 1) of these two type of
messages, it generates some source-end swap messages; a simple accounting shows that the number
of these extra messages is at most ∆/2 for our choice of ∆ = 20. Thus, we have a process that
starts with N messages and for each ∆ messages, the process adds at most another ∆/2 messages.
We will argue that in any such process, the number of messages can only double. Thus, the total
number coin-related and source-end swap messages is M ≤ 2N . So, M = O(n log w). We will argue
that with high probability, every processor receives about M/n = O(log w) messages. This will be
accomplished by slightly generalizing the ball game considered in the analysis of the SemiRand

algorithm.
Finally, consider the swap messages related to the destination-end of the swapping (namely,

SwapInfoD and SwapRequest); call these destination-end swap messages. The number of swaps in
the algorithm is roughly M/∆ = O(n log w). For each such swap, a constant number of destination-
end swap messages are generated. So, the total number of destination-end swap messages is D =
O(n log w). For each swap, the destination node is chosen at random. So, each of the above D
messages is delivered to a random node (intuitively). By appealing to Chernoff bound, we will
argue that with high probability each processor receives about D/n = O(log w) messages.

6 Open Problems

Our main result (Theorem 1.1) presents a randomized algorithm with MaxLoad O((1/ǫ) log w),
where ǫ is the failure probability. An interesting open problem is to design an algorithm with
improved MaxLoad, with respect to ǫ. Namely, it would be nice to design an algorithm with
MaxLoad=O(log(1/ǫ) log w). Going one step further, one can aim for an algorithm with error
probability being an inverse polynomial in n; namely, the goal here is to get MaxLoad=O(d log w)
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with ǫ = 1/nd. The ultimate goal of this line of work would be to design a deterministic algorithm
with MaxLoad O(log w). A second line of open problems is concerned with proving lowerbounds
for deterministic algorithms. A starting point would be to show that any deterministic algorithm
should have MaxLoad Ω(log2 n).
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A Analysis of the Expectation

In this section, we analyze the expected number of messages exchanged in the CoinPass algorithm
and prove Theorem 3.1. The proof goes as follows. We first introduce a bottom-up random process
that captures the essence of the CoinPass algorithm. We will derive an upperbound on the cost
of incurred in this process. However, the bottom-up process is cumbersome to analyze directly. So,
we shall introduce an easy-to-analyze top-down random process and derive an upperbound on the
cost incurred by this process. We will show that the two processes are equivalent and their costs
differ only by a factor of two. Theorem 3.1 is proved putting together the above pieces.

A.1 Proof of Theorem 3.1

Let ℓ = log((n + 1)/2. The tree has 2ℓ leaf nodes. Recall that the signature sigu of a leaf node u is
an ℓ-bit string. Let σ = s1, s2, . . . , sn be a sequence of n signatures, where each si ∈ {0, 1}ℓ; we call
σ an initiation sequence. In other words, an initiation sequence specifies a sequence of leaf nodes
represented by their signatures.

Bottom-up Process: Given an initiation sequence σ, the bottom-up processes works as follows.
It considers each signature si and simulates the CoinPass algorithm by initiating a new coin at at
the leaf node u whose signature is si. After getting initiated at the node u, the coin passes through
a sequence of internal nodes, before getting deposited at some node v. The bottom-up cost of the
ith coin is defined to be the number of internal nodes in the above sequence (including u and v).
The bottom-up cost of the sequence σ is the sum of the bottom-up costs of the n coins. Let BUℓ(σ)
denote the bottom-up cost of the sequence σ.

Choose an initiation sequence S uniformly at random (namely, each signature si is chosen
independently and uniformly at random). Let B(n) = E[BUℓ(S)] denote the expected bottom-up
cost of the random sequence S. Thus, B(n) is a function of n, where n denotes both the number
of nodes in the tree and number of coins initiated.

Now consider the CoinPass algorithm. In any round, exactly n coins are generated. These
are then initiated at n leaf nodes, which are chosen at random uniformly and independently (The
nodes where these coins get generated is determined by the given trigger pattern. However, where
these coins get initiated is random). The coins pass through the internal nodes; passing a coin
from one node to another can be accomplished using a constant number of messages. Thus, the
expected number of messages is each round is O(B(n)).

Proposition A.1 Consider the CoinPass algorithm. In each round, the expected number of mes-
sages is at most cB(n), for some constant c, i.e., the expected number of messages in O(B(n)).

By the above proposition, it suffices to derive an upperbound on B(n). We now introduce the
top-down process and then show that it is equivalent to the bottom-up process. In the bottom-up
process, the path travelled by coins start at the leaf level. The top-down processes will do the
opposite: the paths will start at the root level and go down the tree. We will design the top-down
process in such a way that the two processes are equivalent. Meaning, for any initiation sequence
σ, the nodes where each coin gets deposited will be the same in both the process. Furthermore, we
will define the top-down cost of σ in such a way that the bottom-up cost of σ is at most twice its
top-down cost. This way, deriving an upperbound on the top-down costs will gives an upperbound
on the bottom-up costs. The top-down process is defined next.
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Top-down Process: Given an initiation sequence σ = s1, s2, . . . , sn, the process considers each
sequence si and works as follows. We generate a new coin and give it to the root node. The coin
will pass through the nodes and get deposited at some node of the tree. Suppose a node u gets the
coin. If both the children of u have coins, the coin gets deposited at u. If only one of the children
of u has the coin, the coin is given to the node that does not have a coin. If both the children of
u do not have coin: compute the bit b = si[level(u)]. If b = 0, give the coin to the left child; if
b = 1, give the coin to the right child. If b = 0, we say that the left-child is the sig-specified child
at u; similarly, if b = 1, we say that the right child is the sig-specified child of u. Notice that the
coin may or may not be given to the sig-specified child. If the coin is given to the child which is
not sig-specified, we say that the path of the coin bends at u. This completes the description of the
process. The top-down cost of the ith coin is defined as follows. As the coin passes down the tree,
if the path does not bend at any node, then its cost is defined to be ℓ − level [u] + 1, where u is
node where it got deposited. On the other hand, suppose the path bends at some node. Let u be
the first node where such a bending takes place. Then, the cost is ℓ − level [u] + 1. The top-down
cost of the sequence σ is defined to be the sum of the top-down costs of all the n coins. Let TDℓ(σ)
denote the top-down cost of σ.

Choose an initiation sequence S uniformly at random. Let T (n) = E[TDℓ(S)] denote the
expected top-down cost of the random sequence S. Thus, T (n) is a function of n, where n denotes
both the number of nodes in the tree and number of coins initiated.

It is not hard to see that the two processes are equivalent. Namely, for any initiation sequence
σ, the node where each coin gets deposited is the same in both the processes. Furthermore, the
bottom-up cost of σ is at most twice of the top-down cost of σ. This can be seen as follows. A
coin can get deposited in two ways. We will analyze both the cases. Consider a coin and let z be
the node where it got initiated. In the bottom-up process, a coin travels up the tree and reaches a
node u that does not have a coin.

• Suppose both children of u have coins. In this case, the coin gets deposited at u. The bottom-
up cost of the coin is ℓ − level [u] + 1 (the distance between node u and the node z). Now,
consider the top-down process: the coin will get deposited at the same node u and will incur
the same cost.

• Suppose some children of u does not have a coin. In this case, the coin will be passed down
to a coin-less child of u and get deposited at some node v. The bottom-up cost of the coin
is the distance from z to u plus the distance from u to v; namely, the cost is d1 + d2, where
d1 = ℓ − level [u] + 1 and d2 = level [v] − level [u]. Notice that d2 ≤ d1 and so the bottom-up
cost is at most 2d1. Now consider the top-down process. The path of the coin will start from
the root and reach the node u, without bending anywhere. Then, for the first time, it will
bend at u. Next, proceeding further down the tree, the coin will reach v. The top-down cost
is exactly d1. We see that the bottom-up cost is at most twice the top-down cost.

We will now formally show that the two processes are equivalent. In order to formalize the
claim, we define the notion of a coin configuration. A coin configuration simply specifies the subset
of nodes on which coins are present. A coin configuration is said to be proper, if the following is
true: for any node u, if u possesses a coin then both the children of u posses coins. If every node
possesses a coin, then the configuration is said to be full; similarly, if no node possesses a coin
the configuration is said to be empty. Let σ = s1, s2, . . . , sn be an initiation sequence. Consider
executing the top-down processes on this sequence. To start with, we have an empty configuration
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and processing each signature produces a new configuration with one more coin. Let C0 be the
empty initial configuration and let Ci denote the configuration produced after processing the ith
coin. Notice that Cn is the full configuration. The sequence C0, C1, . . . , Cn is called the top-down
configuration sequence of S. The notion of bottom-up configuration sequence is defined similarly.
We are now ready to formally state the equivalence claim. The lemma is proved in Section A.2

Lemma A.2 For any initiation sequence S, the top-down and bottom-up configuration sequences
are the same. Moreover, the bottom-up costs of S is at most twice the top-down cost of S, i.e.,
BUℓ(S) ≤ 2TDℓ(S).

The lemma below follows immediately.

Lemma A.3 B(n) ≤ 2T (n).

Now, we derive the expected cost for the top-down process and prove the following result.

Lemma A.4 T (n) = O(n).

Proof: We will prove the lemma by establishing a recurrence relation for T (n) in terms of T ((n −
1)/2). Let L and R denote the left and right subtrees (i.e., the subtrees rooted at the left and
right children of the root node). For a signature s ∈ {0, 1}ℓ, let trunc(s) be the string obtained
by deleting the first bit of s; thus, s is a signature string at length ℓ − 1. We say that a signature
s ∈ {0, 1}ℓ is left-going, if starts with bit 0; it is said to right-going, if it starts with bit 1. Let
σ = s1, s2, . . . , sn be any initiation sequence at length ℓ. Consider the ith signature si and the coin
corresponding to it. Suppose si is left-going. Let u be the node where the ith coin gets deposited.
The node u can also be determined by simulating the top-down process on the left-subtree L with
trunc(si) as the input signature. The cost incurred by the ith coin in the original tree is the same
as the cost incurred by the coin the latter process. A similar claim is true for right-going signatures.
The above claims are true, until the left and the right subtree do not become full. Now, suppose
the left subtree gets full (i.e., all nodes in the subtree have coins). Consider a subsequent signature
si, which is left-going. Then, the path of the corresponding coin will bend at the root node itself.
After that, the coin will travel through the right subtree and get deposited in some node v in the
right subtree. Observe that the node v can be determined by simulating the top-down process on
the right subtree with trunc(si) as the input signature. The cost of the coin is ℓ + 1 = log(n + 1),
since bending happens at the root node itself. A similar scenario happens if the right subtree gets
full.

To formalize the discussion so far, let us construct two initiation sequences σ1 and σ2 as follows.
Ignore the last signature sn of σ. Scan through the first (n − 1) signatures in the sequence σ.
For each signature si: if si is left-going, add it to σ1; if si is right-going, add it σ2. However,
we will ensure that neither σ1 nor σ2 gets more than (n − 1)/2 signatures. Namely, once σL gets
(n − 1)/2 signatures, the subsequent signatures are always added to σ2; similarly, once σR gets
(n − 1)2 signatures, then the subsequent signatures are added to σ1. The sequences σ1 and σ2 are
initiation sequences of length (n − 1)/2 and their constituent signatures of length ℓ − 1. We will
call the above process as truncation. We say that a left-going signature is bounced, if it gets added
to σ2; similarly, a right-going signature is bounced, if it gets added to σ1. Let Bounce(σ) denote
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the number signatures that are bounced. Then, by our discussion above, we get that

TDℓ(σ) ≤ TDℓ−1(σ1) + TDℓ−1(σ2)

+(ℓ + 1) · Bounce(σ) + (ℓ + 1)

= TDℓ−1(σ1) + TDℓ−1(σ2)

+(ℓ + 1) · [1 + Bounce(σ)] (1)

Any bouncing signature incurs a cost of (ℓ+1) and hence, we have the term (ℓ+1)B(σ). An extra
(ℓ+1) is added to account for the cost of the last signature sn (whose coin always gets deposited at
the root node). We get only an inequality, since the RHS is not a tight analysis of the scenario: for
a left-going coin which got bounced, we have accounted for its cost in the term (ℓ + 1) ·Bounce(S);
additionally, TDℓ−1(σ2) will also add a cost for this coin. (Similarly, the RHS includes extra costs
for right-going coins which get bounced).

Choose an initiation sequence S of length n at random. Let X = TDℓ(S) be the random variable
denoting the top-down cost of S. Then, T (n) = E[X] is the expectation of X. Let S1 and S2 be
the sequences constructed by applying the truncation process to S. Let X1 and X2 be random
variables denoting TDℓ−1(S1) and TDℓ−1(S2), respectively. Let B = Bounce(S) be the random
variable denoting the number of bounced signatures in S. Notice that S1 and S2 are random
initiation sequences of length (n− 1)/2. We have E[X1] = T ((n− 1)/2) and E[X2] = T ((n− 1)/2).

From Equation 1, we get that

X ≤ X1 + X2 + (ℓ + 1)(1 + B).

By the standard properties of expectation, we have hat

E[X] ≤ E[X1] + E[X2] + (ℓ + 1)(1 + E[B]).

It follows that

T (n) = E[X]

≤ 2T

(

n − 1

2

)

+ (ℓ + 1)(1 + E[B]) (2)

We now derive a bound for E[B]. The random variable B can be viewed in a different way
by considering the following coin tossing experiment. Toss a fair coin n′ times independently,
where n′ = n − 1. Let H and T be the random variables denoting the number of heads and
tails, respectively. Both have expectation n′/2. Let Z be a random variable denoting the expected
deviation; namely, define Z = |H − (n′/2)| (equivalently, Z = |T −n′/2|). Then, B and Z have the
same distribution. Thus, E[B] = E[Z]. The random variable H follows the binomial distribution.
Its expectation is µH = n′/2; its variance is σ2

H = n′/4; its standard deviation is σH =
√

n′/2. The
random variable Z can be rewritten as Z = |H − µH |. It is a well known fact that for any random
variable Y ,

E[|Y − µY |] ≤ σY ,

where µY and σY are the expectation and standard deviation of Y , respectively. Applying the
above fact to the random variable Z, we get that

E[B] = E[Z] ≤
√

n′/2.

18



Applying the above bound and the value of ℓ in Equation 2, we get that

T (n) ≤ 2T

(

n − 1

2

)

+ log(n + 1) ·
[

1 +

√
n

2

]

(3)

It is not hard to solve the above recurrence relation; for instance, we can appeal to the master
theorem of recurrence relations [3]. We can show that T (n) ≤ cn, for some constant c. �

We get Theorem 3.1 by combining Proposition A.1, Lemma A.3 and Lemma A.4.

A.2 Proof of Lemma A.2

The proof is by induction over the length of the initiation sequence S.
Clearly, for S = φ, the configuration sequences C0, C ′

0 are the same as they are both the empty
configurations. Moreover BUℓ(S) = TDℓ(S) = 0.

Now, suppose the claim holds for any given configuration sequence of length k, Then we show
that it also holds for any configuration sequence of length k + 1. Let the initiation sequence
be S = s1, s2, . . . , sk, sk+1. Let C0, C1, . . . , Ck+1 be the configuration sequence for the bottom-
up process after processing the first k coins (signatures). Similarly, let C ′

0, C
′

1, . . . , C
′

k+1 be the
configuration sequence for the top-down process after processing the first k coins (signatures). Let
Sk = s1, s2, . . . , sk be the initiation sequence consisting of the first k signatures of S. By induction,
after processing the first k − 1 coins, the configuration sequences are same. Therefore, Ck = C ′

k.
Now let us analyze where the kth coin settles down for the bottom-up and the top-down processes.
Let sig be the signature of the kth coin. Note that the bits of sig define a unique path from the root
(say r) to a leaf node (say u) wherein we proceed to the left (resp. right) child at level i if sig[i] = 0
(sig[i] = 1 resp.). Note that in case of the bottom-up process, this leaf node is the initiating node.

First we consider the case where in the bottom-up process, the coin is passed from u upwards
and settles down on some node, say v, without going down. Clearly in Ck, v cannot have a coin
and both children of v must already have coins on them. Moreover, in Ck, no ancestor of v on
the path from v to the root can have a coin on it – otherwise it would violate the invariant that
a node with a coin cannot have a coinless child. Note that the top-down process follows the same
path specified by signature until it is either forced to bend or it settles down. Since C ′

k is same as
Ck by induction, we have that v is coinless and both its children have coins. Therefore the coin
must come and settle at v. It is easy to see that the cost incurred in both the processes is the same
ℓ − level [v] + 1. By induction, we have that BUℓ(Sk) ≤ 2TDℓ(Sk). Therefore,

BUℓ(S) = BUℓ(Sk) + (ℓ − level [v] + 1)

≤ 2TDℓ(Sk) + (ℓ − level [v] + 1)

≤ 2TDℓ(S).

Next we consider the case where in the bottom-up process, the coin is passed from u upwards
until some node, say v, and is then passed downwards until it finally settles at some node, say
w. Clearly in Ck, v does not have a coin, the child of v on the path towards u has a coin and
the other child of v does not have a coin. Moreover no ancestor of v has a coin, as before. The
cost incurred is (ℓ − level [v] + 1) + (level [w] − level [v] + 1) ≤ 2(ℓ − level [v] + 1) since u is a leaf
node and has maximum depth. Let us now analyze the top-down process for the coin in this case.
Again, the top-down process follows the same path specified by signature until it is either forced
to bend or it settles down. Since C ′

k is same as Ck by induction, we observe that the coin will be
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first forced to bend at v. Note that when a coin goes downwards in the bottom-up process, it uses
the same algorithm as the top-down process. Therefore, after bending from v, the coin will follow
the same path as followed by the coin from v in the bottom-up process. Therefore, the coin will
settle down at the same node w as in the bottom-up process. The cost incurred in the top-down
process is (ℓ− level [v] + 1) as that is the first bending node in its path. By induction, we have that
BUℓ(Sk) ≤ 2TDℓ(Sk). Therefore,

BUℓ(S) ≤ BUℓ(Sk) + 2(ℓ + 1 − level [v])

≤ 2TDℓ(Sk) + 2(ℓ − level [v] + 1)

≤ 2TDℓ(S)

B Analysis of SemiRand: Proof of Theorem 4.1

In this section, we describe and analyze a probabilistic ball game that captures the essence of the
SemiRand algorithm. The analysis of this game will be used to derive a probabilistic bound on
the number of coin related messages. The probabilistic game involves seats, girls and balls. These
correspond to node positions, processors and coin related messages in the SemiRand algorithm,
respectively.

B.1 Description of the Ball Game

The game is driven by two parameters n and K, both positive integers. The game involves a set
of n seats S = {s1, s2, . . . , sn}, a set of n girls G = {g1, g2, . . . , gn} and K balls. By a seating
arrangement, we mean a one to one onto mapping σ : S → G (in other words, σ is a permutation).
Given a seating arrangement σ, we imagine that a seat s is occupied by the girl specified by σ(s).
Let Π denote the set of all n! seating arrangements possible. A ball sequence is a sequence seats
τ = b1, b2, . . . , bK , where each bi ∈ S.

Imagine that an adversary has fixed a ball sequence τ . The game proceeds in K rounds. In the
ith round, a ball is given to the girl occupying the seat bi. Intuitively, we would like to achieve load
balancing; meaning, each girl g should receive roughly K/n balls. We wish to achieve the above
load balancing irrespective of the ball sequence fixed by the adversary. (Notice that this cannot be
achieved, if the seating arrangement does not change across rounds. For instance, if the adversarial
ball sequence τ simply repeats the same seat s5 K times, then the girl occupying the seat s5 will
get all the balls.) In our game, we will randomly swap positions of the girls in each round. The
procedure is explained next.

Fix any ball sequence τ = b1, b2, . . . , bK . The game proceeds in K rounds. We start with some
random seating arrangement π0. For 1 ≤ i ≤ K, two events happen in the ith round:

1. A ball is given to the girl occupying the seat bi, in the seating arrangement πi−1; namely, the
ball is given to the girl g = πi−1(bi).

2. The girl g chooses a girl g′ ∈ G at random. Then the girls g and g′ swap their seats. Let
πi be the new seating arrangement, after the swapping. Notice that with probability 1/n, g′

could be the same as g; in this case, no swapping happens and we get πi = πi−1.

We call the ball given in the ith round as the ith ball.

20



?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;/.-,()*+ ?>=<89:; ?>=<89:; ?>=<89:; ?>=<89:;/.-,()*+ ?>=<89:;

s1 s2 s1 s3 s5 s1 s4 s2 s5 s2 s4

Figure 4: Example ball sequence illustrating golden balls, with ∆ = 3

For a girl g, let Bg denote the number of balls received by g. Let Bmax denote the maximum of
Bg over all girls g. We will show that with high probability every girl receives only O(K/n) balls;
in other words, Bmax = O(K/n). The above claim will be proved by appealing to Chernoff bounds.
This requires us to establish certain independence property about our process; this is done next.

Define random variables Y1, Y2, . . . YK , where Yi represents the girl who received the ith ball.
The following result shows that these random variables are uniformly distributed and that they are
mutually independent. The theorem is proved in Section B.3.

Theorem B.1 The random variables Y1, Y2, . . . , YK are uniformly distributed and are mutually
independent. Meaning: (i) for each 1 ≤ i ≤ K and any girl g ∈ G, Pr[Yi = g] = 1/n; (ii) for any
sequence of girls, a1, a2, . . . , aK ∈ G,

Pr[(Y1 = a1) ∧ (Y2 = a2) ∧ · · · ∧ (YK = aK)] =
1

nK
.

As a corollary, we get the following result, which shows that with high probability every girl
receives at most O(K/n) balls. The corollary is proved in Appendix B.3.

Theorem B.2 Fix any ball sequence τ = b1, b2, . . . , bK and any constant t ≥ 6. Then,

Pr[Bmax ≥ t(K/n)] ≤ n2−
tK

n ,

Moreover, the above inequality is true, if we replace K on both LHS and RHS by any K ′ ≥ K.

Extended Ball Game: We now extend the above game by introducing an additional para-
meter ∆. Let τ = b1, b2, . . . , bK be any ball sequence. For each seat s ∈ S, scan the sequence from
left to right and set a mark on every ∆th appearance of s; the balls corresponding to the marked
occurences are declared golden balls. The rest of the balls are called white balls. Figure 4 illustrates
the idea for ∆ = 3; the golden balls are shown double circled. The game process is modified as
follows: a girl will initiate a swap only on receiving a golden ball (namely, a girl will not perform a
swap upon receiving white balls). The original game corresponds to the case where ∆ = 1, where
every ball is golden. As before, let Bg represent the number of balls received by a girl g (counting
both white and golden balls); let Bmax represent the maximum of Bg over all the girls g.

Extending Theorem B.2, we can prove the following result. The proof is given in Appendix B.4.

Theorem B.3 Fix any ball sequence τ = b1, b2, . . ., bK , any ∆ ≥ 1 and any t ≥ 6 Then,

Pr[Bmax ≥ 2t(K/n)] ≤ 2n2−
tK

∆n .

Moreover, the above inequality is true, if we replace K on both LHS and RHS by any K ′ ≥ K.
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B.2 Analysis of the SemiRand Algorithm

In this section, we relate the SemiRand algorithm to the games introduced in the previous sec-
tion and derive an upperbound on the number of coin related messages received by any processor
(MaxLoad). We note that the polling related messages and swap related messages are not ac-
counted for in our analysis. These will be considered in the next section, where we present the
OptRand algorithm.

Fix any trigger pattern P . Let N denote the total number of coins that are generated (account-
ing for all the rounds). The number N is completely determined by the trigger pattern P (i.e.,
it is independent of any randomness used by the algorithm). In each round, exactly n coins are
generated and the number of rounds is at most log w. Thus, N ≤ n log w.

Let L denote the set of all leaf node positions. Each of the N generated coins gets initiated at
a random node from L (on successful polling). Let α = α1, α2, . . . , αN denote the sequence of leaf
node positions where the coins get initiated (where αi is the leaf node position where coin i gets
initiated). The sequence α is a random variable determined by the leaf polling process. The set of
all possibilities of α is given by Ω = L×L× · · · ×L, where L is repeated N times. Let us call each
element of Ω as an initiation configuration. The set Ω represents the sample space over which the
N coins get initiated. In other words, the leaf polling process can be simulated by simply picking
an initial configuration α uniformly at random from Ω.

Let us now consider the number of coin related messages exchanged, denoted M . The random
variable M is a function of the randomly picked initiation configuration α. (The value of M is
determined purely by α and the random swaps do not play a role in determining M). We will
invoke Markov’s inequality and show that for a significant fraction of the initiation configurations,
M = O(n log w).

Fix any ǫ > 0; this will represent our failure probability. For an initiation configuration α,
let M(α) denote the number of coin related messages exchanged. Corollary 3.2 shows that the
expected number of coin related messages exchanged is O(n log w). Meaning,

Eα∈Ω[M(α)] ≤ cn log w,

for some constant c. By Markov’s inequality, we have that

Pr
α∈Ω

[M(α) ≥ (1/ǫ)cn log w] ≤ ǫ.

Call an initiation configuration to be good, if M(α) ≤ (1/ǫ)cn log w. We have that (1 − ǫ) fraction
of the initiation configurations are good.

Fix any good initiation configuration α and consider the behavior of the SemiRand algorithm
when α is the initiation configuration. Let us number the N coins generated from 1 to N . Consider
the ith coin. After getting initiated at some leaf node, the coin passes through a fixed sequence
of nodes positions, before getting deposited at some node. In this process a sequence of coin
related messages are exchanged. Let τi denote the sequence of nodes that receive these coin related
messages Construct a sequence τ by concatenating the sequences for all the N coins; namely,
τ = τ1 ◦ τ2 ◦ . . . ◦ τN . Let K be the length of τ . The value K represents the number of coin
related messages exchanged (across all log w rounds), when α is the initiation configuration. Since,
α is a good initiation configuration, we have that K = O(n log w). Let Mx denote the number of
coin related messages received by a processor x and let Mmax denote the maximum of Mx over all
processors x.
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Figure 5: Relationship between the various Random Variables

Now we will relate the SemiRand algorithm to the extended ball game discussed in the previous
section. The node positions and the processors correspond to the seats and girls, respectively. We
will use K balls and τ will be the ball sequence. Thus, the balls correspond to the messages. Recall
that in the SemiRand algorithm after ∆ coin related messages are received on a node position, a
swap takes place. We will use this same parameter ∆ in the extended ball game.

Now, we invoke Theorem B.3, by setting t = 2∆. Recall our assumption that w ≥ n. Since,
K = O(n log w), we get that with probability at least (1 − 2/n) no processor (i.e., girl) receives
more than O(log w) coin related messages. This is true for any good initiation configuration. Recall
that at most ǫ fraction of the configurations are bad. We can now apply the union bound and get
that with probability at least (1 − ǫ − 2/n), no processor receives more than O(log w) coin related
messages. Thus, the failure probability is at most 2ǫ. The discussion is summarized by the following
result.

B.3 Proof of Theorem B.1 and B.2

We will first prove Theorem B.1. We will do this by directly counting the number of possibilities
that could lead to the event of interest.

Let R1, R2, . . . , RK be random variables that denote the girls chosen at random in the K rounds.
Let τ = b1, b2, . . . , bK be the ball sequence fixed by the adversary. Then, we have Yi = πi−1(bi).
The random variable πi is obtained from πi−1 by swapping the position of the girls Yi and Ri in
πi−1. The relationship between these variables is shown in Figure 5.

Define a function swap : Π×S×G → Π that captures the swapping process of the game. Given
a seating arrangement σ, a seat s and a girl g, we swap the positions of the girls g′ and g, where
g′ = σ(s) is the girl occupying the seat s under σ; the resulting seating arrangement σ̄ is the output
of swap(σ, s, g).

Claim B.4 Fix any seat s̄ ∈ S and any seating arrangement σ̄. There are exactly n good pairs
〈σ, g〉 satisfying: swap(σ, s̄, g) = σ̄.

Proof: Let g′ = σ̄(s̄). Imagine that we are trying to construct a good pair 〈σ, g〉 and we will count
the number of ways in which we can accomplish this task. In σ, we can make any one of the n girls
to sit in seat s̄. For 1 ≤ i ≤ n, consider the option of setting σ(s̄) = gi. In this case we must do the
following: (i) set g = g′; (ii) set σ(s′) = g′, where s′ is the seat occupied by gi in σ̄; (iii) omitting
s′ and s̄, for all the other seats, use the same seating arrangement as σ̄. See Figure 6. Notice that
the pair (σ, g) constructed above is a good pair and that this is the only way of constructing such
a pair, given that we have decided to set σ(s̄) = gi. We see that we can construct exactly n good
pairs. �

Claim B.5 Fix any seat s̄ ∈ S, any seating arrangement σ̄ and any girl ḡ. There exists exactly
one good pair 〈σ, g〉 satisfying: swap(σ, s̄, g) = σ̄ and σ(s̄) = ḡ.
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σ : - - - - gi - - g′ - - -
s̄ s′

σ̄ : - - - - g′ - - gi - - -
s̄ s′

Figure 6: Illustration for Claim B.4

σ : - - - - ḡ - - g′ - - -
s̄ s′

σ̄ : - - - - g′ - - ḡ - - -
s̄ s′

Figure 7: Illustration for Claim B.5

Proof: Let g′ = σ̄(s̄). Imagine that we are trying to construct a good pair 〈σ, g〉 and we will count
the number of ways in which we can accomplish this task. We must do the following: (i) set g = g′;
(ii) set σ(s̄) = ḡ; (iii) set σ(s′) = g′, where s′ is the seat occupied by ḡ in σ̄; (iv) omitting s′ and s̄,
for all the other seats, use the same seating arrangement as σ̄. See Figure 7. Notice the pair 〈σ, g〉
is a good pair and that this is the only way to construct a good pair. �

Now we show that each πi−1 is uniformly distributed.

Claim B.6 For any 0 ≤ i ≤ K − 1, the random variable πi is uniformly distributed; that is, for
any σ, Pr[πi = σ] = 1/n!.

Proof: The claim is proved by induction on i. The claim is trivially true for i = 0, since π0 is chosen
uniformly at random. Now, consider πi. By induction hypothesis πi−1 is uniformly distributed.
Recall that Ri is a random variable denoting the random girl chosen at round i. The pair 〈πi−1, Ri〉
has n×n! possibilities and each of these possibilities occur with the equal probability of 1/(n×n!).
By Claim B.4, of these possibilities, exactly n of them can lead to πi = σ. Thus,

Pr[πi = σ] =
n

n × n!
=

1

n!
.

�

It follows immediately that Y1, Y2, . . . YK are all uniformly distributed.

Claim B.7 For any 1 ≤ i ≤ K, the random variable Yi is uniformly distributed; that is, for any
girl g, Pr[Yi = g] = 1/n.

Proof: We get Yi = g, if πi−1(bi) = g. The random variable πi−1 has n! possibilities. Of these
possibilities, exactly (n − 1)! possibilities σ satisfy σ(bi) = g. By Claim B.6, πi−1 takes each of
these (n− 1)! possibilities with probability 1/n!. It follows that Pr[Yi = g] = (n − 1)!/n! = 1/n. �

Now we will prove an independence claim for πK−1.
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Claim B.8 The random variables πK−1 and Y1, Y2, . . . , YK−1 are mutually independent: fix any
σ̄ ∈ Π and a1, a2, . . . , aK−1 ∈ G. Then,

Pr

[

πK−1 = σ̄ and

∧K−1
i=1 (Yi = ai)

]

=
1

(n!)nK−1

Proof: Refer to Figure 5. Notice that the entire random process is driven by the choice of π0 and
R1, R2, . . . RK−1. The number of possibilities is (n!) × nK−1. Each of these possibilities is taken
with equal probability. Let us count the number of possibilities under which we can get πK−1 = σ̄
and Y1 = a1, Y2 = a2, . . . , YK = ak. Let σK−1 = σ̄. We will appeal to Claim B.5 repeatedly.
By the claim, there exists exactly one good pair 〈σ, g〉 such that swap(σ, bK−1, g) = σK−1 and
σ(bK−1) = aK−1. Let 〈σK−2, ḡK−1〉 = 〈σ, g〉. Thus, to get πK−1 = σK−1 and YK−1 = aK−1, we
must have πK−2 = σK−2 and RK−1 = ḡK−1. Thus, to get πK−1 = σK−1 and YK−1 = aK−1, there
is only one possibility for πK−2 and RK−1. Let us apply the claim and the same argument again.
We get that, to get πK−2 = σK−2 and YK−2 = aK−2, there is only one possibility for πK−3 and
RK−2. Continuing backwards, we conclude that there is only one possible way of setting π0 and
R1, R2, . . . , RK−1. The claim is proved. �

Claim B.9 The random variable Y1, Y2, . . . , YK are mutually independent. That is, for any a1, a2, . . . , aK ,

Pr[(Y1 = a1) ∧ · · · ∧ (YK = aK)] =
1

nK
.

Proof: Let Π′ denote the set of all seating arrangements σ such that σ(bK) = aK . The cardinality
of Π′ is exactly (n − 1)!. We get YK = aK , if πi−1 ∈ Π′. By Claim B.8, for each σ ∈ Π′, the
probability that πi−1 = σ and Y1 = a1, Y2 = a2, . . ., and YK−1 = aK−1 is 1/((n!)nK−1). Summing
up over all σ ∈ Π′, we get that

Pr[(Y1 = a1) ∧ · · · ∧ (YK = aK)] =
(n − 1)!

(n!)nK−1
=

1

nK
.

�

Theorem B.1 follows from Claims B.7 and B.9. We will now prove Theorem B.2. We will use
the following version of the Chernoff bound [11].

Theorem B.10 (see [11], Theorem 4.4) Let X1,X2, . . . ,XK be 0-1 independent random vari-
ables with Pr[Xi = 1] = pi and let X be their sum. Let µ = E[X] =

∑

i pi be the expectation of X.
Then, for any r ≥ 6,

Pr[X ≥ rµ] ≤ 2−rµ.

Moreover, for any µ′ ≥ µ, the inequality is true, if we replace µ by µ′ in both LHS and RHS.

We will now prove Theorem B.2. Fix any girl g ∈ G. Let Z1, Z2, . . . , ZK be 0-1 random variables
such that Zi = 1, if g gets the ith ball. By Theorem B.1, for any i, Pr[Zi = 1] = 1/n. Moreover,
the same theorem shows that these random variables are independent. Recall that Bg is a random
variable denoting the number of balls received by a girl g. Then, Bg is the sum of Z1, Z2, . . . , ZK .
Define µ = E[Bg] = K/n. Then, by the Chernoff bound (Theorem B.10), we have that

Pr[Bg ≥ t(K/n)] =≤ 2−
tK

n

Theorem B.2 is obtained by applying the union bound over all the girls. The “moreover” part of
the theorem can be derived by applying the Chernoff bound by setting the parameter r is a slightly
different manner.
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B.4 Proof of Theorem B.3

Let P and Q denote the number of golden and white balls in the ball sequence τ , respectively. So,
P +Q = K. Let S denote the number of swaps that happened in the game. For a girl g, let Pg and
Qg represent the number of golden and white balls received by g, respectively; let Bg = Ag + Bg

denote the total number of balls received by g. Our goal is derive an upperbound on Bg. When
a girl g receives a golden ball, she picks a girl g′ at random and the two swap positions. We say
that g initiates the swap and g′ receives the swap. For a girl g, let Sg denote the number of swaps
in which g participated; let S1

g and S2
g denote the number of swaps initiated and received by g,

respectively; so, Sg = S1
g + S2

g .
Consider a girl g. Notice that between any two swaps in which g participates, she receives at

most ∆ balls (golden and white balls together). Thus,

Bg ≤ (Sg + 1)∆. (4)

So, it suffices to derive an upperbound on Sg. We will derive upperbounds on S1
g and S2

g separately.
Consider any seat s and its occurences in the sequence τ . Notice that for every golden ball,

there are at least (∆− 1) white balls preceding it. Thus, Q ≥ (∆− 1)P . Since P + Q = K, we get
that

P ≤ K

∆
. (5)

Construct a sequence τ̄ by projecting only the golden balls in τ . Namely, scan through τ and
delete any white balls; the resulting sequence is denoted τ̄ . Length of τ̄ is P . Imagine playing
the basic ball game on the sequence τ̄ by performing swaps for every ball. Clearly, Theorem B.2
applies to this scenario. From the proof of the above theorem, we see that the random variable Pg

follows the binomial distribution with expectation µ = P/n. Applying Equation 5 and Chernoff
bound (Theorem B.10), we get that for any girl g

Pr

[

Pg ≥ tK

∆n

]

≤ 2−
tK

∆n

The girl g initiates a swap for every golden ball she receives and so S1
g = Pg. Thus, we get that for

any girl g,

Pr

[

S1
g ≥ tK

∆n

]

≤ 2−
tK

∆n (6)

A swap is initiated for every golden ball. Thus the number of swaps is S = P . For a girl g and
a particular swap, the probability that g is at the receiving end of the swap is 1/n. So, each girl is
expected to receive P/n swaps. By invoking the Chernoff bound (Theorem B.10) and Equation 5,
we derive that

Pr

[

S2
g ≥ tK

∆n

]

≤ 2−
tK

∆n (7)

Consider any girl g. Notice that Sg = S1
g + S2

g . So, Equations 6 and 7 imply that

Pr

[

Sg ≥ 2tK

∆n

]

≤ 2 × 2−
tK

∆n
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From the above inequality and Equation 4, we get that

Pr

[

Bg ≥ 2tK

n

]

≤ 2 × 2−
tK

∆n

Theorem B.3 can now be derived by appealing to the union bound. The “moreover” part of the
theorem can be derived by applying the Chernoff bound by setting the parameter r is a slightly
different manner.

C Analysis of OptRand: Proof of Theorem 1.1

We will classify the messages into a few categories and analyze each category separately. The
categories are as follows:

1. Leaf Polling Messages: This category contains only the LeafPoll message.

2. Main Messages: This category contains Coin message and the two source-send swap related
messages, namely SwapInfoS and Baton.

3. Destination-end Swap Messages: This category contains SwapInfoD and SwapRequest.

4. Miscellaneous Messages: This category contains SwapAccept, CoinAccept and CoinReject.

The reader can verify that we have accounted for all the different types of messages. The main
messages category includes the ones that increment the δ counter. The main messages category is
named so, because, in comparison to the other three categories, this one is harder to analyze.

Let M∗ be a random variable denoting the total number messages exchanged in the system.
Let ML, Mm, MD and MO be the random variables that denote that the number of leaf polling
messages, main messages, destination-end swap messages and miscellaneous messages exchanged in
the system, respectively. Thus, M∗ = ML+Mm+MD +MO. We will show that the expectation of
ML, Mm, MD and MO are all O(n log w). This would show that the expected message complexity
is O(n log w).

Let M∗

x denote the total number of messages received by a processor x. For a processor x,
let ML

x , Mm
x , MD

x , and MO
x denote the number of messages received by x, in each of the four

categories. Let ML
max, Mm

max, MD
max and MO

max denote the maximum over all processors x, the
number of messages received by x in the four categories.

We have that MaxLoad is the maximum of M∗

x , over all processors x. Notice that MaxLoad

is at most ML
max + Mm

max + MD
max + MO

max. We will analyze each category separately and derive
a bound for ML

max, Mm
max, MD

max and MO
max. We will show that with probability at least (1 − ǫ)

each of the above quantities is bounded by O((1/ǫ) log w). It would follows that MaxLoad has
the same property.

C.1 Leaf Polling Messages

The number of coins generated is N ≤ n log w. Consider the ith coin. During the leaf polling
process, the coin is passed through a sequence of processors, before it lands on a processor occupying
a leaf node position. Let us call passing the coin from one node to another node as a trial. Each
trial results in one LeafPoll message being sent. A trial is successful when the processor receiving

27



the coin is occupying a leaf node position. The number of leaf nodes L = (n+1)/2. The probability
that a trial is successful is p = (n + 1)/(2n) ≥ 1/2. Let Xi be a random variable denoting the
number of trials conducted for the ith coin. This random variable follows the geometric distribution
with success probability p ≥ 1/2.

Let P =
∑

i Xi be the total number of trials for all the N coins. The random variable P follows
the negative binomial distribution. The expectation of P is E[P ] = N/p ≤ 2N For each trial, a
Leaf Poll message is generated. So, ML = P and the result below follows.

Lemma C.1 E[ML] ≤ 2n log w.

We appeal to a known Chernoff-like bound for negative binomial distributions (see [12], Section
A.1.2) and derive the following result.

Pr[P ≥ 6n log w] ≤ 2−n log w ≤ 1/(2n). (8)

Consider the case where P ≤ 6n log w. In each of these P trials a randomly chosen processor
receives a LeafPoll message. Thus, we expect that each processor receives about P/n of these
messages. Appealing to the Chernoff bound (Theorem B.10) and the union bound, we get the
following claim:

Pr[ML
max ≥ 36 log w] ≤ n2−36 log w ≤ 1/(2n), (9)

provided P ≤ 6N . (To get the last inequality, recall our assumption that w ≥ n).
Combining Equations 8 and 9, we get the following lemma.

Lemma C.2 There exists a constant c such that

Pr[ML
max ≥ 36 log w] ≤ 1/n.

C.2 Container Game

Here, we describe a ball game (called the container game) and present its simple analysis. This
game is useful in analyzing the main messages category.

The game is driven two input-specified parameters ∆ and λ, with λ ≤ ∆/2. We have a container
with N balls. Th game proceeds in multiple iterations. In each iteration, we pick ∆ balls from
the container and drop them outside the container; then, we add λ new balls into the container.
The game stops when the number of balls in the container gets below ∆. Let N ′ denote the total
number of balls (those outside the container, plus the ones inside the container), when the game
ends. Our goal is to derive a bound on N ′ in terms of N and ∆.

Fix any ∆. Let B(N) denote the total number of balls at the end of the game, if we start with
N balls. We can write a recurrence relation for B(n). In a single iteration, we remove ∆ balls
from the container and add λ balls. So, the number of balls in the container after the iteration is
N − (∆ − λ). This later quantity is at most N − (∆/2), since we assumed λ ≤ ∆/2. On the other
hand, ∆ balls gets added outside the container (because, we drop outside, the ∆ balls removed
from the container). This leads to the following recurrence relation.

B(N) ≤ B[N − (∆/2)] + ∆.

The boundary condition is that B(N) = N , if N < ∆. We get the following proposition by solving
the recurrence relation.

Proposition C.3 B(N) ≤ 2N .
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C.3 Bounding the Number of Main Messages

Throughout this section, let us focus only on the main category messages. Of the three messages in
this category, let us isolate the Coin message. Let MC be the random variable denoting the number
of Coin messages exchanged. Corollary 3.2 shows that the expectation of MC is O(n log w).

Whenever a node u receives ∆ (or ∆+1 – see below) of the main category messages, it initiates
a swap. As a consequence, u sends and receives a few main category messages. Let us count
these: (i) u sends 3 SwapInfoS messages to its 3 neighbors; (ii) u sends 3 Baton messages to its 3
neighbors; (iii) u receives 3 Baton messages from its 3 neighbors (when the neighbors return the
baton to u). Thus, 9 main category messages are exchanged whenever u receives ∆ main category
messages. Let λ = 9.

The above process can be summarized as follows. The process starts with MC main category
messages (Coin messages) and for each ∆ of these messages, λ messages are generated. Now, let
us relate the above process to the container game. We start with MC messages (=balls). For
each ∆ messages, λ new messages get generated. (The old messages cannot lead to the generation
of any new messages; so, this is similar to dropping balls outside the container). Recall that we
set ∆ = 20 and so, λ ≤ ∆/2. By appealing to Proposition C.3, we see that the total number of
messages generated can be at most 2MC . Since, MC = O(n log w) we get the following lemma.

Lemma C.4 E[Mm] = O(n log w).

The case of ∆+1: A careful pass over the pseudocode reveals that under a particular peculiar
scenario, a node v may initiate a swap when its counter δv equals ∆ + 1, (instead initiating the
swap when δv equals ∆; this is the common scenario). To see this, suppose v has δv = ∆− 1. Now,
suppose a neighbor u initiates a swap. Then, u will send a SwapInfoS message to v. Upon receiving
the message v will increment δv ; so δv now equals ∆. But, v cannot initiate a swap, because it does
not possess the baton. It will wait for the baton. Eventually, u will send the baton via a Baton
message. Upon receiving this message, v will again increment δv; so δv now equals ∆ + 1. Having
the baton in hand, v can initiate a swap. Thus, v may initiate a swap when δv is ∆ + 1.

The above case is not of concern in Lemma C.4, because of the following reason. In the container
game, given a choice between ∆ and ∆ + 1, we will always choose to remove ∆ balls (instead of
∆ + 1 balls).

C.4 Bounding M
m
max

We will use an analysis similar to the one used for the SemiRand algorithm. We will invoke
Markov’s inequality and appeal to the extended ball game. However, in the current setup, a swap
may happen either when the δ counter reaches ∆ or ∆+1. In the ball game setting, this corresponds
to the scenario where the adversary who designed the ball sequence has the liberty to declare either
make the ∆th or (∆+1)th ball as golden. Towards this end, we first slightly generalize the extended
ball game.

Generalized Ball Game: This game is similar to the extended ball game and is driven by
a parameter ∆. The only difference is as follows. In the new game, the adversary is given the
liberty to mark either the ∆th or (∆ + 1)th ball as golden. Formally, consider a ball sequence
τ = b1, b2, . . . , bK fixed by an adversary. Consider any seat s ∈ S. The adversary can mark any
appearance of s as golden. However, the difference between the positions of two consecutive golden
balls (corresponding to s) must be either ∆ or ∆ + 1. (In the extended ball game, only the choice
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of ∆ was allowed). The rest of the game is not unchanged. Let Bmax denote the maximum number
of balls received by any girl. We get the following lemma by extending Theorem B.3,

Lemma C.5 Consider the generalized ball game. Fix any ball sequence τ = b1, b2, . . ., bK , any
∆ ≥ 1 and any t ≥ 6 Then,

Pr[Bmax ≥ 2t(K/n)] ≤ 2n2
−

tK

(∆+1)n .

Moreover, the above inequality is true, if we replace K on both LHS and RHS by any K ′ ≥ K.

The rest of the analysis is very similar to that of the SemiRand algorithm (Section B.2). The
only difference is that the analysis of the SemiRand algorithm appeals to the extended ball game
and Theorem B.3. Instead, here we make use of the generalized ball game and invoke Lemma C.5.
Using this approach, we can establish the following lemma.

Lemma C.6 There exists a constant c such that for any ǫ > 0,

Pr[Mm
max ≥ (1/ǫ)4c(1 + ∆) log w] ≤ 2ǫ.

C.5 Destination-end Swap Messages

By Lemma C.4, expectation of Mm is O(n log w). Whenever a node u receives ∆ main category
messages, it initiates a swap process. Thus, the number of swaps S is at most Mm/∆. Thus,
expectation of S is E[S] = O(n log w). For each such swap, u sends a SwapRequest to a random
node v. In the swap process, each of the three neighbors of v receive a SwapInfoD message. Thus, a
total of four destination-end swap messages are generated, per swap. We see that the total number
of destination-end swap messages is at most 4S. The below follows immediately.

Lemma C.7 E[MD] = O(n log w).

Fix an initiation configuration α. Observe that number of swaps S is purely determined by
the initiation configuration. Let S(α) denote the number of swaps performed, if α is used as the
initiation configuration. Recall that E[S] = O(n log w); namely, E[S] ≤ cn log w, for some constant
c. Applying the Markov’s inequality, we get that

Pr
α

[S(α) ≥ (1/ǫ)cn log w] ≤ ǫ. (10)

Denote λ = (1/ǫ)cn log w. Let us call an initiation configuration α to be good, if S(α) ≤ λ. Fix
a good configuration α. Then, at most λ swaps take place. Consider any swap. It is initiated by
some node u and received by some random node v. This process generates four destination-end
swap messages. A processor x receives one of these messages, if the node occupied by x is v or one
of the three neighbors of v. So, the probability that the processor x will receive a message is 4/n.
It follows that MD

x follows the binomial distribution with expectation µ = (4/n)λ ≤ (1/ǫ)4c log w.
We can now appeal to the Chernoff bound(Theorem B.10) and derive the following claim (setting
r = 6). For any processor x,

Pr[MD
x ≥ 24c log w] ≤ 2−24c log w
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Recall our assumption that w ≥ n. We get the following claim by applying the union bound over
all the n processors.

Pr[MD
max ≥ 24(1/ǫ)c log w] ≤ 1/n24c−1 ≤ 1/n,

provided α is a good configuration. Combining the above claim with Equation 10 gives us the
following result.

Lemma C.8 There exists a constant c such that for any ǫ > 0,

Pr[MD
max ≥ 24(1/ǫ)c log w] ≤ 1/n + ǫ ≤ 2ǫ.

C.6 Miscellaneous Messages

First consider, CoinAccept and CoinReject messages. For each Coin message exchanged, two of
these messages are generated. We know that E[Mm] = O(n log w) and number of Coin messages
is included in Mm. It follows that expected number of CoinAccept and CoinReject messages is
O(n log w). Now, consider the SwapRequest message. One such message is exchanged for each
swap. In the previous section, we saw that the number of expected swaps is O(n log w). Put
together the expected number of miscellaneous messages is O(n log w).

Lemma C.9 E[MO] = O(n log w).

Now, let us derive a bound on MO
max. Consider a processor x. For each CoinAccept and

CoinReject message received by x, it must also have received a Coin message. The Coin messages
received by x are accounted for in Mm

x . Similarly, for each SwapAccept message received by x, x
must have initiated a swap. The number of swaps initiated by x is at most Mm/∆. It follows that
MO

max ≤ 3Mm
x . Therefore, MO

max ≤ 3Mm
max. From Lemma C.6, we get the claim below.

Lemma C.10 There exists a constant c such that for any ǫ > 0,

Pr[MO
max ≥ (1/ǫ)12c(1 + ∆) log w] ≤ 2ǫ.

Remark: The analysis of PlainTree algorithm with swapping is very similar to the overall
analysis of the OptRand algorithm. It can be shown that with high probability, the MaxLoad

is O(log n).
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