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Abstract—The paper describes a technique to tolerate faults in
large data structures hosted on distributed servers, basedon the
concept of fused backups. The prevalent solution to this problem
is replication. To tolerate f crash faults (dead/unresponsive data
structures) amongn distinct data structures, replication requires
f + 1 replicas of each data structure, resulting innf additional
backups. We present a solution, referred to asfusion that uses a
combination of erasure codes and selective replication to tolerate
f crash faults using just f additional fused backups. We show
that our solution achievesO(n) savings in space over replication.
Further, we present a solution to tolerate f Byzantine faults
(malicious data structures), that requires onlynf + f backups as
compared to the2nf backups required by replication. We ensure
that the overhead for normal operation in fusion is only as much as
the overhead for replication. Though recovery is costly in fusion,
in a system with infrequent faults, the savings in space outweighs
the cost of recovery. We explore the theory of fused backups
and provide a library of such backups for all the data structures
in the Java Collection Framework. Our experimental evaluation
confirms that fused backups are space-efficient as compared to
replication (approximately n times), while they cause very little
overhead for updates. To illustrate the practical usefulness of
fusion, we use fused backups for reliability in Amazon’s highly
available key-value store, Dynamo. While the current replication-
based solution uses 300 backup structures, we present a solution
that only requires 120 backup structures. This results in savings
in space as well as other resources such as power.

Key Words: Distributed Systems, Fault Tolerance, Data
Structures.

I. I NTRODUCTION

Distributed systems are often modeled as a set of independent
servers interacting with clients through the use of messages.
To efficiently store and manipulate data, these servers typically
maintain large instances of data structures such as linked lists,
queues and hash tables. These servers are prone to faults in
which the data structures may crash, leading to a total loss
in state (crash faults [25]) or worse, they may behave in
an adversarial manner, reflecting any arbitrary state, sending
wrong conflicting messages to the client or other data structures
(Byzantine faults [11]).Active replication[10], [18], [26], [28],
[25] is the prevalent solution to this problem. To toleratef crash
faults amongn given data structures, replication maintains
f + 1 replicas of each data structure, resulting in a total of
nf backups. These replicas can also tolerate⌊f/2⌋ Byzantine

*This research was supported in part by the NSF Grants CNS-0718990,
CNS-0509024, Texas Education Board Grant 781, SRC Grant 2006-TJ-1426,
and Cullen Trust for Higher Education Endowed Professorship.

faults, since there is always a majority of correct copies
available for each data structure. A common example is a
set of lock servers that maintain and coordinate the use of
locks. Such a server maintains a list of pending requests in
the form of a queue. To tolerate three crash faults among, say
five independent lock servers each hosting a queue, replication
requires four replicas of each queue, resulting in a total of
fifteen backup queues. For large values ofn, this is expensive
in terms of the space required by the backups as well as power
and other resources to maintain the backup processes.

Coding theory[2], [12], [19] is used as a space-efficient
alternative to replication, both in the fields of communication
and data storage. Data that needs to be transmitted across a
channel is encoded using redundant bits that can correct errors
introduced by a noisy channel [27]. Applications of coding
theory in the storage domain include RAID disks [17], [5]
for persistent storage, network coding approaches for reducing
losses in multi-cast [14], [4] or information dispersal algorithms
(IDA) for fault tolerance in a set of data blocks [23]. In many
large scale systems, such as Amazon’sDynamokey-value store
[6], data is rarely maintained on disks due to their slow access
times. The active data structures in such systems are usually
maintained in main memory or RAM. In fact, a recent proposal
of ‘RAMClouds’ [16] suggests that online storage of data
must be held in a distributed RAM, to enable fast access. In
these cases, a direct application of coding-theoretic solutions,
that are oblivious to the structure of data that they encode,is
often wasteful. In the example of the lock servers, to tolerate
faults among the queues, a simple coding-theoretic solution
will encode the memory blocks occupied by the lock servers.
Since the lock server is rarely maintained contiguously in main
memory, a structure-oblivious solution will have to encodeall
memory blocks that are associated with the implementation of
this lock server in main memory. This is not space efficient,
since there could be a large number of such blocks in the form
of free lists and memory book keeping information. Also, every
small change to the memory map associated with this lock has
to be communicated to the backup, rendering it expensive in
terms of communication and computation.

In this paper, we present a technique referred to asfusion
which combines the best of both these worlds to achieve the
space efficiency of coding and the minimal update overhead of
replication. Given a set of data structures, we maintain a set
of fusedbackup data structures that can toleratef crash faults
among the given the data structures. In replication, the replicas
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Fig. 1. Fault Tolerant Stacks

for each data structure are identical to the given data structure.
In fusion, the backup copies are not identical to the given data
structures and hence, we make a distinction between the given
data structures, referred to asprimaries and the backup data
structures, referred to asbackups. Henceforth in this paper,
we assume that we are given a set of primary data structures
among which we need to tolerate faults. Replication requires
f additional copies of each primary (f + 1 replicas), resulting
in nf backups. Fusion only requiresf additional backups.

The fused backups maintain primary data in the coded form
to save space, while they replicate the index structure of each
primary to enable efficient updates. In Fig. 1, we show the fused
backup corresponding to two primary array-based stacksX1

andX2. The backup is implemented as a stack whose nodes
contain the sum of the values of the nodes in the primaries.
We replicate the index structure of the primaries (just the top
of stack pointers) at the fused stack. When an elementa3 is
pushed on toX1, this element is sent to the fused stack and
the value of the second node (counting from zero) is updated
to a3 + b3. In case of a pop toX2, of say b3, the second
node is updated toa3. These set of data structures can tolerate
one crash fault. For example, ifX1 crashes, the values of its
nodes can be computed by subtracting the values of the nodes
in X2 from the appropriate nodes ofF1. We observe that in
large practical systems, the size of data far exceeds the size of
the index structure. Hence replicating the index structureat the
fused backups is of insignificant size overhead. The savingsin
space is achieved by fusing the data nodes. Note that, unlike
direct coding theoretic solutions such as RAID, our solution
exploits the structure of data and is oblivious of the way these
data structures are stored in memory. This allows for efficient
updates.

In Fig. 1, to tolerate one crash fault amongX1 and X2,
replication requires a copy for bothX1 andX2, resulting in two
backups containing five data nodes in total as compared to the
fusion-based solution that requires just one backup containing
three data nodes. When a crash fault occurs, recovery in
replication just needs the state of the corresponding replica.
Fusion on the other hand, needs all available data structures to
decode the data nodes of the backups. This is the key trade-
off between replication and fusion. In systems with infrequent
faults, the cost of recovery is an acceptable compromise forthe
savings in space achieved by fusion.

In [15], we present a coding-theoretic solution to fault
tolerance in finite state machines. This approach is extended
for infinite state machines and optimized for Byzantine fault
tolerance in [8]. Our previous work on tolerating faults in data
structures [9] provides the algorithms to generate a singlefused
backup for array or list-based primaries, that can tolerateone

crash fault. In this paper, we present a generic design of fused
backups for most commonly used data structures such as stacks,
vectors, binary search trees, hash maps and hash tables. Using
erasure codes, we presentf -fault tolerant data structures that
toleratef crash faults using justf additional fused backups. In
the example shown in Fig. 1, we can maintain another fused
stackF2 that has identical structure toF1, but with nodes that
contain the difference in values of the primary elements rather
than the sum. These set of data structures can tolerate two crash
faults. We extend this for values off greater than two using
Reed Solomon (RS) erasure codes [24], which are widely used
to generate the optimal number of parity blocks in RAID-like
systems.

Further, we consider the case of Byzantine faults, where
the data structures can reflect arbitrary values, send conflicting
erroneous responses to the client and try to maliciously defeat
any protocol. Crash faults in a synchronous system, such as the
one assumed in our model, can easily be detected using time
outs. Detecting Byzantine faults is more challenging, since the
state of the data structures need to be inspected on every update
to ensure that there are no liars in the system. In this paper,
we present a solution to toleratef Byzantine faults amongn
primary data structures using justnf + f backup structures
as compared to the2nf backups required by replication. We
use a combination of replication and fusion to ensure minimal
overhead during normal operation.

In addition, we prove properties on our fused backups such
as space optimality, update optimality and order independence.
Givenn primaries, our approach achievesO(n) times savings
in space over both replication and [9]. The time complexity
of updates to our backups is identical to that for replication
andO(n) times faster than [9]. Similar to replication, we show
that the updates to the backups can be done with a high level
of concurrency. Further, we show that the updates to different
backups from distinct primaries can be received in any order,
thereby eliminating the need for synchronization at the backups.

In practical systems, sufficient servers may not be available
to host all the backup structures and hence, some of the
backups have to be distributed among the servers hosting the
primaries. These servers can crash, resulting in the loss of
all data structures residing on them. Consider a set ofn data
structures, each residing on a distinct server. We need to tolerate
f crash faults among the data structures given onlya additional
servers to host the backup structures. We present a solution
to this problem that requires⌈n/(n + a − f)⌉ · f backups
and show that this is the necessary and sufficient number of
backups for this problem. We also present a way to compare (or
order) sets of backups of the same size, based on the number
of primaries that they need to service. This is an important
parameter because the load on a backup is directly proportional
to the number of primaries it has to service. We show that our
partitioning algorithm generates a minimal set of backups.

To illustrate the practical usefulness of fusion, we apply our
design to Amazon’sDynamo[6], which is the highly available
data-store underlying many of the services exposed by Amazon
to the end-user. Examples include the service that maintains
shopping cart information or the one that maintains user state.
Dynamo achieves its twin goals of fault tolerance (durability)
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and fast response time for writes (availability) using a simple
replication-based approach. We propose an alternate design
using a combination of both fusion and replication, which
requires far less space, while providing almost the same levels
of durability, and availability for writes. In a typical host cluster,
where there are 100 dynamo hosts each hosting a data structure,
the current replication-based approach requires300 backup
structures. Our approach, on the other hand, requires only120
backup structures. This translates to significant savings in both
the space occupied by the backups as well as the infrastructure
costs such as power and resources required by the processes
running these backups.

We provide a Java implementation of fused backups [1] using
RS codes for all the data structures in the Java Collection
Framework. Our experiments indicate that the current version
of fusion is very space efficient as compared to both replication
(approximatelyn times) and the older version (approximately
n/2 times). The time taken to update the backups is almost
as much as replication (approximately 1.5 times slower) while
it is much better than the older version (approximately 2.5
times faster). Recovery is extremely cheap in replication but
the current version of fusion performs approximatelyn/2 times
better than the older version. Though recovery is costly in
fusion as compared to replication, in absolute terms, it is still
low enough to be practical (order of milliseconds). In the
following section, we describe the system model of this paper.

II. M ODEL AND NOTATION

Our system consists of independent distributed servers host-
ing data structures. We denote then given data structures, also
referred to as primaries,X1 . . .Xn. The backup data structures
that are generated based on our idea of fusing primary data
are referred to asfused backupsor fused data structures. The
operator used to combine primary data is called thefusion
operator. The number of fused backups,t, depends on the
fusion operator and the number of faults that need to be
tolerated. The fused backups are denotedF1 . . . Ft. In Fig. 1,
X1, X2 are the primaries,F1 is the fused backup and the fusion
operator is addition.

The data structures are modeled as a set of data nodes and
an index structure that specifies order information about these
data nodes. For example, the index structure for a linked list
includes the head, tail and next pointers. We assume that the
size of data in the data structure far exceeds the size of its index
structure. The data structures in our system have astateas well
as anoutputassociated with them. The state of a data structure
is a snapshot of the values in the data nodes and the index
structure. The output is the value visible to the external world
or client. On application of an event/update the data structure
transitions from one state to another and changes its output
value. For example, the state associated with a linked list is
the value of its nodes, next pointers, tail and head pointers.
When we insert data into a linked list with a certain key, the
value of the nodes and pointers change (state) and it responds
with either success or failure (output).

The updates to the data structures in our system originate
from a set of clients. For convenience, we assume a single
client that sends updates to the various data structures andacts

on the responses/output received from them. When an update is
sent to a primary data structure, the primary first updates itself
and then sends sufficient information to update the backups.
We assume FIFO communication channels that are reliable and
have a strict upper bound on time for all message delivery i.e.,
a synchronous system.

Faults among the data structures, both primaries and backups,
can be of two types:crash faults (also referred to asfail-
stop faults) andByzantinefaults. In the case of crash faults,
the data structure crashes and stops responding to the client,
leading to a complete loss in state. For Byzantine faults, the data
structure can assume arbitrary values for its state, send wrong
responses to the client/other data structures and in general
behave maliciously to defeat any protocol. However, the data
structure cannot fake its identity. In most of the literature
on replication-based fault tolerance in distributed systems, the
backup copies are said to ‘mask’ or ‘tolerate’ faults. However,
for fusion, we need to decode the values and correct the
faults in the system. Henceforth, for convenience, we say that
backups (for both replication and fusion) ‘correct’ faultsamong
primaries.

Detection and correction of faults in our system is performed
by the fault-free client. Since we assume a synchronous system,
crash faults are detected using timeouts. If a data structure does
not respond to an update sent by the client within a fixed time
period, it is assumed to have crashed. We present algorithms
for the detection of Byzantine faults. When a fault occurs, no
updates are sent by the client until the state of all the failed data
structures have been recovered. For recovery, the client acquires
the state of the requisite data structures after they have acted
on all updates before the fault occurred, and then recovers the
state of the failed structures. Henceforth, when we simply say
faults, we refer to crash faults. The design of the fused data
structures are independent of the fault model and for simplicity
we explain the design assuming only crash faults.

III. F USION-BASED FAULT TOLERANT DATA STRUCTURES
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Fig. 2. Old Fusion [9]

Design Motivation: In [9], the authors present a design to
fuse array and list-based primaries that can correct one crash
fault. We highlight the main drawback of their approach for
linked lists. The fused structure for linked list primariesin
[9] is a linked list whose nodes contain thexor (or sum) of
the primary values. Each node contains a bit array of sizen
with each bit indicating the presence of a primary element in
that node. A primary element inserted in the correct position
at the backup by iterating through the fused nodes using the
bit array and a similar operation is performed for deletes. An
example is shown in Fig. 2 with two primaries and one backup.
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After the delete of primary elementsa1 and b3, the first and
third nodes of the fused backupF1 are updated tob1 anda3
respectively (deleted elements in grey scale). After the deletes,
while the primaries each contain only two nodes, the fused
backup contains three nodes. If there are a series of insertsto
the head ofX1 and to the tail ofX2 following this, the number
of nodes in the fused backup will be very high. This brings us
to the main design motivation of this section: Can we providea
generic design of fused backups, for all types of data structures
such that the fused backup contains only as many nodes as
the largest primary, while guaranteeing efficient updates?We
present a solution for linked lists and then generalize it for
complex data structures.

A. Fused Backups for Linked Lists

We use a combination of replication and erasure codes
to implement fused backups each of which are identical in
structure and differ only in the values of the data nodes. In
our design of the fused backup, we maintain a stack of nodes,
referred to asfused nodesthat contains the data elements of
the primaries in the coded form. The fused nodes at the same
position across the backups contain the same primary elements
and correspond to the code words of those elements. Fig. 3
shows two primary sorted linked listsX1 and X2 and two
fused backupsF1 andF2 that can correct two faults among the
primaries. The fused node in the0th position at the backups
contain the elementsa1 andb1 with F1 holding their sum and
F2 their difference. At each fused backup, we also maintain
index structures that replicate the ordering information of the
primaries. The index structure corresponding to primaryXi is
identical in structure toXi, but whileXi consists of data nodes,
the index structure only contains pointers to the fused nodes.
The savings in space are achieved because primary nodes are
being fused, while updates are efficient since we maintain the
index structure of each primary at the backup.

Overview: We begin with a high-level description on how
we restrict the number of nodes in the backup stack. At each
backup, elements of primaryXi are simply inserted one on
top of the other in the stack with a corresponding update to the
index structure to preserve the actual ordering information. The
case of deletes is more complex. If we just delete the element
at the backup, then similar to Fig. 2, a ‘hole’ is created and the
fused backups can grow very large. In our solution, we shift
the top-most element ofXi in the backup stack, to plug this
hole. This ensures that the stack never contains more nodes
than the largest primary. Since the top-most element is present
in the fused form, the primary has to send this value with every
delete to enable this shift. To know which element to send with
every delete, the primary has to track the order of its elements at
the backup stack. We achieve this by maintaining an auxiliary
list at the primary, which mimics the operations of the backup
stack. When an element is inserted into the primary, we insert a
pointer to this element at the end of its auxiliary list. Whenan
element is deleted from the primary, we delete the element in
the auxiliary list that contains a pointer to this element and shift
the final auxiliary element to this position. Hence, the primary
knows exactly which element to send with every delete. Fig. 3

illustrates these operations with an example. We explain them
in greater detail in the following paragraphs.

Inserts: Fig. 4 shows the algorithms for the insert of a key-
value pair at the primaries and the backups. When the client
sends an insert to a primaryXi, if the key is not already present,
Xi creates a new node containing this key-value, inserts it
into the primary linked list (denotedprimaryLinkedList)
and inserts a pointer to this node at the end of the aux list
(auxList). The primary sends the key, the new value to be
added and the old value associated with the key to all the fused
backups. Each fused backup maintains a stack (dataStack) that
contains the primary elements in the coded form. On receiving
the insert fromXi, if the key is not already present, the backup
updates the code value of the fused node following the one
contains the top-most element ofXi (pointed to bytos[i]).
If a new fused node is created, then the top-of-stack pointer
(dataStackTos) of the data stack is incremented. Further
to maintain order information, the backup inserts a pointer
to the newly updated fused node, into the index structure
(indexList[i]) for Xi with the key received. A reference count
(refCount) tracking the number of elements in the fused node
is maintained to enable efficient deletes.

Fig. 3(ii) shows the state ofX1 andF1 after the insert of
(3, a∗1). We assume that the keys are sorted in this linked list
and hence the key-value pair(3, a∗

1
) is inserted at index 1 of

the primary linked list and a pointer toa∗
1

is inserted at the
end of the aux list. AtF1, the value of the second node (nodes
numbered from zero) is updated toa∗

1
+ b3 and a pointer to

this node is inserted at index 1 ofindexList[1]. The identical
operation is performed atF2 (not shown in the figure due
to space constraints), with the only difference being that the
second fused node is updated toa∗1 − b3. Observe that the aux
list atX1 specifies the exact order of elements maintained at the
backup stack (a1 → a2 → a∗

1
). Analogously,indexList[1] at

the fused backup points to the fused nodes that contain elements
of X1 in the correct order (a1 → a∗

1
→ a2).

Delete: Fig. 5 shows the algorithms for the delete of a key at
the primaries and the backups.Xi deletes the node associated
with the key from the primary and obtains its value which needs
to be sent to the backups. Along with this value and the key
k, the primary also sends the value of the element pointed by
the tail node of the aux list. This corresponds to the top-most
element ofXi at the backup stack and is hence required for
the shift operation that will be performed at the backup. After
sending these values, the primary shifts the final node of the
aux list to the position of the aux node pointing to the deleted
element, to mimic the shift of the final element at the backup.

At the backup, sinceindexList[i] preserves the exact order
information of Xi, by a simple double dereference, we can
obtain the fused nodep that contains the element ofXi

associated withk. The value ofp is updated with the top-
most element (sent by the primary astos) to simulate the shift.
The pointers ofindexList[i] are updated to reflect this shift.
Figure 3(iii) shows the state ofX1 andF1 after the delete of
b1. The key facts to note are:(i) at F1, b3 has been shifted
from the end to the0th node (ii) the aux list atX2 reflects
the correct order of its elements at the backup stack (b3 → b2)
and (iii) indexList[2] reflects the correct order of elements
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Insert at PrimariesXi :: i = 1..n
Input : key k, data valued;
if (primaryLinkedList · contains(k))

/* key present, just update its value*/
old = primaryLinkedList · get(k) · value
primaryLinkedList · update(k, d);
send(k, d, old) to all fused backups;

else
/* key not present, create new node*/
primNodep = new primNode;
p · value = d;
auxNodea = new auxNode;
a · primNode = p;
p · auxNode = a;
/* mimic backup stack */
auxList.insertAtEnd(a);
primaryLinkedList · insert(k, p);
send(k, d, null) to all fused backups;

Insert at Fused BackupsFj :: j = 1..t
Input : key k, new valuedi, old valueoldi;
if (indexList[i] · contains(k))

fusedNodef = indexList[i] · get(k);
f · updateCode(oldi, di);

else
fusedNodep = tos[i] + +;
if (p == null)

p = new fusedNode;
dataStack · insert(p);
dataStackTos++;

p · updateCode(0, di);
p · refCount++;
/* mimic primary linked list */
indexNodea = new indexNode;
a · fusedNode = p;
p · indexNode[i] = a;
indexList[i] · insert(k, a);

Fig. 4. Fused Backups for Linked Lists: Inserts

at X2 (b2 → b3). Note that, the space and time overhead of
maintaining the auxiliary list at the primary is negligible. In
Appendix A, we extend this design to complex data structures
such as maps, trees and hash tables.

So far, we have used simple sum-difference as the fusion
operator, that can correct two crash faults using two backups. In
Appendix B, we generalize this and present the Reed Solomon
(RS) erasure codes that can be used as a fusion operator to
correctf crash faults among the primaries usingf backups.
For simplicity, we first describe the classical VandermondeRS
codes to explain the basic operations of encoding and decoding.
Later, we describe the best known implementation of RS codes
called the Cauchy RS codes [3], [22].

B. Correcting Crash Faults

To correct crash faults, the client needs to accquire the
state of all the available data structures, both primaries and

backups. As seen in Section III, the fused node at the same
position at all the fused backups are the codewords for the
primary elements belonging to these nodes. To obtain the
missing primary elements belonging to this node, we decode
the code words of these nodes along with the data values of
the available primary elements belonging to this node. The
decoding algorithm depends on the erasure code used. In Fig.
3(i), to recover the state of the failed primaries, we obtainthe
stateF1 andF2 and iterate through their nodes. The0th fused
node ofF1 contains the valuea1 + b1, while the0th node of
F2 contains the valuea1 − b1. Using these, we can obtain the
values ofa1 and b1. The value of all the primary nodes can
be obtained this way and their order can be obtained using
the index structure at each backup. In Appendix A, we show
that the time complexity of recovery using RS codes as the
fusion operator isO(nmst2), given n primaries withO(m)
nodes ofO(s) size each, witht actual crash faults among them
(t ≤ f). Recovery is much cheaper in replication and has time
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Delete at PrimariesXi :: i = 1..n
Input : key k;
p = primaryLinkedList · delete(k);
old = p · value;
/* tail node of aux list points to top-most

element ofXi at backup stack */
auxNodeauxTail = auxList · getTail();
tos = auxTail · primNode · value;
send(k, old, tos) to all fused backups;
auxNodea = p · auxNode;
/* shift tail of aux list to replacea */
(a · prev) · next = auxTail;
auxTail · next = a · next;
delete a;

Delete at Fused BackupsFj :: j = 1..t
Input : key k, old valueoldi, end valuetosi;
/* update fused node containingoldi

with primary element ofXi at tos[i]*/
indexNodea = indexList[i] · delete(k);
fusedNodep = a · fusedNode;
p · updateCode(oldi, tosi);
tos[i] · updateCode(tosi, 0);
tos[i] · refCount−−;
/* update index node pointing totos[i] */
tos[i] · indexNode[i] · fusedNode = p;
if (tos[i].refCount == 0)

dataStackTos−−;
tos[i]−−;

Fig. 5. Fused Backups for Linked Lists: Deletes

complexityO(mst).

IV. T HEORY OFFUSED DATA STRUCTURES

In this section we prove properties on the fused backups
such as size optimality, update optimality and update order
independence, all of which are important considerations when
implementing a system using these backups. These properties
ensure that the overhead in space and time caused due to these
backups is minimal. The results in this section apply for all
types of primaries and are independent of the fusion operator
used. The only assumption we make is that the codes can be
updated locally in constant time (like updates in RS codes).

A. Space Optimality

Considern primaries, each containingO(m) nodes, each of
size O(s). In [9], to correct one crash fault, the backup for
linked lists and list-based queues consumesO(nms) space,
which is as bad as replication. We show that the fused backups
presented in this paper require onlyO(ms) space. Further,
to correct f faults, we show that the fused backups need
only O(msf) space. Replication, on the other hand requires
O(mnsf) space, which isO(n) times more than fusion. To
correctf crash faults, we use RS codes that requiref fused
backups, which is the minimum number of backups required for
f faults. For example, in Fig. 3, the number of fused nodes in
F1 or F2 is always equal to the number of nodes in the largest
primary. The optimal size of the data stack in our backups
combined with RS codes as the fusion operator, leads to the
result that our solution is space optimal when the data across
the primaries is uncorrelated.

Theorem 1 (Space Optimality):The fused backups gener-
ated by our design using RS codes as the fusion operator are
of optimal size.

Proof: We first show that the data stack of each backup
contains onlym fused nodes. Ahole is defined as a fused node
that does not contain an element from a primary followed by a
fused node that contains an element from that primary. When
there are no holes in the data stack, each primary element is
stacked one on top of the other and the stack contains onlym
nodes i.e as many nodes as the largest primary. We maintain
the invariant that our data stack never has holes.

In inserts toXi, we always update the fused node on top of
the last fused node containing an element fromXi. Hence, no
hole is created. For deletes, when a hole is created, we shift
the final element of the primary, pointed bytos[i] to plug this
hole If the size of each node isO(s), then the backup space
required by our solution to correctf crash faults isO(msf).

Now, f crash faults among the primaries will result in the
failure of at leastf data nodes, each of sizeO(s). To correctf
crash faults among them, any solution needs to maintain at least
f backup nodes each of sizeO(s). Since the data structures
each containO(m) nodes, to correctf crash faults among
them, any solution needs to maintainf backups containing each
containingO(ms) space. Hence the minimum space required
is O(msf).

B. Efficient Updates

We define update optimality as follows: the time complexity
of updates at any fused backup for all operations is the same
as that of the corresponding update to the primary. In [9], to
update the backup for linked lists, we need to iterate through
all the fused nodes. Since the number of fused nodes in the
backup isO(nm), the time complexity of updates isO(nm),
while the time complexity for the update at the primary is only
O(m). Hence, it is not update optimal. We show that the fused
backups presented in this paper are update optimal for all types
of primaries. Hence, fusion causes has same minimal overhead
during normal operation as replication.

Theorem 2 (Update Optimality):The time complexity of
the updates to a fused backup is of the same order as that
at the primary.

Proof: In the case of inserts, we obtain the node following
the top most element ofXi in the data stack and update it in
constant time. The update to the index structure consists ofan
insert of an element with keyk, which is the identical operation
at the primary. Similarly, for deletes, we first remove the node
with key k from the index structure, an operation that was
executed on the data structure of the same type at the primary.
Hence, it takes as much time as that at the primary. Shifting
the final element of this primary to the fused node that contains
the deleted element is done in constant time.

This argument for inserts and deletes extends to more
complex operations: any operation performed on the primary
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will also be performed on the index structure at the backup.
Updating the data nodes of the stack takes constant time.

Since the primaries are independent of each other, in many
cases the updates to the backup can be to different fused
nodes. In the following theorem, we show that multiple threads
belonging to different primaries can updated the fused backups
by locking just a constant number of nodes. Hence, fusion can
achieve considerable speed-up.

Theorem 3 (Concurrent Updates):There exists an algo-
rithm for multiple threads belonging to different primaries to
update a fused backup concurrently by locking just a constant
number of nodes.

Proof: We modify the algorithms in Fig. 4 and 5 to enable
concurrent updates. We assume the presence of fine grained
locks that can lock just the fused nodes and if required a fused
node along with thedataStackTos. Since updates from the
same primary are never applied concurrently, we don’t need to
lock the index structure.

Inserts: If the insert to the fused backup has to create a new
fused node, then the updating thread has to lockdataStackTos
and the fused node pointed by this pointer using a single lock,
insert and update a new fused node, incrementdataStackTos
and then release this combined lock. If the insert fromXi does
not have to create a new node it only has to lock the fused node
pointed bytos[i], update the node’s code value and release the
lock. When the primaries are of different sizes, then the insert
to the backups never occurs to the same fused node and hence
are fully concurrent.

Deletes: The updating thread has to obtain the fused node
containing the element to be deleted, lock it, update its value
and release it. Then it has to lock the node pointed bytos[i],
update its value and release the lock. Similar to the case of
inserts, when the delete causes a node of the stack to be deleted,
the thread needs to lock thedataStackTos as well as the node
pointed by this pointer in one lock, delete the node, update the
pointer and then release the combined lock.

C. Order Independence

In the absence of any synchronization at the backups, updates
from different primaries can be received in any order at the
backups. The assumption of FIFO communication channels
only guarantees that the updates from thesame primarywill
be received by all the backups in the same order. A direct
extension of the solution in [9] for multiple faults can result
in a state from which recovery is impossible. For example, in
Fig. 3,F1 may receive the insert toX1 followed by the delete
to X2 while F2 may receive the delete update followed by the
insert. To achieve recovery, it is important that the fused nodes
at the same position at different fused backups contain the same
primary elements (in different coded forms). In Fig. 3(i), if the
0th node ofF1 containsa1 + b1, while the 0th node ofF2

containsa2 − b1, then we cannot recover the primary elements
whenX1 andX2 fail.

We show that in the current design of fused backups, the
nodes in the same position across the fused backups always
contain the same primary elements independent of the order in
which the updates are received at the backups. Also, the index

structures at the backups are also independent of the order in
which the updates are received. Consider the updates shown in
Fig. 3. The updates to the index lists commute since they are to
different lists. As far as updates to the stack are concerned, the
update fromX1 depends only on the last fused node containing
an element fromX1 and is independent of the update fromX2

which does not change the order of elements ofX1 at the fused
backup. Similarly the update fromX2 is to the first and third
nodes of the stack immaterial of whethera∗

1
has been inserted.

Theorem 4 (Order Independence):The state of the fused
backups after a set of updates is independent of the order in
which the updates are received, as long as updates from the
same primary are received in FIFO order.

Proof: Clearly, updates to the index structure commute.
As far as updates to the stack are concerned, the proof follows
from two facts about our design. First, updates on the backup
for a certain primary do not affect the order of elements of the
other primaries at the backup. Second, the state of the backup
after an update from a primary depends only on the order of
elements of that primary. The same argument extends to other
complex operations that only affect the index structure.

D. Fault Tolerance with Limited Backup Servers

So far we have implicitly assumed that the primary and
backup structures reside on independent servers for the fusion-
based solution. In many practical scenarios, the number of
servers available maybe less than the number of fused backups.
In these cases, some of the backups have to be distributed
among the servers hosting the primaries. Consider a set ofn
data structures, each residing on a distinct server. We needto
correctf crash faults among the data structures given onlya
additional servers to host the backup structures. We present a
solution to this problem that requires⌈n/(n+a−f)⌉·f backups
and show that this is the necessary and sufficient number of
backups for this problem. Further, we present an algorithm for
generating the optimal number of backups.

To simplify our discussion, we start with the assumption
thatno additional servers are available for hosting the backups.
As some of the servers host more than one backup structure,
f faults among the servers, results in more thanf faults
among the data structures. Hence, a direct fusion-based solution
cannot be applied to this problem. Given a set of five pri-
maries,{X1 . . .X5}, each residing on a distinct server labelled,
{H1 . . . H5}, consider the problem of correcting three crash
faults among the servers (n = 5, f = 3). In a direct fusion-
based solution, we will just generate three backupsF1, F2,
F3, and distribute them among any three servers, say,H1, H2

and H3 respectively. Crash faults among these three servers
will result in the crash of six data structures, whereas these set
of backups can only correct three crash faults. We solve this
problem by partitioning the set of primaries and generating
backups for each individual block.

In this example, we can partition the primaries into three
blocks [X1, X2], [X3, X4] and [X5] and generate three fused
backups for each block of primaries. Henceforth, we denote
the backup obtained by fusing the primariesXi1 , Xi2 , . . .,
by Fj(i1, i2, . . .). For example, the backups for[X1, X2] are
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denoted asF1(1, 2) . . . F3(1, 2). Consider the following distri-
bution of backups among hosts:

H1 = [X1, F1(3, 4), F1(5)], H2 = [X2, F2(3, 4), F2(5)]

H3 = [X3, F1(1, 2), F3(5)], H4 = [X4, F2(1, 2)]

H5 = [X5, F3(1, 2), F3(3, 4)]

Note that, the backups for any block of primaries, do not
reside on any of the servers hosting the primaries in that
block. Three server faults will result in at most three faults
among the primaries belonging to any single block and its
backups. Since the fused backups of any block correct three
faults among the data structures in a block, this partitioning
scheme can correct three server faults. For example, assume
crash faults in the serversH2, H4 and H5. We can recover
the state ofX2, F2(1, 2) andF3(1, 2) using the state ofX1

on serverH1, and the state ofF1(1, 2) on serverH3, since
{X1, X2, F1(1, 2), F2(1, 2), F3(1, 2)} can correct three crash
faults. Here, each block of primaries requires at least three
distinct servers (other than those hosting them) to host their
backups. Hence, forn = 5, the size of any block in this
partition cannot exceedn − f = 2. Based on this idea, we
present an algorithm to correctf faults among the servers.

(Partitioning Algorithm): Partition the set of primariesX as
evenly possible into⌈n/(n− f)⌉ blocks, generate thef fused
backups for each such block and place them on distinct servers
not hosting the primaries in that block.

The number of blocks generated by the partitioning algorithm
is ⌈n/(n − f)⌉ and hence, the number of backup structures
required is⌈n/(n − f)⌉ · f . Replication, on the other hand
requiresn ·f backup structures which is always greater than or
equal to⌈n/(n−f)⌉·f . We show that⌈n/(n−f)⌉·f is a tight
bound for the number of backup structures required to correct f
faults among the servers. For the example wheren = 5, f = 3,
the partitioning algorithm requires nine backups. Consider a
solution with eight backups. In any distribution of the backups
among the servers, the three servers with the maximum number
of data structures will host nine data structures in total. For
example, if the backups are distributed as evenly as possible,
the three servers hosting the maximum number of backups will
each host two backups and a primary. Failure of these servers
will result in the failure of nine data structures. Using just
eight backups, we cannot correct nine faults among the data
structures. We generalize this result in the following theorem.

Theorem 5:Given a set ofn data structures, each residing
on a distinct server, to correctf crash faults among the servers,
it is necessary and sufficient to add⌈n/(n+a− f)⌉ ·f backup
structures, when there are onlya additional servers available
to host the backup structures.

Proof:
(Sufficiency):
We modify the partitioning algorithm fora additional servers

simply by partitioning the primaries into⌈n/(n+a−f)⌉ blocks
rather than⌈n/(n−f)⌉ blocks. Since the maximum number of
primaries in any block of the partitioning algorithm isn+a−f ,
there are at leastf distinct servers (not hosting the primaries
in the block) available to host thef fused backups of any
block of primaries. So, the fused backups can be distributed

among the host servers such thatf server faults only lead tof
faults among the backups and primaries corresponding to each
block. Hence the fused backups generated by the partitioning
algorithm can correctf server faults.

(Necessity):
Suppose there is a scheme witht backups such that

t < ⌈n/(n + a − f)⌉ · f . In any distribution of the backups
among the servers, choosef servers with the largest number
of backups. We claim that the total number of backups in
thesef servers is strictly greater thant − f . Failure of these
servers, will result in more thant− f + f faults (adding faults
of f primary structures). This would be impossible to correct
with t backups. We know that,
t < ⌈n/(n+ a− f)⌉ · f
⇒ t < ⌈1 + f/(n+ a− f)⌉ · f
⇒ (t− f) < ⌈f/(n+ a− f)⌉ · f
⇒ (t− f)/f < ⌈f/(n+ a− f)⌉

If the f servers with the largest number of backups have less
than or equal tot− f backups in all, then the server with the
smallest number of backups among them will have less than
the average number of backups which is(t− f)/f .

Since the remainingn+a−f servers have more than or equal
to f backups, the server with the largest number of backups
among them will have as many or greater than the average
number of backups which is⌈f/(n+ a− f)⌉.

Since,(t− f)/f < ⌈f/(n+ a− f)⌉, we get a contradiction
that the smallest among thef servers hosting the largest number
of backups, hosts less number of backups than the largest
among the remainingn− f servers.

1) Minimality: In this section we define a partial order
among equal sized sets of backups and prove that the parti-
tioning algorithm generates aminimal set of backups.

Given a set of four data structures,{X1 . . . X4}, each re-
siding on a distinct server, consider the problem of correcting
two faults among the servers, with no additional backup servers
(n = 4, f = 2, a = 0). Since,⌈n/(n + a − f)⌉ = 2, the
partitioning algorithm will partition the set of primariesinto
two blocks, say[X1, X2] and[X3, X4] and generate four fused
backups,F1(1, 2), F2(1, 2) andF1(3, 4), F2(3, 4). An alternate
solution to the problem is to fuse the entire set of primaries
to generate four fused backups,F1(1, 2, 3, 4) . . . F4(1, 2, 3, 4).
Here,F1(1, 2) is obtained by fusing the primariesX1 andX2,
whereasF1(1, 2, 3, 4) is obtained by fusing all four primaries.
In the latter case, maintenance is more expensive, since the
backups need to receive and act on updates corresponding to
all the primaries, whereas in the former, each backup receives
inputs corresponding to just two primaries. Based on this idea,
we define an order among backups. Given a set ofn data
structures,X , consider backupsF andF ′, obtained by fusing
together a set of primaries,M ⊆ X andN ⊆ X respectively.F
is less thanF ′ (F < F ′) if M ( N . In the example discussed,
F1(1, 2) < F1(1, 2, 3, 4), as {X1, X2} ( {X1, X2, X3, X4}.
We extend this to define an order among sets of backups that
correctf faults among the servers.

Definition 1: (Order among Sets of Backups) Given a set of
n data structures, each residing on a distinct server, consider
two sets oft backups,Y andY ′ that correctf faults among
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the servers.Y is less thanY ′, denotedY < Y ′, if the backups
in Y can be ordered as{F1, ..Ft} and the backups isY ′ can be
ordered as{F ′

1, ..F
′

t} such that(∀1 ≤ i ≤ t : Fi ≤ F ′

i ) ∧ (∃j :
Fj < F ′

j).
A set of backupsY is minimal if there exists no set of backups
Y ′ such thatY ′ < Y .

In the example forn = 4, f = 2, the set of backups,
Y = {F1(1, 2), F2(1, 2), F1(3, 4), F2(3, 4)}, generated by the
partitioning algorithm is clearly less than the set of backups,
Y ′ = {F1(1, 2, 3, 4) . . . F4(1, 2, 3, 4)}. We show that the parti-
tioning algorithm generates a minimal set of backups.

Theorem 6:Given a set ofn data structures, each residing
on a distinct server, to correctf faults among the servers, the
partitioning algorithm generates a minimal set of backups.

Proof: When a backupF is generated by fusing together
a set of primaries, we say that each primary in the setappears
in the backup. Given a set of backups that can toleratef faults
among the servers, each primary has to appear at leastf times
across all the backups. The partitioning algorithm generates
a set of backupsYp, in which each primary appears exactlyf
times. Any other solution in which the primaries appear exactly
f times will be incomparable toYp.

V. DETECTION AND CORRECTION OFBYZANTINE FAULTS

So far, in this paper, we have only assumed crash faults.
We now discuss Byzantine faults where any data structure may
change its state arbitrarily, send wrong conflicting messages
to the client/other data structures and in general attempt to
foil any protocol. However, we assume that the data structures
cannot fake their identity. To correctf Byzantine faults among
n primaries pure replication requires2f additional copies of
each primary, which ensures that a non-faulty majority off+1
copies are always available. Hence, the correct state of thedata
structure can easily be ascertained. This approach requires 2nf
backup data structures in total. Recovery in replication reduces
to finding the state witht+ 1 votes among the2f + 1 copies
of each primary, wheret is the actual number of faults. Since
this majority can be found by inspecting at most 2t+1 copies
among the primaries, recovery has time complexityO(mst),
wherem is the number of nodes in each data structure ands
is the size of each data structure.

In this section, we present a hybrid solution that combines
fusion with replication to correctf Byzantine faults using just
nf + f backup structures, while ensuring minimal overhead
during normal operation. Recovery is costlier in fusion, with
time complexityO(msf +nst2). The algorithms and proofs in
this section are an extension of the results in [8], which focuses
on fault tolerance in infinite state machines.

In our solution, we maintainf additional copies of each
primary that enable efficientdetectionof Byzantine faults. This
maintains the invariant that there is at least one correct copy in
spite off Byzantine faults. We also maintainf fused backups
for the entire set of primaries, which is used to identify and
correct the Byzantine primaries, after the detection of the faults.
Thus, we have a total ofnf + f backup data structures. The
only requirement on the fused backups{Fj , j = 1..f} is that if
Fj is not faulty, then given the state of anyn−1 data structures
among{X1 . . . Xn}, we can recover the state of the missing

one. Thus, a simple xor or sum based fused backup is sufficient.
Even though we are correctingf faults, the requirement on the
fused copy is only for a single fault (because we are also using
replication).

The primaryXi and itsf copies are calledunfusedcopies of
Xi. If any of thef+1 unfused copies differ, we call the primary,
mismatched. Let the state of one of the unfused copies (which
includes the value of the data elements, auxiliary structure and
index information) bev. The number of unfused copies ofXi

with statev is called themultiplicity of that copy.
Theorem 7:Let there ben primaries, each withO(m) nodes

of O(s) size each. There exists an algorithm with additional
nf + f data structures that can correctf Byzantine faults and
has the same overhead as the replication-based approach during
normal operation andO(mfs+nst2) overhead during recovery,
where t is the actual number of faults that occurred in the
system.

Proof:
We present an algorithm in Fig. 6 that correctsf Byzantine

faults. We keepf copies for each primary andf fused data
structures overall. This results in additionalnf + f data
structures in the system. If there are no faults among the
unfused copies, allf + 1 copies will result in the same output
and therefore the system will incur the same overhead as the
replication-based approach. If the client or one of the fused
backups detects a mismatch among the values received from
the unfused copies, then the recovery algorithm is invoked.
The recovery algorithm first reduces the number of mismatched
primaries to one and then uses the locate algorithm to identify
the correct primary. We describe the algorithm in greater detail
and prove its correctness in the following paragraphs.

The recovery algorithm first checks the number of primaries
that are mismatched. First consider the case when there is a
single mismatched primary, sayXc. Now given the state of all
other primaries, we can successively retrieve the state ofXc

from fused data structuresFj , j = 1..f till we find a copy of
Xc that hasf+1 multiplicity. Now consider the case when there
is a mismatch for at least two primaries, sayXc andXd. Let
α(c) andα(d) be the largest multiplicity among unfused copies
of Xc andXd respectively. Without loss of generality, assume
thatα(c) ≥ α(d). We show that the copy with multiplicityα(c)
is correct.

If this copy is not correct, then there are at leastα(c) liars
among unfused copies ofXc. We now claim that there are at
leastf + 1 − α(d) liars among unfused copies ofXd which
gives us the total number of liars asα(c)+f+1−α(d) ≥ f+1
contradicting the assumption on the maximum number of
liars. Consider the copy among unfused copies ofXd with
multiplicity α(d). If this copy is correct we havef +1−α(d)
liars. If this copy is incorrect, we know that the correct value
has multiplicity less than or equal toα(d) and therefore there
are at leastf + 1 − α(d) liars among unfused copies of
Xd. Hence, the primary with multiplicityα(c) is correct. By
identifying the correct primary, we have reduced the number
of mismatched primaries by1. By repeating this argument, we
get to the case when there is exactly one mismatched primary,
sayXc.

We use the locate algorithm in Fig. 6 to locate the correct
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Unfused Copies:
On receiving any message from client
Update local copy;
send state update to fused processes;
send response to the client;

Client:
send update to all unfusedf + 1 copies;
if (all f + 1 responses identical)

use the response;
elseinvoke recovery algorithm;

Fused Copies:
On receiving updates from unfused copies,
if (all f + 1 updates identical)

carry out the update
elseinvoke recovery algorithm;

Recovery Algorithm:
Accquire all available data structures;
Let t be the number of mismatched
primaries;
while (t > 1) do

choose a copy of some primaryXi

with largest multiplicity;
restart unfused copies ofXi with the
state of the chosen copy;
t = t− 1;

endwhile;
// Can assume thatt equals one.
// Let Xc be the mismatched primary.
Locate faulty copy among unfused copies
of Xc using the locate algorithm;

Locate Algorithm (Xc):
Z: set of unfused copies ofXc };
Discard copies inZ and fused backups
with wrong index/aux structures;
while (there are mismatched copies inZ)

w = min{r : ∃p, q ∈ Z :

valuep[r] 6= valueq[r]};
Y : state[w] for each copy inZ;
j = 1;
while (no value inY with multiplicity
f + 1)

create,v=state[w] usingFj and
all Xi, i 6= c and addv to Y ;
j = j + 1;

endwhile;
delete copies fromZ in which
state[w]! = v;

endwhile;

Fig. 6. Detection and Correction of Byzantine Faults

copy of Xc. In the locate algorithm, we first identify errors
in the auxiliary and index structures. Since this information
is replicated at all thef fused backups, we can obtain2f + 1
versions of this information among which at leastf+1 versions
are identical (at mostf liars). The remainingf versions are
certainly faulty and unfused copies with this information can
be discarded. This operation can be performed inO(mf) time,
as the auxiliary/index structures containO(m) pointers. If there
are no errors among the auxiliary/index structures, we identify
errors in the data elements.

The setZ maintains the invariant that it includes all the
correct unfused copies (and may include incorrect copies as
well). The invariant is initially true because all indices from
1..f + 1 are inZ. Since the set hasf + 1 indices and there
are at mostf faults, we know that the setZ always contains
at least one correct copy.

The outerwhile loop iterates until all copies are identical. If
all copies inZ are identical, from the invariant it follows that
all of them must be correct and we can simply return any of
the copies inZ. Otherwise, there exist at least two different
copies inZ, say p and q. Let w be the first key in which
states of copiesp andq differ. Either copyp or the copyq (or
both) are liars. We now use the fused data structures to recreate
copies ofstate[w], the value associated with keyw. Since we
have the correct copies of all other primariesXi, i 6= c, we
can use them with the fused backupsFj , j = 1..f . Note that
the fused backups may themselves be wrong so it is necessary
to get enough multiplicity for any value to determine if some
copy is faulty. Suppose that for somev, we get multiplicity of
f + 1. This implies that any copy withstate[w] 6= v must
be faulty and therefore can safely be deleted fromZ. We
are guaranteed to get a value with multiplicityf + 1 out of
total 2f + 1 values, viz.f + 1 values from unfused copies
of Xc and f values decoded using thef fused backups and
remaining correct primaries. Further, since copiesp andq differ
in state[w], we are guaranteed to delete at least one of them
in each iteration of the inner while loop. Eventually, the set Z

would either be singleton or will contain only identical copies,
which implies that we have located a correct copy.

We now analyze the time complexity of the procedurelocate.
Assume that there aret ≤ f actual faults that occurred. We
delete at least one unfused copy ofXc in each iteration of the
outerwhile loop and there are at mostt faulty data structures
giving us the bound oft for the number of iterations of the
while loop. In each iteration, creatingstate[w] requires at most
O(s) state to be decoded at each fused data structure at the cost
of O(ns). The maximum number of fused data structures that
would be required ist. Thus,O(nts) work is required for a
single iteration before a copy is deleted fromZ. To determinew
in incremental fashion requiresO(mfs) work cumulative over
all iterations. Combining these costs we get the complexityof
the algorithm to beO(mfs+ nst2).

Theorem 7 combines advantages of replication and coding
theory. We have enough replication to guarantee that there is
at least one correct copy at all times and therefore we do not
need to decode the entire state data structure but only locate the
correct copy. We have also taken advantage of coding theory
to reduce the number of copies from2f to f . It can be seen
that our algorithm is optimal in the number of unfused and
fused backups it maintains to guarantee that there is at least one
correct unfused copy and that faults of anyf data structures
can be tolerated. The first requirement dictates that there be at
least f + 1 unfused copies and the recovery from Byzantine
fault requires that there be at least2f + 1 fused or unfused
copies in all.

VI. PRACTICAL EXAMPLE : AMAZON ’ S DYNAMO

In this section, we present a practical application of our
technique based on a real world implementation of a distributed
system. Amazon’s Dynamo [6] is a distributed data store that
needs to provide both durability and very low response times
(availability) for writes to the end user. They achieve thisusing
a replication-based solution which is simple to maintain but
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expensive in terms of space. We propose an alternate design
using a combination of both fusion and replication, which
consumes far less space, while guaranteeing nearly the same
levels of durability and availability.

A. Existing Dynamo Design

We present a simplified version of Dynamo with a focus
on the replication strategy. Dynamo consists of clusters of
primary hosts each containing a data store like a hash table
that stores key-value pairs. The key space is partitioned across
these hosts to ensure sufficient load-balancing. For both fault
tolerance and availability,f additional copies of each primary
hash table are maintained. Thesef + 1 identical copies can
correctf crash faults among the primaries. The system also
defines two parametersr and w which denote the minimum
number of copies that must participate in each read request and
write request respectively. These values are each chosen tobe
less thanf . The authors in [6] mention that the most common
values of (n,w, r) are (3, 2, 2). In Fig. 7(i), we illustrate a
simple set up of Dynamo forn = 4 primaries, withf = 3
additional copies maintained for each one of them.

To read and write from the data store, the client can send
its request to any one of thef + 1 copies responsible for
the key of the request, and designate it as thecoordinator.
The coordinator reads/writes the value corresponding to the
key locally and sends the request to the remainingf copies.
On receiving r − 1 or w − 1 responses from the backup
copies for read and write requests respectively, the coordinator
responds to the client with the data value (for reads) or justan
acknowledgment (for writes). Sincew < f , clearly some of the
copies may not be up to date when the coordinator responds to
the client. This necessitates some form of data versioning,and
the coordinator or the client has to reconcile the differentdata
versions on every read. This is considered an acceptable cost
since Dynamo is mainly concerned with optimizing writes to
the store. In this setup, when one or more data structures crash,
the remaining copies responsible for the same key space can
take over all requests addressed to the failed data structures.
Once the crashed data structure comes back, the copy that was
acting as proxy just transfers back the keys that were meant for
the node. In Fig. 7(i), since there can be at most three crash
faults in the system, there is at least one node copy for each
primary remaining for recovery.
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B. Hybrid Dynamo Design

We propose a hybrid design for Dynamo that uses a combi-
nation of fusion and replication. We focus on the typical case

of (f, w, r) = (3, 2, 2). Instead of maintaining three additional
copies for each primary (f = 3), we maintain just a single
additional copy for each primary and two fused backups for the
entire set of primaries as shown in Fig. 7(ii). The fused backups
achieve the savings in space while the additional copies allows
the necessary availability for reads. The fused backups along
with the additional copies can correct three crash faults among
the primaries. The basic protocol for reads and writes remains
the same except for the fact that the fused backups cannot
directly respond to the client requests since they require the old
value associated with the key (Section III). On receiving a write
request, the coordinator can send the request to these fused
backups which can respond to the request after updating the
table. For the typical case ofw = 2, as long as the coordinator,
sayXi obtains a response from one among the three backups
(one copy and two fused backups) the write can succeed. This is
similar to the existing design and hence performance for writes
is not affected significantly. On the other hand, performance for
reads does drop since the fused backups that contain data in the
coded form cannot return the data value corresponding to a key
in an efficient manner. Hence, the two additional copies need
to answer all requests to maintain availability. Since Dynamo
is optimized mainly for writes, this may not be a cause for
concern. To alleviate the load on the fused backups, we can
partition the set of primaries into smaller blocks, tradingsome
of the space efficiency for availability. For the set up shownin
Fig. 7, we can maintain four fused backups whereF1, F2 are
the fused backups forX1 and X2, while F3 and F4 are the
fused backups ofX3 andX4.

Similar to the existing design of Dynamo, when data struc-
tures crash, if there are surviving copies responsible for the
same keys, then they can take over operation. However, since
we maintain only one additional copy per primary, it is possible
that none of the copies remain. In this case, the fused backup
can mutate into one or more of the failed primaries. It can
receive requests corresponding to the failed primaries, update
its local hash table and maintain data in its normal form
(without fusing them). Concurrently, to recover the failed
primaries, it can obtain the data values from the remaining
copies and decode the values. Hence, even though transiently
the fault tolerance of the system is reduced, there is not
much reduction in operational performance. Dynamo has been
designed to scale to 100 hosts each containing a primary. So
in a typical cluster withn = 100, f = 3 the original approach
requires,n∗f = 300 backup data structures. Consider a hybrid
solution that maintains one additional copy for each primary
and maintains two fused backups for every 10 primaries.
This approach requires only100 + 20 = 120 backup data
structures. This results in savings in space, as well as power and
other resources required by the processes running these data
structures. Hence, the hybrid solution can be very beneficial
for such a real-world system.

VII. I MPLEMENTATION AND RESULTS

In this section, we describe our fusion-based data structure
library [1] that includes all data structures provided by the
Java Collection Framework. Further we have implemented our
fused backups using Cauchy RS codes (referred to asCauchy-
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Fusion) and Vandermonde RS codes (Van-Fusion). We refer
to either of these implementations as thecurrent version of
fusion. We have compared its performance against replication
and the older version of fusion (Old-Fusion) [9]. Old-Fusion
has a different, simpler design of the fused backups, similar
to the one presented in the design motivation of Section III.
We extend it for f -fault tolerance using Vandermonde RS
codes. The current versions of fusion, using either Cauchy or
Vandermonde RS, outperform the older version on all three
counts: Backups space, update time at the backups and time
taken for recovery. In terms of comparison with replication, we
achieve almostn times savings in space as confirmed by the
theoretical results, while not causing too much update overhead.
Recovery is much cheaper in replication.

Fault-Tolerant Data Structure Library: We implemented
fused backups and primary wrappers for the data structures
in the Java 6 Collection framework that are broadly divided
into list-based, map-based, set-based and queue-based data
structures. We evaluated the performance of a representative
data structure in two of these categories: linked lists for list-
based and tree maps for map-based data structures. Both Old-
Fusion and Van-Fusion use Vandermonde RS codes with field
size 216, while Cauchy-Fusion uses Cauchy RS codes, with
field size 25. The RS codes we have used are based on the
C++ library provided by James S. Plank [21]. Currently we
just support the Integer data type for the data elements at the
primaries.

Evaluation: We implemented a distributed system of hosts,
each running either a primary or a backup data structure and
compared the performance of the four solutions: Replication,
Old-Fusion, Van-Fusion and Cauchy-Fusion. The algorithms
were implemented in Java 6 with TCP sockets for commu-
nication and the experiments were executed on a single Intel
quad-core PC with 2.66 GHz clock frequency and 12 GB RAM.
The three parameters that were varied across the experiments
were the number of primariesn, number of faultsf and the
total number of operations performed per primary,ops. The
operations were biased towards inserts (80 %) and the tests
were averaged over five runs. In our experiments, we only
assume crash faults. We describe the results for the three main
tests that we performed for linked lists: backup space, update
time at the backup and recovery time (Fig. 8). The results for
tree maps are of a similar nature (Fig. 10 in the Appendix). In
the future, we wish to evaluate fusion over physically disparate
machines with other erasure codes such as LDPC codes [7] and
LT codes [13] that offer different trade-offs between backup
space and recovery time.

1) Backup Space:To measure the space required by the
backups, we assume that the size of data far exceeds the
overhead of the index structure and hence, we just plot the
total number of backup nodes required by each solution. We
fix f = 3, ops = 500 and varyn from 1 to 10. Cauchy-Fusion
and Van-Fusion, differ only in the type of RS code used, but use
the same design for the backups. So, they both require the same
number of backup nodes. Both Cauchy-Fusion and Van-Fusion
perform much better than both replication (approximatelyn
times) and Old-Fusion (approximatelyn/2 times) because the
number of nodes per backup never exceeds the maximum

among the primaries.

2) Recovery Time:We measure recovery time as the time
taken to recover the state of the crashed data structuresafter the
client obtains the state of the requisite data structures. The same
experiment as that used to measure backup space was used
to compare the four solutions. Cauchy-Fusion and Van-Fusion
perform much better than Old-Fusion (approximatelyn/2
times) because recovery in fusion involves iterating through all
the nodes of each fused backup. The current design contains
fewer nodes and hence performs better. The time taken for
recovery by replication is negligible as compared to fusion-
based solutions (the curve is almost merged with the x-axis in
the graphs). This is to be expected since recovery in replication
requires just copying the failed data structures after obtaining
them. However, note that, even forn = 10, the time taken for
recovery by both Cauchy and Van-Fusion is under 40 millisecs.
This can be a small cost to pay for the considerable savings
that we achieve in space.

Further analysis of the recovery times in both Cauchy-Fusion
and Van-Fusion shows that almost 40 % of the cost of recovery
is spent in decoding the coded data elements. This implies two
things. First, using a different code such as LDPC codes, that
offers faster decoding in exchange for less space efficiency,
fusion can achieve faster recovery times. Second, more than50
% of recovery time is spent on just iterating through the backup
nodes, to retrieve the data for decoding. Hence, optimizingthe
recovery algorithm, can reduce the recovery time. The other
observation is that, even though Cauchy RS codes have much
faster decode times than Vandermonde RS codes, the recovery
time for Cauchy-Fusion is only marginally better than Van-
Fusion. We believe this is mainly due to the small data size
(4 byte integers). For larger data values, Cauchy-Fusion might
perform much better than Van-Fusion. These are future areas
of research that we wish to explore.

3) Update Time: Finally, to measure the update time at
the backups, we fixedn = 1, f = 1 and variedops from
500 to 5000. Both Cauchy-Fusion and Van-Fusion has more
update overhead as compared to replication (approximately1.5
times slower) while they perform better than the older version
(approximately 2.5 times faster). Since the current designof
fused backups has fewer backup nodes, it takes lesser time
to iterate through the nodes for an update. The update time
at a backup can be divided into two parts: the time taken to
locate the node to update plus the time taken to update the
node’s code value. The code update time was insignificantly
low and almost all the update time was spent in locating the
node. Hence, optimizing the update algorithm can reduce the
total update time considerably. This also explains why Cauchy-
Fusion does not achieve any improvement over Van-Fusion and
at times does slightly worse, because the overhead of dealing
with blocks of data in Cauchy-Fusion exceeds the savings
achieved by faster updates. As mentioned before, we believe
that with the larger data sizes, Cauchy-Fusion may perform as
expected.

The practical results hence confirm the theoretical bounds:
the solution presented in this paper saves considerably on space,
while causing minimal overhead during normal operation. The
cost of recovery, albeit higher than replication, is still small
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enough for most practical applications.

VIII. C OMPARATIVE STUDY: REPLICATION VS. FUSION

In this section, we summarize the main differences between
replication and fusion (Table I). Throughout this section,we
assumen primary data structures, containing at mostO(m)
nodes of sizeO(s) each. Each primary can be updated inO(p)
time. We assume that the system can correct eitherf crash
faults or f Byzantine faults, andt is the actual number of
faults that occur. Note that, the comparison in this sectionis
independent of the type of data structure used. We assume that
the fusion operator is RS coding, which only requiresf parity
blocks to correctf erasures among a given set of data blocks.

a) Number of Backups:To correctf crash faults amongn
primaries, fusion requiresf backup data structures as compared
to thenf backup data structures required by replication. For
Byzantine faults, fusion requiresnf + f backups as compared
to the2nf backups required by replication.

b) Backup Space:For crash faults, the total space occu-
pied by the fused backups ismsf (f backups of sizems each)
as compared tonmsf for replication (nf backups of sizems
each). For Byzantine faults, since we maintainf copies of each
primary along withf fused backups, the space complexity for
fusion isnfms+msf as compared to2nmsf for replication.

c) Maximum Load on any Backup:We define load as the
number of primaries each backup has to service. Since each
fused backup has to receive requests from alln primaries the
maximum load on the fused backup isn times more than the
load for replication. Note that, higher the value ofn more the
savings in space/number of backups (O(n) times), but more
the maximum load on any backup (again,O(n) times).

d) Normal (fault-free) Operation Time:The fused back-
ups in our system can be updated with the same time complex-
ity as that for updating the corresponding primary i.e.,O(p).
We have shown that the updates at the backup can be received
in any order and hence, there is no need for synchrony. Also,
if Byzantine faults/liars need to be detected with every update
in a system, then fusion causes no overhead in time.

e) Recovery Time:This parameter refers to the time com-
plexity of recovery at the client, after it has acquired the state
of the relevant data structures. In the case of fusion, to recover
from t (t ≤ f) crash faults, we need to decode the backups with
total time complexityO(mst2n). For replication, this is only
O(mst). For Byzantine faults, fusion takesO(mfs+nst2) to

correctt Byzantine faults. In the case of replication this is only
O(msf). Thus, replication is much more efficient than fusion in
terms of the time taken for recovery. However, since we assume
faults to be rare, the cost of recovery may be acceptable.

f) Normal (fault-free) Operation Messages:This parame-
ter refers to the number of messages that the primary needs to
send to the backups for any update. We assume that the size of
the key for insert or delete is insignificantly small as compared
to the data values. In fusion, for crash faults, every updatesent
to the primary needs to be sent tof backups. The size of each
message is2s since we need to send the new value and old
value to the backups. For deletes, the size of each message is
2s since we need to send the old value and the value of the
top-of-stack element (as shown in Fig. 5). Hence, for crash
faults, in fusion, for any update,f messages of size2s need
to be exchanged. For replication, in inserts, only the new value
needs to be sent to thef copies of the primary and for deletes,
only the key to be deleted needs to be sent. Hence, for crash
faults in replication, for any updatef messages of size at most
s need to be exchanged.

For Byzantine faults, for fusion, since we maintainf copies
of each primary andf fused backups, it needsf messages of
size s and f messages of size2s respectively. In replication,
2f messages of sizes need to be sent to the2f copies of the
primary for inserts and for deletes, only2f keys need to be
sent.

g) Recovery Messages:This refers to the number of
messages that need to be exchanged once a fault has been
detected. Whent crash faults are detected, in fusion, the client
needs to acquire the state of all the remaining data structures.
This requiresn−t messages of sizeO(ms) each. In replication
the client only needs to acquire the state of the failed copies
requiring onlyt messages of sizeO(ms) each. For Byzantine
faults, in fusion, the state of alln + nf + f data structures
(primaries and backups) needs to be acquired. This requires
nf + f messages of sizeO(ms) each. In replication, only the
state of any2t + 1 copies of the faulty primary are needed,
requiring just2t+ 1 messages of sizeO(ms) each.

IX. CONCLUSION

Given n primaries, we present a fusion-based technique
for fault tolerance that guaranteesO(n) savings in space as
compared to replication with almost no overhead during normal
operation. We provide a generic design of fused backups and
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TABLE I
REPLICATION VS. FUSION

Rep-Crash Fusion-Crash Rep-Byz Fusion-Byz
Number of Backups nf f 2nf nf + f

Backup Space nmsf msf 2nmsf nmsf +msf

Max Load/Backup O(1) O(n) O(1) O(n)
Normal Operation Time O(p) O(p) O(p) O(p)

Recovery Time O(mst) O(mst2n) O(msf) O(msf + nst2)
Normal Operation Messages f msgs, sizes each f msgs, size2s each 2f msgs, sizes each f msgs sizes, f msgs

size2s
Recovery Messages t msgs, sizems each n−t msgs, sizems each 2t + 1 msgs, sizems

each
nf + n + f msgs, size
ms each

their implementation for all the data structures in the Java
Collection framework that includes vectors, stacks, maps,trees
and most other commonly used data structures. We compare the
main features of our work with replication, both theoretically
and experimentally. Our evaluation confirms that fusion is
extremely space efficient while replication is efficient in terms
of recovery and load on the backups. Many real world systems
such Amazon’s Dynamo or Google’s MapReduce framework
use replication extensively for fault tolerance. Using concepts
presented in this paper, we can consider an alternate design
using a combination of replication and fusion-based techniques.
We illustrate this in section VI by presenting a simple design
alternative for Amazon’s data store, Dynamo. In a typical
Dynamo cluster of 100 hosts our solution requires only 120
backup structures as compared to the existing set up of 300
backup structures, without compromising on other important
QoS parameters such as response times. Thus fusion achieves
significant savings in space, power and other resources.

REFERENCES

[1] Bharath Balasubramanian and Vijay K. Garg. Fused data structure
library (implemented in java 1.6). InParallel and Distributed Systems
Laboratory, http://maple.ece.utexas.edu, 2010.

[2] E. R. Berlekamp.Algebraic Coding Theory. McGraw-Hill, New York,
1968.
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APPENDIX

A. Fused Backups for Complex Data Structures

The design of fused backup for linked lists can be general-
ized for most commonly used data structures. We explain this
using the example of balanced binary search trees (BBST).
Fig. 9(i) shows two primary BBSTs and a fused backup. For
simplicity, we explain the design using just one backup. The
index structure atF1 for X1 is a BBST containing a root and
two children, identical in structure toX1. The algorithms for
inserts and deletes at both primaries and backups is similar
to linked lists except for the fact that at the primary, we are
inserting into a primary BBST and similarly at the backup
we are inserting into a BBST containing the order information
rather than a list. The update to the backup stack is identical
to that of linked list primaries. Fig. 9(ii) shows the state of X1

andF1 after the delete ofa3 followed by the insert ofa4. The
aux list atX1 specifies the order(a1 → a2 → a4), which is
the order in which the elements ofX1 are maintained atF1.
Similarly, indexBBS[1] maintains the order of the elements
at X1. For example, as the root atX1 containsa1, the root of
indexBBST [1] points to the fused node containinga1.

So far we have focused only on the insert and delete
operations to the data structure, since those are the operations
that add and delete data nodes. However, since we maintain the
entire index structure at the backups, we support all operations
that do not involve decoding the values in the fused nodes of
the backup. We illustrate this with the example of the balance
operation in the BBST shown in Fig. 9(iii). The balance at the
primary just involves a change in the relative ordering of the
elements. The update corresponding to this at the fused backup
will change the relative ordering of the elements in the index
BBST, identical to that at the primary. In conclusion, our design
for fused backups can support all types of data structures with
many complex operations. Based on this we have implemented
fusible backups for linked lists, vectors, queues, hash tables and
tree maps. In Fig. 10, we present the results of our experiments
for tree maps, which is similar to the results for linked lists.

B. Reed Solomon Codes as Fusion Operator

In this section, we present the Reed Solomon (RS) erasure
codes that can be used as a fusion operator to correctf
crash faults among the primaries usingf backups. Readers
are referred to standard texts on coding theory [2], [12], [19]
for a thorough treatment. For simplicity, we first describe the
classical Vandermonde RS codes to explain the basic operations
of encoding and decoding. Later, we describe the best known
implementation of RS codes called the Cauchy RS codes [3],
[22].

1) Vandermonde RS Coding:Given n data words
{d1, d2, . . . dn}, Vandermonde RS erasure coding generatesf
checksum words{c1, c2, . . . cf} that can correctf erasures
among the data and the checksum words. All operations are
performed over the finite fieldGF (2w), wheren + f ≤ 2w.
The word sizes are2w and the typical values ofw are chosen
to 4, 8 and 16 so that 32 and 64 bit machine words can be
evenly divided into code-words.

Fusion (Encoding): The algorithm comprises of generating
an n × (n + f) information dispersal matrixB, that satisfies
the following properties:

• The n × n matrix in the firstn columns is an identity
matrix.

• Any sub-matrix formed by the deletion off columns of
the matrix, is invertible.

Hence,B can be represented as the combination of an identity
matrix I and another matrixS, i.e.,B =

[

I S
]

. B is derived
from a Vandermonde matrix with elementary matrix operations.
Let D be the data vector andP the encoded vector obtained
after multiplyingD with B, i.e.,

[

D
]

×
[

B
]

=
[

D
]

×
[

I S
]

=
[

P
]

=
[

D C
]

, whereC is the set of check sums (the fused
data) computed for the data setD.

Update: Whenever a data worddi is updated tod′i, all the
code words can be updated just using the differenced′i − di
andcj :

c′j = cj + bj,i(d
′

i − di)

wherebj,i is (j, i)th element of the information dispersal matrix
B. Since the new code word is computed without the value of
the other code words, updates are very efficient in RS erasure
coding. This update corresponds to theupdateCode routine
used in Fig. 4 and 5.

Recovery (Decoding): In the case of erasures, we can recover
the data words using the encoded vectorP and the information
dispersal matrixB. Data word erasures are reflected by deleting
the corresponding columns fromB andP to obtainB′ andP ′

that satisfy to the equation,D×B′ = P ′. When exactlyf data
words fail,B′ is an×n matrix. As mentioned above, any sub-
matrix generated by deletingf columns fromB is an invertible
matrix. Hence, matrixB′ is guaranteed to be invertible. The
data words can be generated as follows:P ′ × (B′)−1 = D.

We consider the time complexity of recovery for fused
backups using RS codes as the fusion operator. As seen in
Section III-B, to recovert failed data structures, wheret(≤ f)
is the actual number of failures, we need to iterate through
the remaining structures and decode the values. Givenn data
values, the cost of recoveringt values, each of sizes by RS
decoding isO(nst2) [20], where t is the actual number of
crash faults. Since the number of nodes in the fused list is
bound by the size of the primary list,m, the time complexity
for recovery isO(nmst2) where each primary hasO(m) nodes
of O(s) size each. Recovery is much cheaper in replication and
has time complexityO(mst).

2) Cauchy RS Coding:This technique is different from
Vandermonde RS coding in two important ways:

1) Consider the information dispersal matrix represented
as B = [IS], where I is the n × n identity matrix.
In Vandermonde RS coding,B is derived from the
Vandermonde matrix, but in Cauchy RS coding,B is
the transpose of a Cauchy matrix. Anf × n Cauchy
matrix is defined over the finite fieldGF (2w), where
n + f ≤ 2w as follows [22]. LetX = {x1 . . . xf} and
Y = {y1 . . . yn} be defined such thatxi, yi are distinct
elements ofGF (2w) andX∩Y = φ. The Cauchy matrix
defined byX andY has1/(xi + yi) in elementi, j.

2) In Vandermonde RS coding, all operations are performed
over the finite fieldGF (2w), which is costly for values
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Fig. 9. Fused Backups for Balanced Binary Search Trees (Keysnot shown due to space constraint)
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of w > 1, since they involve multiple table look-
ups. In Cauchy RS coding, each element ofGF (2w) is
represented by a1 × w vector of bits (refer to [3] for
details). This replaces all operations overGF (2w) with
simplexor operations. The information dispersal matrix
is now converted into awn× (wn+wf) matrix. Instead
of dividing the data int words of size2w, the entire data
block is divided intow packetswhere each packet’s size
must be a multiple of the machine’s word size (32 or 64
bit). Note that, while in Vandermonde RS coding,w had
to be limited to 4,8 and 16, in Cauchy RS coding,w can
be chosen as small as possible.

The basic operations of encoding, update and decoding are
identical to Vandermonde RS coding. Since thexor operations
replace the operations over the larger finite fields, encoding
and decoding is much faster in Cauchy RS coding. In the
following paragraph, we give an example illustrating the use
of these codes in our fused backups. For simplicity, we assume
Vandermonde RS codes.

In Fig. 3(i), we have used simple sum-difference as the fusion
operator that can correct two crash faults. In this example,we
use RS codes to correct three crash faults. Hence, we maintain
three fused backupsF1, F2 andF3, each of identical structure
but with different values in the data nodes. We first generate
the information dispersal matrixB =

[

I S
]

for n = 3, f = 3
andw = 4 (n + f ≤ 2w). In Fig. 3, consider the fused node
in the 0th position in F1 and F2, that contain the sum and

difference of the primary elementsa1 and b1. For RS codes,
we first generate the checksum blocks,C =

[

c1 c2 c3
]

for
D =

[

a1 b1
]

. The fused nodes in the0th position ofF1, F2

andF3 will contain the valuesc1, c2 and c3 respectively. In
Fig. 3(ii), when an element is inserted intoX1, the 2nd node
of F1 andF2 is updated toa∗

1
+ b3 anda∗

1
− b3 respectively.

With RS codes as the fusion operator, the code value of the
2nd node in the fused backupFj (j : 1 . . . 3) is updated with
[old code value +bj,1(a∗1)].


