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Abstract—The paper describes a technique to tolerate faults in
large data structures hosted on distributed servers, basedn the
concept of fused backups. The prevalent solution to this pisiem
is replication. To tolerate f crash faults (dead/unresponsive data
structures) amongn distinct data structures, replication requires
f + 1 replicas of each data structure, resulting innf additional
backups. We present a solution, referred to agusion that uses a
combination of erasure codes and selective replication tooterate
f crash faults using just f additional fused backups. We show
that our solution achievesO(n) savings in space over replication.
Further, we present a solution to tolerate f Byzantine faults
(malicious data structures), that requires onlynf + f backups as
compared to the2n f backups required by replication. We ensure
that the overhead for normal operation in fusion is only as meh as
the overhead for replication. Though recovery is costly in fision,
in a system with infrequent faults, the savings in space outeighs
the cost of recovery. We explore the theory of fused backups
and provide a library of such backups for all the data structures
in the Java Collection Framework. Our experimental evaluaton
confirms that fused backups are space-efficient as comparea t
replication (approximately n times), while they cause very little
overhead for updates. To illustrate the practical usefulnes of
fusion, we use fused backups for reliability in Amazon’s higly
available key-value store, Dynamo. While the current replcation-
based solution uses 300 backup structures, we present a stidun
that only requires 120 backup structures. This results in saings
in space as well as other resources such as power.

faults, since there is always a majority of correct copies
available for each data structure. A common example is a
set of lock servers that maintain and coordinate the use of
locks. Such a server maintains a list of pending requests in
the form of a queue. To tolerate three crash faults among, say
five independent lock servers each hosting a queue, replicat
requires four replicas of each queue, resulting in a total of
fifteen backup queues. For large valuesiothis is expensive
in terms of the space required by the backups as well as power
and other resources to maintain the backup processes.
Coding theory[2], [12], [19] is used as a space-efficient
alternative to replication, both in the fields of communiezat
and data storage. Data that needs to be transmitted across a
channel is encoded using redundant bits that can corremiserr
introduced by a noisy channel [27]. Applications of coding
theory in the storage domain include RAID disks [17], [5]
for persistent storage, network coding approaches foraiagu
losses in multi-cast [14], [4] or information dispersal@ighms
(IDA) for fault tolerance in a set of data blocks [23]. In many
large scale systems, such as Amaz@ymamokey-value store
[6], data is rarely maintained on disks due to their slow asce
times. The active data structures in such systems are ysuall
maintained in main memory or RAM. In fact, a recent proposal
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Structures.

I. INTRODUCTION

must be held in a distributed RAM, to enable fast access. In
these cases, a direct application of coding-theoretictisols,
that are oblivious to the structure of data that they encade,
often wasteful. In the example of the lock servers, to tdéera

Distributed systems are often modeled as a set of indepéndgfiits among the queues, a simple coding-theoretic solutio
servers interacting with clients through the use of messaggiil encode the memory blocks occupied by the lock servers.

To efficiently store and manipulate data, these serversalpi

Since the lock server is rarely maintained contiguously &mm

maintain large instances of data structures such as link& | memory, a structure-oblivious solution will have to encadle

queues and hash tables. These servers are prone to faultgdinory blocks that are associated with the implementation o
which the data structures may crash, leading to a total I$$s |ock server in main memory. This is not space efficient,
in state (crash faults [25]) or worse, they may behave Hince there could be a large number of such blocks in the form
an adversarial manner, reflecting any arbitrary state, isgndof free lists and memory book keeping information. Also,rgve
wrong conflicting messages to the client or other data strest smal| change to the memory map associated with this lock has
(Byzantine faults [11])Active replication[10], [18], [26], [28], to be communicated to the backup, rendering it expensive in
[25] is the prevalent solution to this problem. To tolerdterash terms of communication and computation.

faults amongn given data structures, replication maintains |n this paper, we present a technique referred tdua®n

[+ 1 replicas of each data structure, resulting in a total fhich combines the best of both these worlds to achieve the

nf backups. These replicas can also tolefigtg2| Byzantine
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space efficiency of coding and the minimal update overhead of
replication. Given a set of data structures, we maintainta se
of fusedbackup data structures that can toleréterash faults
among the given the data structures. In replication, thécaep



crash fault. In this paper, we present a generic design efdfus
tos b by tos2]. backups for most commonly used data structures such asstack
tos 3 b vectors, binary search trees, hash maps and hash tableg Usi
a2 by 2 Fos1] erasure codes, we preseffault tolerant data structures that
@ by @b toleratef crash faults using just additional fused backups. In
Primary Stack X; Primary Stack Xo Fused Stack F) the example shown in Fig. 1, we can maintain another fused
stack F, that has identical structure t;, but with nodes that
Fig. 1. Fault Tolerant Stacks contain the difference in values of the primary elementsemat

than the sum. These set of data structures can tolerate asb cr
f hd identical to the ai q faults. We extend this for values ¢f greater than two using
or each data structure are identical to the given datatstiec .oy golomon (RS) erasure codes [24], which are widely used

In fusion, the backup copies are not identical to the givesa dg generate the optimal number of parity blocks in RAID-like
structures and hence, we make a distinction between the INGstems

data structures, referred to asimaries and the backup data
structures, referred to asackups Henceforth in this paper,
we assume that we are given a set of primary data structu
among which we need to tolerate faults. Replication reguir
f additional copies of each primary ¢ 1 replicas), resulting

Further, we consider the case of Byzantine faults, where
P%% data structures can reflect arbitrary values, send condi
rroneous responses to the client and try to maliciouslgatef
any protocol. Crash faults in a synchronous system, sucheas t

in nf backups. Fusion only requirgsadditional backups. one assumed in our model, can easily be detected using time

S : : ts. Detecting Byzantine faults is more challenging, sitie
The fused backups maintain primary data in the coded fo@;te of the data structures need to be inspected on eveayeupd

o save space, while they replicate the index structure of ea}o ensure that there are no liars in the system. In this paper
primary to enable efficient updates. In Fig. 1, we show thedus . Sy ’ Paper,
we present a solution to tolerafe Byzantine faults among

backup corresponding to two primary array-based statks L
and X,. The backup is implemented as a stack whose nod&dMmary data structures using just/ + f backup structures
a5 compared to thénf backups required by replication. We

contain the sum of the values of the nodes in the primari use a combination of replication and fusion to ensure mihima
We replicate the index structure of the primaries (just the t : P .
overhead during normal operation.

of stack pointers) at the fused stack. When an elemgrit . )
pushed on taX;, this element is sent to the fused stack and In addition, we prove properties on our fused backups such

the value of the second node (counting from zero) is updat@g SPace optimality, update optimality and order indepecele

t0 a3 + by, In case of a pop taXs, of say bs, the second GVenn primaries, our approach achieve§n) times savings:
node is updated tas. These set of data structures can tolerat8 SPace over both replication and [9]. The time complexity
one crash fault. For example, i crashes, the values of its® updates to our backups is identical to that for repligatio
nodes can be computed by subtracting the values of the nogB4O(n) times faster than [9]. Similar to replication, we show
in X, from the appropriate nodes df,. We observe that in that the updates to the backups can be done with a hlgh level
large practical systems, the size of data far exceeds theoiz Of concurrency. Further, we show that the updates to diitere
the index structure. Hence replicating the index strucatiiae  ackups from distinct primaries can be received in any order
fused backups is of insignificant size overhead. The Sav-mgsthereby eliminating the need for synchronization at the&kbps.
space is achieved by fusing the data nodes. Note that, unlikén practical systems, sufficient servers may not be availabl
direct coding theoretic solutions such as RAID, our sohutio host all the backup structures and hence, some of the
exploits the structure of data and is oblivious of the wayséhebackups have to be distributed among the servers hosting the

data structures are stored in memory. This allows for efficieprimaries. These servers can crash, resulting in the loss of
updates. all data structures residing on them. Consider a set data
In Fig. 1, to tolerate one crash fault amod and X,, structures, each residing on a distinct server. We needeiate

replication requires a copy for bofi; and X, resulting in two f crash faults among the data structures given erdglditional
backups containing five data nodes in total as compared to f@vers to host the backup structures. We present a solution
fusion-based solution that requires just one backup coingi to this problem that requiresn/(n +a — f)] - f backups
three data nodes. When a crash fault occurs, recoveryaind show that this is the necessary and sufficient number of
replication just needs the state of the corresponding aaplibackups for this problem. We also present a way to compare (or
Fusion on the other hand, needs all available data strusctare order) sets of backups of the same size, based on the number
decode the data nodes of the backups. This is the key tragibprimaries that they need to service. This is an important
off between replication and fusion. In systems with infregqu Pparameter because the load on a backup is directly propattio
faults, the cost of recovery is an acceptable compromisthéor to the number of primaries it has to service. We show that our
savings in space achieved by fusion. partitioning algorithm generates a minimal set of backups.

In [15], we present a coding-theoretic solution to fault To illustrate the practical usefulness of fusion, we apply o
tolerance in finite state machines. This approach is extendiesign to Amazon'®ynamo[6], which is the highly available
for infinite state machines and optimized for Byzantine tfautlata-store underlying many of the services exposed by Amazo
tolerance in [8]. Our previous work on tolerating faults iata to the end-user. Examples include the service that magtain
structures [9] provides the algorithms to generate a sifugled shopping cart information or the one that maintains usee sta
backup for array or list-based primaries, that can tolecste Dynamo achieves its twin goals of fault tolerance (durapili



and fast response time for writes (availability) using apam on the responses/output received from them. When an uslate i
replication-based approach. We propose an alternate rdesignt to a primary data structure, the primary first updasedfit
using a combination of both fusion and replication, whicand then sends sufficient information to update the backups.
requires far less space, while providing almost the samgldevWe assume FIFO communication channels that are reliable and
of durability, and availability for writes. In a typical hosluster, have a strict upper bound on time for all message delivery i.e
where there are 100 dynamo hosts each hosting a data seuctarsynchronous system.
the current replication-based approach requisé8 backup Faults among the data structures, both primaries and backup
structures. Our approach, on the other hand, requiresi@tly can be of two typescrash faults (also referred to afail-
backup structures. This translates to significant savingmth stop faults) andByzantinefaults. In the case of crash faults,
the space occupied by the backups as well as the infrasteuctine data structure crashes and stops responding to the, clien
costs such as power and resources required by the processading to a complete loss in state. For Byzantine faulesdtita
running these backups. structure can assume arbitrary values for its state, sendgvr
We provide a Java implementation of fused backups [1] usingsponses to the client/other data structures and in denera
RS codes for all the data structures in the Java Collectibehave maliciously to defeat any protocol. However, the dat
Framework. Our experiments indicate that the current garsistructure cannot fake its identity. In most of the literatur
of fusion is very space efficient as compared to both reptinat on replication-based fault tolerance in distributed systethe
(approximatelyn times) and the older version (approximatelypackup copies are said to ‘mask’ or ‘tolerate’ faults. Hoamev
n/2 times). The time taken to update the backups is almdstr fusion, we need to decode the values and correct the
as much as replication (approximately 1.5 times slower)avhifaults in the system. Henceforth, for convenience, we say th
it is much better than the older version (approximately 2&ackups (for both replication and fusion) ‘correct’ fawditsong
times faster). Recovery is extremely cheap in replicatiah bprimaries.
the current version of fusion performs approximatef{2 times Detection and correction of faults in our system is perfatme
better than the older version. Though recovery is costly by the fault-free client. Since we assume a synchronousisyst
fusion as compared to replication, in absolute terms, itils s crash faults are detected using timeouts. If a data streictoes
low enough to be practical (order of milliseconds). In thaot respond to an update sent by the client within a fixed time
following section, we describe the system model of this pap@eriod, it is assumed to have crashed. We present algorithms
for the detection of Byzantine faults. When a fault occurs, n
II. MODEL AND NOTATION updates are sent by the client until the state of all thedadlata

structures have been recovered. For recovery, the cligjiires

. Our system consists of independ.ent distributed serverss h?ﬁe state of the requisite data structures after they hatexlac
ing data structures. We denote thegiven data structures, aISOon all updates before the fault occurred, and then recobers t

referred to as primaries(; ... . X,,. The backup data StrUCturesstate of the failed structures. Henceforth, when we simply s

?&ﬁlts, we refer to crash faults. The design of the fused data
structures are independent of the fault model and for siitpli
we explain the design assuming only crash faults.

are referred to atused backupsr fused data structuresThe
operator used to combine primary data is called thsion
operator The number of fused backups, depends on the
fusion operator and the number of faults that need to bﬁl F USION-BASED FAULT TOLERANT DATA STRUCTURES
tolerated. The fused backups are denatgd. . F;. In Fig. 1, )

X1, X5 are the primariest’ is the fused backup and the fusion

operator is addition. bs ?S\H)f

The data structures are modeled as a set of data nodes and \ \
an index structure that specifies order information aboeseh as a2+ by

. . . < I |1
data nodes. For example, the index structure for a linked lis \
includes the head, tail and next pointers. We assume that the » artby
. . . . e

size of data in the data structure far exceeds the size ofdexi ez .
structure. The data structures in our system hasiieas well (i) Primary X; (ii) Primary X,  (iii) Fused Backup F}

as anoutputassociated with them. The state of a data structure _
is a snapshot of the values in the data nodes and the ind&? ©'d Fusion [9]
structure. The output is the value visible to the externalldvo  Design Motivation In [9], the authors present a design to
or client. On application of an event/update the data strect fuse array and list-based primaries that can correct orghcra
transitions from one state to another and changes its outfault. We highlight the main drawback of their approach for
value. For example, the state associated with a linked distlinked lists. The fused structure for linked list primarigs
the value of its nodes, next pointers, tail and head pointef8] is a linked list whose nodes contain tlxer (or sum) of
When we insert data into a linked list with a certain key, thihe primary values. Each node contains a bit array of size
value of the nodes and pointers change (state) and it respowith each bit indicating the presence of a primary element in
with either success or failure (output). that node. A primary element inserted in the correct pasitio
The updates to the data structures in our system originatethe backup by iterating through the fused nodes using the
from a set of clients. For convenience, we assume a singlé array and a similar operation is performed for deletes. A
client that sends updates to the various data structurea@ad example is shown in Fig. 2 with two primaries and one backup.



After the delete of primary elements and bs, the first and illustrates these operations with an example. We explamth
third nodes of the fused backup are updated td; andas in greater detail in the following paragraphs.

respectively (deleted elements in grey scale). After tHetds,  Inserts Fig. 4 shows the algorithms for the insert of a key-
while the primaries each contain only two nodes, the fus@lue pair at the primaries and the backups. When the client
backup contains three nodes. If there are a series of ingertsends an insert to a prima#;;, if the key is not already present,
the head ofX; and to the tail ofX; following this, the number X, creates a new node containing this key-value, inserts it
of nodes in the fused backup will be very high. This brings Ugto the primary linked list (denotegrimaryLinkedList)
to the main design motivation of this section: Can we prowdeand inserts a pointer to this node at the end of the aux list
generic design of fused backups, for all types of data strest (quuxList). The primary sends the key, the new value to be
such that the fused backup contains only as many nodesa@gled and the old value associated with the key to all thalfuse
the largest primary, while guaranteeing efficient updai®s? packups. Each fused backup maintains a stdeki(Stack) that
present a solution for linked lists and then generalize it f@ontains the primary elements in the coded form. On recgivin
complex data structures. the insert fromX;, if the key is not already present, the backup
updates the code value of the fused node following the one
contains the top-most element &f; (pointed to bytos]i]).
A. Fused Backups for Linked Lists If a new fused node is created, then the top-of-stack pointer
géataStackTos) of the data stack is incremented. Further

to implement fused backups each of which are identical 1A maintain order information, the backup in;erts a pointer
structure and differ only in the values of the data nodes. i the newly updated fused node, into the index structure

our design of the fused backup, we maintain a stack of nodé@,dmusﬂi]) for X; with the key received. A reference count

referred to afused nodeshat contains the data elements of ¢/ Count) tracking the number of elements in the fused node
| énaintained to enable efficient deletes.

the primaries in the coded form. The fused nodes at the sahh
position across the backups contain the same primary elsmen Fig. 3(ii) shows the state ok, and [ after the insert of
and correspond to the code words of those elements. Fig(33a1). We assume that the keys are sorted in this linked list
shows two primary sorted linked list¥; and X, and two and hence the key-value p&is, a7) is inserted at index 1 of
fused backup#} andF, that can correct two faults among the¢he primary linked list and a pointer to is inserted at the
primarieS. The fused node in théh position at the backups end Of the aux I|St AtF‘l, the Value Of the Second node (nOdeS
contain the elements, andb; with £, holding their sum and numbered from zero) is updated &g + bs and a pointer to

I, their difference. At each fused backup, we also maintaffiis node is inserted at index 1 @fdexList[1]. The identical
index structures that replicate the ordering informatiérihe OPeration is performed af; (not shown in the figure due
primaries. The index structure corresponding to prim&gyis {0 space constraints), with the only difference being that t
identical in structure tdX;, but while X; consists of data nodes,second fused node is updateddp— bs. Observe that the aux
the index structure only contains pointers to the fused goddst at X; specifies the exact order of elements maintained at the
The savings in space are achieved because primary nodesPa@kup stackdy — az — a7). Analogously,index List[1] at
being fused, while updates are efficient since we maintan tHe fused backup points to the fused nodes that contain elsme
index structure of each primary at the backup. of Xy in the correct orderdy — aj — as).

Overview We begin with a high-level description on how Delete Fig. 5 shows the algorithms for the delete of a key at
we restrict the number of nodes in the backup stack. At eafte primaries and the backups; deletes the node associated
backup, elements of primar; are simply inserted one on with the key from the primary and obtains its value which reeed
top of the other in the stack with a corresponding updateeo tip be sent to the backups. Along with this value and the key
index structure to preserve the actual ordering infornmafilhe %, the primary also sends the value of the element pointed by
case of deletes is more complex. If we just delete the eleméng tail node of the aux list. This corresponds to the topimos
at the backup, then similar to Fig. 2, a ‘hole’ is created dred t€lement ofX; at the backup stack and is hence required for
fused backups can grow very large. In our solution, we shfie shift operation that will be performed at the backupeAft
the top-most element ak; in the backup stack, to plug thissending these values, the primary shifts the final node of the
hole. This ensures that the stack never contains more nodg list to the position of the aux node pointing to the delete
than the largest primary. Since the top-most element igp[esmement, to mimic the shift of the final element at the backup.
in the fused form, the primary has to send this value withyver At the backup, sincéndex List[i] preserves the exact order
delete to enable this shift. To know which element to sentét witnformation of X;, by a simple double dereference, we can
every delete, the primary has to track the order of its elésw@n obtain the fused node that contains the element ok,
the backup stack. We achieve this by maintaining an auyiliaassociated witht. The value ofp is updated with the top-
list at the primary, which mimics the operations of the barkumost element (sent by the primarys) to simulate the shift.
stack. When an element is inserted into the primary, we ir@serThe pointers ofindex List[i] are updated to reflect this shift.
pointer to this element at the end of its auxiliary list. Wren Figure Jiii) shows the state ok; and F after the delete of
element is deleted from the primary, we delete the elementlin The key facts to note ardi) at Fy, b3 has been shifted
the auxiliary list that contains a pointer to this elemerd ghift from the end to theé)*" node (ii) the aux list atX, reflects
the final auxiliary element to this position. Hence, the @iiyn the correct order of its elements at the backup stagk—L b5)
knows exactly which element to send with every delete. Fig.&hd (iii) indexList[2] reflects the correct order of elements

We use a combination of replication and erasure cod



Primary Xy

tos]1] % tos[2)

as + by az — by
index List[1] @+ by 3 E:al —b

dataStack

bs 7 | bs 7
\ index List[2]

Fused Backup Fy Fused Backup F;

(i) Two Fused Backups for two crash faults

a’fﬂng

as + by

a; + by

Primary X3

(ii) After insert(3,a}) at X3

Fused Backup F}

*

aj

as + by
a1+b3><§

Fused Backup F;

Primary X5

(iii) After delete(1) at X

Fig. 3. Fused Backups for Linked Lists (Keys not shownFin F> due to space constraint)

Insert at PrimariesX; :: i = 1.n
Input: key k, data valued;
if (primaryLinkedList - contains(k))
/* key present, just update its value*/
old = primaryLinkedList - get(k) - value
primaryLinkedList - update(k,d);

Insert at Fused BackupB) :: j = 1.t
Input: key k, new valued;, old valueold;;
if (indexList[i] - contains(k))
fusedNodef = index List[i] - get(k);
f - updateCode(old;, d;);
else

send(k, d, old) to all fused backups; fusedNodep = tos[i] + +;
else if (p == null)

/* key not present, create new node*/ p = new fusedNode;

primNodep = new primNode; dataStack - insert(p);

p - value = d; dataStackTos + +;

auxNodea = new auxNode; p - updateCode(0,d;);

a - primNode = p; p-refCount + +;

p - auxNode = a; [* mimic primary linked list */

/* mimic backup stack */ indexNodea = new indexNode;

auz List.insert AtEnd(a); a - fusedNode = p;

primaryLinkedList - insert(k, p); p - indexNodeli] = a;

send(k,d,null) to all fused backups; index List[i] - insert(k,a);

Fig. 4. Fused Backups for Linked Lists: Inserts

at X, (bo — b3). Note that, the space and time overhead dfackups. As seen in Section lll, the fused node at the same
maintaining the auxiliary list at the primary is negligiblem position at all the fused backups are the codewords for the
Appendix A, we extend this design to complex data structurpsimary elements belonging to these nodes. To obtain the
such as maps, trees and hash tables. missing primary elements belonging to this node, we decode

So far, we have used simple sum-difference as the fusithe code words of these nodes along with the data values of
operator, that can correct two crash faults using two bagkimp the available primary elements belonging to this node. The
Appendix B, we generalize this and present the Reed Solondgcoding algorithm depends on the erasure code used. In Fig.
(RS) erasure codes that can be used as a fusion operatoB(ih to recover the state of the failed primaries, we obthim
correct f crash faults among the primaries usifigoackups. stateF; and F» and iterate through their nodes. To# fused
For simplicity, we first describe the classical VandermoR& node of F; contains the value, + by, while the 0" node of
codes to explain the basic operations of encoding and degodiF» contains the value; — b;. Using these, we can obtain the
Later, we describe the best known implementation of RS codesues ofa; andb;. The value of all the primary nodes can
called the Cauchy RS codes [3], [22]. be obtained this way and their order can be obtained using
the index structure at each backup. In Appendix A, we show
that the time complexity of recovery using RS codes as the
fusion operator isO(nmst?), given n primaries with O(m)

To correct crash faults, the client needs to accquire thedes ofO(s) size each, with actual crash faults among them
state of all the available data structures, both primaries$ a(t < f). Recovery is much cheaper in replication and has time

B. Correcting Crash Faults



Delete at PrimariesX; :: ¢ = 1..n

Input: key k;
p = primaryLinkedList - delete(k);
old = p - value;

/* tail node of aux list points to top-most
element ofX; at backup stack */
auxNodeauzTail = auxList - getTail();

tos = auxTail - primNode - value;
send(k, old, tos) to all fused backups;
auxNodea = p - auzNode;

/* shift tail of aux list to replacex */
(a - prev) - next = auxTail;

auzrTail - next = a - next;

delete a;

Delete at Fused Backups; :: j = 1.t

Input: key k, old valueold;, end valuetos;;
[* update fused node containingd;
with primary element ofX; at tos[i]*/
indexNodea = index List[i] - delete(k);
fusedNodep = a - fusedNode;
p - updateCode(old;, tos;);
tos[i] - updateCode(tos;, 0);
tosi] - refCount — —;
/* update index node pointing ttws[i] */
tos[i] - index Node[i] - fusedNode = p;
if (tos[i].refCount == 0)
dataStackTos — —;
tosli] — —;

Fig. 5. Fused Backups for Linked Lists: Deletes

In inserts toX;, we always update the fused node on top of
the last fused node containing an element fr&m Hence, no
hole is created. For deletes, when a hole is created, we shift
the final element of the primary, pointed bys|[i] to plug this

In this section we prove properties on the fused backupsle If the size of each node 8(s), then the backup space
such as size optimality, update optimality and update ordesquired by our solution to corregt crash faults iO(msf).
independence, all of which are important considerationsrwh Now, f crash faults among the primaries will result in the
implementing a system using these backups. These praperfilure of at leastf data nodes, each of siz&(s). To correctf
ensure that the overhead in space and time caused due to tisessh faults among them, any solution needs to maintairaat le
backups is minimal. The results in this section apply for ajf backup nodes each of size(s). Since the data structures
types of primaries and are independent of the fusion operagach containO(m) nodes, to correctf crash faults among
used. The only assumption we make is that the codes cantlwem, any solution needs to maintgifackups containing each
updated locally in constant time (like updates in RS codes).containingO(ms) space. Hence the minimum space required
is O(msf). [ |

complexity O(mst).

IV. THEORY OF FUSED DATA STRUCTURES

A. Space Optimality

Considern primaries, each containing(m) nodes, each of B. Eificient Updates

size O(s). In [9], to correct one crash fault, the backup for We define update optimality as follows: the time complexity
linked lists and list-based queues consuni&sims) space, of updates at any fused backup for all operations is the same
which is as bad as replication. We show that the fused backwgssthat of the corresponding update to the primary. In [9], to
presented in this paper require onfy(ms) space. Further, update the backup for linked lists, we need to iterate thinoug
to correct f faults, we show that the fused backups neeall the fused nodes. Since the number of fused nodes in the
only O(msf) space. Replication, on the other hand requirdmckup isO(nm), the time complexity of updates 9(nm),
O(mnsf) space, which iSO(n) times more than fusion. To while the time complexity for the update at the primary isyonl
correct f crash faults, we use RS codes that reqyirtused O(m). Hence, it is not update optimal. We show that the fused
backups, which is the minimum number of backups required fbackups presented in this paper are update optimal for@isty
f faults. For example, in Fig. 3, the number of fused nodes @i primaries. Hence, fusion causes has same minimal ovérhea
Fy or F; is always equal to the number of nodes in the largeduring normal operation as replication.
primary. The optimal size of the data stack in our backups Theorem 2 (Update Optimality)The time complexity of
combined with RS codes as the fusion operator, leads to the updates to a fused backup is of the same order as that
result that our solution is space optimal when the data acra@g the primary.
the primaries is uncorrelated. Proof: In the case of inserts, we obtain the node following
Theorem 1 (Space Optimality)rfhe fused backups gener-the top most element oX; in the data stack and update it in
ated by our design using RS codes as the fusion operator emestant time. The update to the index structure consisés of
of optimal size. insert of an element with key, which is the identical operation
Proof: We first show that the data stack of each backugt the primary. Similarly, for deletes, we first remove thel@o
contains onlym fused nodes. Aoleis defined as a fused nodewith key k£ from the index structure, an operation that was
that does not contain an element from a primary followed byexecuted on the data structure of the same type at the primary
fused node that contains an element from that primary. Wheience, it takes as much time as that at the primary. Shifting
there are no holes in the data stack, each primary elementhig final element of this primary to the fused node that costai
stacked one on top of the other and the stack containssenlythe deleted element is done in constant time.
nodes i.e as many nodes as the largest primary. We maintaiffhis argument for inserts and deletes extends to more
the invariant that our data stack never has holes. complex operations: any operation performed on the primary



will also be performed on the index structure at the backustructures at the backups are also independent of the arder i
Updating the data nodes of the stack takes constant tinm. which the updates are received. Consider the updates shmown i
Since the primaries are independent of each other, in mafig. 3. The updates to the index lists commute since they are to
cases the updates to the backup can be to different fuskffierent lists. As far as updates to the stack are concethed
nodes. In the following theorem, we show that multiple tliea update fromX; depends only on the last fused node containing
belonging to different primaries can updated the fused bpsk an element fromX; and is independent of the update froth
by locking just a constant number of nodes. Hence, fusion camich does not change the order of elementXefat the fused
achieve considerable speed-up. backup. Similarly the update fron¥, is to the first and third
Theorem 3 (Concurrent UpdatesThere exists an algo- nodes of the stack immaterial of whethgr has been inserted.
rithm for multiple threads belonging to different primarieo Theorem 4 (Order Independenceélhe state of the fused
update a fused backup concurrently by locking just a constarackups after a set of updates is independent of the order in
number of nodes. which the updates are received, as long as updates from the
Proof: We modify the algorithms in Fig. 4 and 5 to enabl&ame primary are received in FIFO order.
concurrent updates. We assume the presence of fine grained Proof: Clearly, updates to the index structure commute.
locks that can lock just the fused nodes and if required adfusas far as updates to the stack are concerned, the proof fllow
node along with thelataStackTos. Since updates from the from two facts about our design. First, updates on the backup
same primary are never applied concurrently, we don’t needfbr a certain primary do not affect the order of elements ef th
lock the index structure. other primaries at the backup. Second, the state of the packu
Inserts If the insert to the fused backup has to create a nexfter an update from a primary depends only on the order of
fused node, then the updating thread has to tbak.StackTos  elements of that primary. The same argument extends to other
and the fused node pointed by this pointer using a single, logomplex operations that only affect the index structure. m
insert and update a new fused node, increndlent StackT os
and then release this combined lock. If the insert ft&pdoes
not have to create a new node it only has to lock the fused ndde Fault Tolerance with Limited Backup Servers

pointed bytos[i], update the node’s code value and release theSO far we have implicitly assumed that the primary and

lock. When the primaries are of different sizes, then therins . . i
backup structures reside on independent servers for tihenfus
to the backups never occurs to the same fused node and hence . . .
ased solution. In many practical scenarios, the number of
are fully concurrent.

. . ervers available maybe less than the number of fused backup
DeI_et_es The updating thread has to obta_m the fusgd NOGE these cases, some of the backups have to be distributed
containing the element to be deleted, lock it, update itsieval

and release it. Then it has to lock the node pointeddil, among the servers hosting the primaries. Consider a set of

. S data structures, each residing on a distinct server. We tweed
update its value and release the lock. Similar to the case oaf g

inserts, when the delete causes a node of the stack to bediele orr_e_ctf crash faults among the data structures given anly
the thread needs to lock thlataStackT os as well as the node add|t!onal SEIVers to host the bgckup structures. We presen
i A ) solution to this problem that requirés/(n+a—f)]-f backups
pointed by this pointer in one lock, delete the node, updage t d show that this is the necessary and sufficient number of
pointer and then release the combined lock. gn N . y .
ackups for this problem. Further, we present an algoritbim f
generating the optimal number of backups.
To simplify our discussion, we start with the assumption
C. Order Independence thatno additional servers are available for hosting the backups.
In the absence of any synchronization at the backups, upda¢ some of the servers host more than one backup structure,
from different primaries can be received in any order at the faults among the servers, results in more tharfaults
backups. The assumption of FIFO communication channelgong the data structures. Hence, a direct fusion-baseticsol
only guarantees that the updates from fagne primarywill cannot be applied to this problem. Given a set of five pri-
be received by all the backups in the same order. A direvaries{X; ... X5}, each residing on a distinct server labelled,
extension of the solution in [9] for multiple faults can réésu{H; ... Hs}, consider the problem of correcting three crash
in a state from which recovery is impossible. For example, faults among the servers. (= 5, f = 3). In a direct fusion-
Fig. 3, F;, may receive the insert t&; followed by the delete based solution, we will just generate three backitps F>,
to X, while F;, may receive the delete update followed by thé&s, and distribute them among any three servers, Eay,H>
insert. To achieve recovery, it is important that the fusedas and Hs respectively. Crash faults among these three servers
at the same position at different fused backups containahees will result in the crash of six data structures, whereasetses
primary elements (in different coded forms). In Fig. 3(f)tie of backups can only correct three crash faults. We solve this
0" node of F; containsa; + by, while the 0" node of F, problem by partitioning the set of primaries and generating
containsas — by, then we cannot recover the primary elementsackups for each individual block.
when X; and X, fail. In this example, we can partition the primaries into three
We show that in the current design of fused backups, théocks [X;, X5], [X35, X4] and [X5] and generate three fused
nodes in the same position across the fused backups alwhgskups for each block of primaries. Henceforth, we denote
contain the same primary elements independent of the ondettie backup obtained by fusing the primarigs,, X;,,. ..,
which the updates are received at the backups. Also, thexindy Fj;(i1,1i2,...). For example, the backups foX,, X,] are



denoted ag (1,2) ... F5(1,2). Consider the following distri- among the host servers such tifaserver faults only lead t@
bution of backups among hosts: faults among the backups and primaries corresponding o eac
block. Hence the fused backups generated by the partiionin

Hy = [X31, F1(3,4), 1(5)], Ho = [Xo, (3, 4), F2(5)] algorithm can correcf server faults.

Hsz = [X3, Fi(1,2), F3(5)], Hy = [X4, F(1,2)] (Necessity): _
Suppose there is a scheme with backups such that
Hs = [X5, F35(1,2), F3(3,4)] t < [n/(n+a— f)] - f. In any distribution of the backups

Note that, the backups for any block of primaries, do n&Mony the servers, _choo$eservers with the largest number_
reside on any of the servers hosting the primaries in th ft backups. We. cla|m that the total number of backups in
thesef servers is strictly greater than— f. Failure of these

block. Three server faults will result in at most three fault . ) .
rvers, will result in more than— f + f faults (adding faults

among the primaries belonging to any single block and i : : . :
backups. Since the fused backups of any block correct thr%ef primary structures). This would be impossible to correct

faults among the data structures in a block, this partitigni with ¢ backups. We know that,

scheme can correct three server faults. For example, assdre//(n+a—f)]-f

crash faults in the serverf,, H, and Hs. We can recover =t<[1+f/(n+ta—[)] f

the state ofX,, Fy(1,2) and F3(1,2) using the state of(; ~— =) <[f/(n+a=H1-f

on serverH,, and the state of(1,2) on serverHs, since = {t-=H/f<[f/in+a-[)]

{X1, X2, F1(1,2), F»(1,2), F53(1,2)} can correct three crash .

faults. Here, each block of primaries requires at leastethre !f the f servers with the largest number of backups have less

distinct servers (other than those hosting them) to host th@n or equal td — f backups in all, then the server with the
backups. Hence, forn = 5, the size of any block in this smallest number of backups among them will have less than

partition cannot exceed — f = 2. Based on this idea, we the average number of backups whicl(is- f)/f.
present an algorithm to corre¢tfaults among the servers. Since the remaining-+a— f servers have more than or equal
(Partitioning Algorithm): Partition the set of primarie¥ as 0 / backups, the server with the largest number of backups
evenly possible intdn/(n — f)] blocks, generate th¢ fused @mong them will have.as_many or greater than the average
backups for each such block and place them on distinct servBpmber of backups which isf/(n +a — f)].
not hosting the primaries in that block. Since,(t — f)/f < [f/(n+a— f)], we get a contradiction
The number of blocks generated by the partitioning algoriththat the smallest among tifeservers hosting the largest number
is [n/(n — f)] and hence, the number of backup structuré¥ backups, hosts less number of backups than the largest
required is[n/(n — f)] - f. Replication, on the other handamong the remaining — f servers. u
requiresn - f backup structures which is always greater than or 1) Minimality: In this section we define a partial order
equal to[n/(n— f)]- f. We show thafn/(n— f)]- f is a tight among equal sized sets of backups and prove that the parti-
bound for the number of backup structures required to cogrectioning algorithm generates minimal set of backups.
faults among the servers. For the example whete5, f = 3, Given a set of four data structure§X; ... X,}, each re-
the partitioning algorithm requires nine backups. Consige siding on a distinct server, consider the problem of coimgct
solution with eight backups. In any distribution of the bapk two faults among the servers, with no additional backupessrv
among the servers, the three servers with the maximum number= 4, f = 2, a = 0). Since,[n/(n + a — f)] = 2, the
of data structures will host nine data structures in total Fpartitioning algorithm will partition the set of primarigato
example, if the backups are distributed as evenly as pessilivo blocks, say X1, X2| and[X3, X4] and generate four fused
the three servers hosting the maximum number of backups wiickupsFi (1, 2), F»(1,2) andF1(3,4), F»(3,4). An alternate
each host two backups and a primary. Failure of these serveofution to the problem is to fuse the entire set of primaries
will result in the failure of nine data structures. Usingtjusto generate four fused backups,(1,2,3,4) ... F4(1,2,3,4).
eight backups, we cannot correct nine faults among the déatare, F; (1, 2) is obtained by fusing the primaries; and X,
structures. We generalize this result in the following tieee. whereasFi(1,2,3,4) is obtained by fusing all four primaries.
Theorem 5:Given a set ofn data structures, each residingn the latter case, maintenance is more expensive, since the
on a distinct server, to correg¢tcrash faults among the serverspackups need to receive and act on updates corresponding to
it is necessary and sufficient to a@id/(n+a — f)| - f backup all the primaries, whereas in the former, each backup reseiv
structures, when there are ontyadditional servers availableinputs corresponding to just two primaries. Based on tres.id

to host the backup structures. we define an order among backups. Given a set adata
Proof: structures, X, consider backup$’ and F’, obtained by fusing
(Sufficiency): together a set of primaried/ C X andN C X respectivelyF

We modify the partitioning algorithm far additional servers is less tharF” (F' < F”) if M C N. In the example discussed,
simply by partitioning the primaries intor/(n+a— f)] blocks  Fi(1,2) < Fi(1,2,3,4), as {X1, Xo} € {X1, Xp, X3, Xy}
rather thann/(n— f)] blocks. Since the maximum number ofWe extend this to define an order among sets of backups that
primaries in any block of the partitioning algorithmris-a— f, ~ correctf faults among the servers.
there are at leasf distinct servers (not hosting the primaries Definition 1: (Order among Sets of Backups) Given a set of
in the block) available to host th¢ fused backups of any n data structures, each residing on a distinct server, censid
block of primaries. So, the fused backups can be distributedo sets oft backups,Y andY”’ that correctf faults among



the serversY is less thart”’, denotedY” < Y, if the backups one. Thus, a simple xor or sum based fused backup is sufficient
in Y can be ordered a§F}, ..F;} and the backups i85’ can be Even though we are correctingfaults, the requirement on the
ordered ag Fy,..F{} such that(Vl < i <t¢: F; < F/)A(3j: fused copy is only for a single fault (because we are alsagusin

Fy < Fj). replication).
A set of backupg” is minimalif there exists no set of backups The primaryX; and itsf copies are callednfusedcopies of
Y’ such that’ < Y. X;. If any of thef+1 unfused copies differ, we call the primary,

In the example forn = 4, f = 2, the set of backups, mismatchedLet the state of one of the unfused copies (which
Y = {F1(1,2), F»(1,2), F1(3,4), F»(3,4) }, generated by the includes the value of the data elements, auxiliary strectund
partitioning algorithm is clearly less than the set of bguku index information) bev. The number of unfused copies &f;

Y’ ={Fi(1,2,3,4)...F4(1,2,3,4)}. We show that the parti- with statew is called themultiplicity of that copy.
tioning algorithm generates a minimal set of backups. Theorem 7:Let there be: primaries, each witld (m) nodes

Theorem 6:Given a set ofn data structures, each residingf O(s) size each. There exists an algorithm with additional
on a distinct server, to corregtfaults among the servers, the,, f 4 f data structures that can corretByzantine faults and
partitioning algorithm generates a minimal set of backups. has the same overhead as the replication-based approaacy dur

Proof: When a backup” is generated by fusing togethemormal operation an@(m fs+nst?) overhead during recovery,
a set of primaries, we say that each primary in theapgtears where ¢ is the actual number of faults that occurred in the
in the backup. Given a set of backups that can tolefaf@ults  system.
among the servers, each primary has to appear at fetistes Proof:
across all the backups. The partitioning algorithm geesrat e present an algorithm in Fig. 6 that corre¢t8yzantine
a set of backups, in which each primary appears exacly faits. We keepf copies for each primary and fused data
times. Any other solution in which the primaries appear ¥ac syrctures overall. This results in additionalf + f data
f times will be incomparable t&’,. B structures in the system. If there are no faults among the
unfused copies, alf + 1 copies will result in the same output
V. DETECTION AND CORRECTION OFBYZANTINE FAULTS  and therefore the system will incur the same overhead as the

So far, in this paper, we have only assumed crash faulkgplication-based approach. If the client or one of the duse
We now discuss Byzantine faults where any data structure nggckups detects a mismatch among the values received from
change its state arbitrarily, send wrong conflicting meesadhe unfused copies, then the recovery algorithm is invoked.
to the client/other data structures and in general attempt khe recovery algorithm first reduces the number of mismatche
foil any protocol. However, we assume that the data strestuPfimaries to one and then uses the locate algorithm to iyenti
cannot fake their identity. To corre¢tByzantine faults among the correct primary. We describe the algorithm in greatésitie
n primaries pure replication requir€s additional copies of and prove its correctness in the following paragraphs.
each primary, which ensures that a non-faulty majority ef1 The recovery algorithm first checks the number of primaries
copies are always available. Hence, the correct state afatee that are mismatched. First consider the case when there is a
structure can easily be ascertained. This approach require  Single mismatched primary, say.. Now given the state of all
backup data structures in total. Recovery in replicatiatuces other primaries, we can successively retrieve the staté of
to finding the state with + 1 votes among the f + 1 copies from fused data structureg;, j = 1..f till we find a copy of
of each primary, where is the actual number of faults. SinceX. that hasf+1 multiplicity. Now consider the case when there
this majority can be found by inspecting at most2 copies IS @ mismatch for at least two primaries, say and X,. Let
among the primaries, recovery has time complexitymst), «(c) anda(d) be the largest multiplicity among unfused copies
wherem is the number of nodes in each data structure andof X. and X, respectively. Without loss of generality, assume
is the size of each data structure. thata(c) > «a(d). We show that the copy with multiplicity(c)

In this section, we present a hybrid solution that combinés correct.
fusion with replication to correcf Byzantine faults using just If this copy is not correct, then there are at least) liars
nf + f backup structures, while ensuring minimal overhea@mong unfused copies of.. We now claim that there are at
during normal operation. Recovery is costlier in fusionthwi least f + 1 — «(d) liars among unfused copies df; which
time complexityO(ms f +nst?). The algorithms and proofs in gives us the total number of liars agc)+ f+1—a(d) > f+1
this section are an extension of the results in [8], whicluges contradicting the assumption on the maximum number of
on fault tolerance in infinite state machines. liars. Consider the copy among unfused copiesXof with

In our solution, we maintainf additional copies of each multiplicity a(d). If this copy is correct we havg + 1 — a(d)
primary that enable efficiemtetectionof Byzantine faults. This liars. If this copy is incorrect, we know that the correctuel
maintains the invariant that there is at least one corrgoy @ has multiplicity less than or equal @(d) and therefore there
spite of f Byzantine faults. We also maintajfifused backups are at leastf + 1 — «(d) liars among unfused copies of
for the entire set of primaries, which is used to identify an& 4. Hence, the primary with multiplicityx(c) is correct. By
correctthe Byzantine primaries, after the detection of the faultiglentifying the correct primary, we have reduced the number
Thus, we have a total of f + f backup data structures. Theof mismatched primaries by. By repeating this argument, we
only requirement on the fused backups;, j = 1..f} is that if ~get to the case when there is exactly one mismatched primary,
F; is not faulty, then given the state of any-1 data structures say X..
among{X;...X,}, we can recover the state of the missing We use the locate algorithm in Fig. 6 to locate the correct
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Unfused Copies Recovery Algorithm Locate Algorithm {.):
On receiving any message from client Accquire all available data structures; || Z: set of unfused copies of. };
Update local copy; Let ¢ be the number of mismatchep| Discard copies inZ and fused backups
send state update to fused processes; primaries; with wrong index/aux structures;
send response to the client; while (t > 1) do while (there are mismatched copiesif)
choose a copy of some primady; w = min{r : Ip,q € Z
Client with largest multiplicity; valuep[r] # valueg[r]};
send update to all unfusefl+ 1 copies; restart unfused copies of; with the Y': state[w)] for each copy inZ;
if (all f+ 1 responses identical) state of the chosen copy; j=1;
use the response; t=t—1; while (no value inY” with multiplicity
elseinvoke recovery algorithm; endwhile; f+1
/I Can assume thdtequals one. create,v=state[w] using F; and
Fused Copies /I Let X. be the mismatched primary. all X;,i# cand addv to Y;
On receiving updates from unfused copies| | Locate faulty copy among unfused copies j=3+1
if (all f+ 1 updates identical) of X. using the locate algorithm; endwhile;
carry out the update delete copies fron¥ in which
elseinvoke recovery algorithm; state[w]! = v;
endwhile;

Fig. 6. Detection and Correction of Byzantine Faults

copy of X.. In the locate algorithm, we first identify errorswould either be singleton or will contain only identical deg,

in the auxiliary and index structures. Since this informati which implies that we have located a correct copy.

is replicated at all thg' fused backups, we can obtairf + 1 We now analyze the time complexity of the procediocate

versions of this information among which at legist 1 versions Assume that there are < f actual faults that occurred. We

are identical (at mosf liars). The remainingf versions are delete at least one unfused copyXf in each iteration of the

certainly faulty and unfused copies with this informaticanc outerwhile loop and there are at mostfaulty data structures

be discarded. This operation can be performe@{m f) time, giving us the bound of for the number of iterations of the

as the auxiliary/index structures cont&him) pointers. If there while loop. In each iteration, creatingate|w] requires at most

are no errors among the auxiliary/index structures, wetiffen O(s) state to be decoded at each fused data structure at the cost

errors in the data elements. of O(ns). The maximum number of fused data structures that
The setZ maintains the invariant that it includes all thewould be required ig. Thus, O(nts) work is required for a

correct unfused copies (and may include incorrect copies sifgle iteration before a copy is deleted frémTo determines

well). The invariant is initially true because all indice®rih in incremental fashion requirg3(m fs) work cumulative over

1..f +1 are in Z. Since the set hag + 1 indices and there all iterations. Combining these costs we get the complexdity

are at mostf faults, we know that the sef always contains the algorithm to beD(mfs + nst?). [ |

at least one correct copy. Theorem 7 combines advantages of replication and coding
The outerwhile loop iterates until all copies are identical. Iftheory. We have enough replication to guarantee that tisere i

all copies inZ are identical, from the invariant it follows thatat least one correct copy at all times and therefore we do not

all of them must be correct and we can simply return any @ked to decode the entire state data structure but onlyeltioat

the copies inZ. Otherwise, there exist at least two differentorrect copy. We have also taken advantage of coding theory

copies inZ, sayp and q. Let w be the first key in which to reduce the number of copies frotf to f. It can be seen

states of copiep andq differ. Either copyp or the copyg (or that our algorithm is optimal in the number of unfused and

both) are liars. We now use the fused data structures toatecreused backups it maintains to guarantee that there is dtdeas

copies ofstate[w], the value associated with key. Since we correct unfused copy and that faults of afiydata structures

have the correct copies of all other primari&s,i # c, we can be tolerated. The first requirement dictates that theratb

can use them with the fused backupg j = 1..f. Note that |eastf + 1 unfused copies and the recovery from Byzantine

the fused backups may themselves be wrong so it is necessanit requires that there be at leasf + 1 fused or unfused

to get enough multiplicity for any value to determine if someopies in all.

copy is faulty. Suppose that for somewe get multiplicity of

f + 1. This implies that any copy withstate[w] # v must

be faulty and therefore can safely be deleted fram We

are guaranteed to get a value with multiplicify+ 1 out of In this section, we present a practical application of our

total 2f + 1 values, viz.f + 1 values from unfused copiestechnique based on a real world implementation of a dideibu

of X, and f values decoded using thgé fused backups and system. Amazon’s Dynamo [6] is a distributed data store that

remaining correct primaries. Further, since copi@sdq differ needs to provide both durability and very low response times

in state[w], we are guaranteed to delete at least one of thejavailability) for writes to the end user. They achieve tisng

in each iteration of the inner while loop. Eventually, thé 8e a replication-based solution which is simple to maintain bu

V1. PRACTICAL EXAMPLE: AMAZON’S DYNAMO
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expensive in terms of space. We propose an alternate desigiif, w,r) = (3,2,2). Instead of maintaining three additional
using a combination of both fusion and replication, whichopies for each primaryf(= 3), we maintain just a single
consumes far less space, while guaranteeing nearly the samditional copy for each primary and two fused backups fer th

levels of durability and availability. entire set of primaries as shown in Fig. 7(ii). The fused hbiask
o _ achieve the savings in space while the additional copiesvall
A. Existing Dynamo Design the necessary availability for reads. The fused backupsgalo

We present a simplified version of Dynamo with a focuwith the additional copies can correct three crash faultsragn
on the replication strategy. Dynamo consists of clusters thfe primaries. The basic protocol for reads and writes remai
primary hosts each containing a data store like a hash tatiie same except for the fact that the fused backups cannot
that stores key-value pairs. The key space is partitioneasac directly respond to the client requests since they reqbientd
these hosts to ensure sufficient load-balancing. For bath favalue associated with the key (Section Ill). On receivingrien
tolerance and availabilityf additional copies of each primaryrequest, the coordinator can send the request to these fused
hash table are maintained. Theger 1 identical copies can backups which can respond to the request after updating the
correct f crash faults among the primaries. The system alsable. For the typical case af = 2, as long as the coordinator,
defines two parameters and w which denote the minimum say X; obtains a response from one among the three backups
number of copies that must participate in each read request &one copy and two fused backups) the write can succeed.Shis i
write request respectively. These values are each chosea tesimilar to the existing design and hence performance forewri
less thanf. The authors in [6] mention that the most commois not affected significantly. On the other hand, perfornedioc
values of (n,w,r) are (3,2,2). In Fig. 7(i), we illustrate a reads does drop since the fused backups that contain déta in t
simple set up of Dynamo for = 4 primaries, withf = 3 coded form cannot return the data value corresponding ty a ke
additional copies maintained for each one of them. in an efficient manner. Hence, the two additional copies need

To read and write from the data store, the client can setw answer all requests to maintain availability. Since Dyoa
its request to any one of th¢ + 1 copies responsible for is optimized mainly for writes, this may not be a cause for
the key of the request, and designate it as ¢berdinator concern. To alleviate the load on the fused backups, we can
The coordinator reads/writes the value corresponding & tpartition the set of primaries into smaller blocks, tradsmme
key locally and sends the request to the remainfngopies. of the space efficiency for availability. For the set up shéwn
On receivingr — 1 or w — 1 responses from the backupFig. 7, we can maintain four fused backups whéie F;, are
copies for read and write requests respectively, the coatdi the fused backups foX; and X,, while F3 and F; are the
responds to the client with the data value (for reads) orgmst fused backups of3 and X ;.
acknowledgment (for writes). Sinee < f, clearly some of the  Similar to the existing design of Dynamo, when data struc-
copies may not be up to date when the coordinator respondsures crash, if there are surviving copies responsible fier t
the client. This necessitates some form of data versiomnd, same keys, then they can take over operation. However, since
the coordinator or the client has to reconcile the diffeata  we maintain only one additional copy per primary, it is pbksi
versions on every read. This is considered an acceptabte abat none of the copies remain. In this case, the fused backup
since Dynamo is mainly concerned with optimizing writes tgan mutateinto one or more of the failed primaries. It can
the store. In this setup, when one or more data structure craeceive requests corresponding to the failed primariedatep
the remaining copies responsible for the same key space @8@nlocal hash table and maintain data in its normal form
take over all requests addressed to the failed data stasctu(without fusing them). Concurrently, to recover the failed
Once the crashed data structure comes back, the copy that pisaries, it can obtain the data values from the remaining
acting as proxy just transfers back the keys that were meant €opies and decode the values. Hence, even though tragsientl
the node. In Fig. 7(i), since there can be at most three cragle fault tolerance of the system is reduced, there is not
faults in the system, there is at least one node copy for easlich reduction in operational performance. Dynamo has been
primary remaining for recovery. designed to scale to 100 hosts each containing a primary. So
in a typical cluster withh = 100, f = 3 the original approach

X and its Replicas Fsed Backups for\i{‘ N requiresy* f = 300 backup data structures. Consider a hybrid

@ @ @ @ @ solution that maintains one additional copy for each primar

@ @ @ @ an(_:i maintains two _fused backups for every 10 primaries.
This approach requires only00 + 20 = 120 backup data

@ @ structures. This results in savings in space, as well as pameé
other resources required by the processes running theae dat

@ @ @ @ @ structures. Hence, the hybrid solution can be very benkficia

(i) Existing Dynamo: 12 Backups | (ii) Hybrid Dynamo: 6 Backups for such a real-world System_

Fig. 7. Design Strategies for Dynamo VII. | MPLEMENTATION AND RESULTS

In this section, we describe our fusion-based data streictur
B. Hybrid Dynamo Design library [1] that includes all data structures provided by th
We propose a hybrid design for Dynamo that uses a comBava Collection Framework. Further we have implemented our
nation of fusion and replication. We focus on the typicalecasused backups using Cauchy RS codes (referred ©aaghy-
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Fusion and Vandermonde RS code¥af-Fusion. We refer among the primaries.

to either of these implementations as ttarrent version of 2) Recovery Time\We measure recovery time as the time
fusion. We have compared its performance against reicatitaken to recover the state of the crashed data strucafterghe
and the older version of fusiorD(d-Fusior) [9]. Old-Fusion client obtains the state of the requisite data structures Skme
has a different, simpler design of the fused backups, similgxperiment as that used to measure backup space was used
to the one presented in the design motivation of Section Ith compare the four solutions. Cauchy-Fusion and Van-Fusio
We extend it for f-fault tolerance using Vandermonde R$erform much better than Old-Fusion (approximately?2
codes. The current versions of fusion, using either Cauchy fmes) because recovery in fusion involves iterating tgtoall
Vandermonde RS, outperform the older version on all thrgge nodes of each fused backup. The current design contains
counts: Backups space, update time at the backups and tf@ger nodes and hence performs better. The time taken for
taken for recovery. In terms of comparison with replicatio® recovery by replication is negligible as compared to fusion
achieve almost: times savings in space as confirmed by thgased solutions (the curve is almost merged with the x-axis i
theoretical reSUltS, while not CaUSing too much Updatehﬁm. the graphs)_ This is to be expected since recovery in rai]j'm;a
Recovery is much cheaper in replication. requires just copying the failed data structures afteriniotg
Fault-Tolerant Data Structure Library We implemented them. However, note that, even far= 10, the time taken for
fused backups and primary wrappers for the data structuresovery by both Cauchy and Van-Fusion is under 40 millisecs
in the Java 6 Collection framework that are broadly divide@his can be a small cost to pay for the considerable savings
into list-based, map-based, set-based and queue-basad thit we achieve in space.
structures. We evaluated the performance of a represemtati Further analysis of the recovery times in both Cauchy-Fusio
data structure in two of these categories: linked lists &t | and Van-Fusion shows that almost 40 % of the cost of recovery
based and tree maps for map-based data structures. Both @dpent in decoding the coded data elements. This implies tw
Fusion and Van-Fusion use Vandermonde RS codes with figiings. First, using a different code such as LDPC codes, tha
size 2%, while Cauchy-Fusion uses Cauchy RS codes, witlffers faster decoding in exchange for less space efficiency
field size2®. The RS codes we have used are based on igion can achieve faster recovery times. Second, more&an
C++ library provided by James S. Plank [21]. Currently wes of recovery time is spent on just iterating through the bgck
just support the Integer data type for the data elementseat Hodes, to retrieve the data for decoding. Hence, optimittieg
primaries. recovery algorithm, can reduce the recovery time. The other
Evaluation We implemented a distributed system of hostgbservation is that, even though Cauchy RS codes have much
each running either a primary or a backup data structure afagter decode times than Vandermonde RS codes, the recovery
compared the performance of the four solutions: Replioatictime for Cauchy-Fusion is only marginally better than Van-
Old-Fusion, Van-Fusion and Cauchy-Fusion. The algorithnisision. We believe this is mainly due to the small data size
were implemented in Java 6 with TCP sockets for comm(4 byte integers). For larger data values, Cauchy-Fusightni
nication and the experiments were executed on a single Inpelrform much better than Van-Fusion. These are future areas
quad-core PC with 2.66 GHz clock frequency and 12 GB RAMf research that we wish to explore.
The three parameters that were varied across the expesmenB) Update Time: Finally, to measure the update time at
were the number of primaries, number of faultsf and the the backups, we fixedh = 1, f = 1 and variedops from
total number of operations performed per primasys. The 500 to 5000. Both Cauchy-Fusion and Van-Fusion has more
operations were biased towards inserts (80 %) and the tagtdlate overhead as compared to replication (approximatBly
were averaged over five runs. In our experiments, we ornlynes slower) while they perform better than the older \@rsi
assume crash faults. We describe the results for the three mapproximately 2.5 times faster). Since the current desifjn
tests that we performed for linked lists: backup space, #pdaused backups has fewer backup nodes, it takes lesser time
time at the backup and recovery time (Fig. 8). The results fay iterate through the nodes for an update. The update time
tree maps are of a similar nature (Fig. 10 in the AppendiX). it a backup can be divided into two parts: the time taken to
the future, we wish to evaluate fusion over physically digpa |ocate the node to update plus the time taken to update the
machines with other erasure codes such as LDPC codes [7] aade’s code value. The code update time was insignificantly
LT codes [13] that offer different trade-offs between baekuow and almost all the update time was spent in locating the
space and recovery time. node. Hence, optimizing the update algorithm can reduce the
1) Backup SpaceTo measure the space required by thtotal update time considerably. This also explains why Ggic
backups, we assume that the size of data far exceeds fion does not achieve any improvement over Van-Fusion and
overhead of the index structure and hence, we just plot tAktimes does slightly worse, because the overhead of dealin
total number of backup nodes required by each solution. Wéth blocks of data in Cauchy-Fusion exceeds the savings
fix f =3, ops = 500 and varyn from 1 to 10. Cauchy-Fusion achieved by faster updates. As mentioned before, we believe
and Van-Fusion, differ only in the type of RS code used, bat uthat with the larger data sizes, Cauchy-Fusion may perfam a
the same design for the backups. So, they both require the s&@xpected.
number of backup nodes. Both Cauchy-Fusion and Van-FusioriThe practical results hence confirm the theoretical bounds:
perform much better than both replication (approximately the solution presented in this paper saves considerablyanes
times) and Old-Fusion (approximately/2 times) because the while causing minimal overhead during normal operatiore Th
number of nodes per backup never exceeds the maximuaost of recovery, albeit higher than replication, is stithal
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(i) Size Test, Faults = 3, Updates/primary = 500 (iii) Recovery Test, Faults = 3, Updates/primary = 500 (ii) Update Test, Primaries = 1, Faults = 1
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Fig. 8. Linked List Tests

enough for most practical applications. correctt Byzantine faults. In the case of replication this is only
O(msf). Thus, replication is much more efficient than fusion in
VIIl. COMPARATIVE STUDY: REPLICATION VS. FUSION terms of the time taken for recovery. However, since we agsum
: . . . faults to be rare, the cost of recovery may be acceptable.
In this section, we summarize the main differences between f) Normal (fault-free) Operation Message$his parame-
replication and fusion (Table I). Throughout this sectiam ter refers to the number of messages that the primary needs to

aszume? prgary datr? Etru;:]tur(.as, contamt:ng a(tj T%m) send to the backups for any update. We assume that the size of
nodes of size)(s) each. Each primary can be updatedip) the key for insert or delete is insignificantly small as conepa

ime. We assume that the system can correct eifherash to the data values. In fusion, for crash faults, every update

;au::s t(;]r { Byzant’llnet fz#]ﬂtts, tﬁnd IS the_ actu_al tﬂymberm())f to the primary needs to be sent fdbackups. The size of each
aufts that occur. Note thal, the comparison in this secton ssage i2s since we need to send the new value and old

) e
independent of the type of data structure used. We assurme {/F}]jﬁlue to the backups. For deletes, the size of each message is
the fusion operator is RS coding, which only requifeparity 9 ¥

. s since we need to send the old value and the value of the
blocks to correctf erasures among a given set of data block?c)p-of-stack element (as shown in Fig. 5). Hence, for crash
a) Number of BackupsTo correctf crash faults among '

imaries. fusi 08 backup data struct faults, in fusion, for any updatef messages of sizes need
primaries, fusion requiref backup data structures as compare be exchanged. For replication, in inserts, only the nelwesa

fo the T.Lf backup dqta struct_ures required by replication. F?]reeds to be sent to thicopies of the primary and for deletes,
Byzantine faults, fusion requiresf + f backups as comparedonly the key to be deleted needs to be sent. Hence, for crash

to the2n f backups required by replication. f : o :
aults in replication, for any updatg messages of size at most
b) Backup SpaceFor crash faults, the total space occu- P y updatg g

dtob h d.
pied by the fused backupsiissf (f backups of sizens each) 5 NEeC 10 be exchange

dt ; licat back f s For Byzantine faults, for fusion, since we maintgircopies
as compare @m.‘sf or replication o ackups of SIzens ¢ aach primary and’ fused backups, it needé messages of
each). For Byzantine faults, since we maintginopies of each

. : ) size s and f messages of siz2s respectively. In replication,
primary along withf fused backups, the space complexity fo§f messages of size need to be sent to tH&f copies of the

fusion isnfms +msf as compared t@nmsf for replication. ;01 tor inserts and for deletes, oryf keys need to be

¢) Maximum Load on any Backue define load as the sent
Pumld)et: oLprmr:anets each_ backup htasf to SEIvice. _Smgg each g) Recovery MessagesThis refers to the number of
used backup has to receive requests frormafirimaries the messages that need to be exchanged once a fault has been

maximum Io_ad on the fused bagkupnsﬂmes more than the detected. When crash faults are detected, in fusion, the client
Ioaq for repl|cat|on. Note that, higher the v_aluemmore the needs to acquire the state of all the remaining data strestur
savings In space/number of backus(4) t|me_s), but more This requires —t messages of siz8@(ms) each. In replication

the maximum load on any backup (agaiPn) times). the client only needs to acquire the state of the failed ®opie

.d) Normal (fault-free) Operatioq TimeThe fuged back- requiring onlyt messages of siz@&(ms) each. For Byzantine
ups in our system can be updated with the same time Complﬁﬁi]lts, in fusion, the state of alk + nf + f data structures

ity as that for updating the corresponding primary i@(p). P - - ;
(primaries and backups) needs to be acquired. This requires
We have shown that the updates at the backup can be rece|§1/ dj:f messages of siz&(ms) each. In replication, only the

@n any or_der and h_ence, there is no need for _synchrony. Al ate of any2t + 1 copies of the faulty primary are needed,
!f Byzantine faults/llar.s need to be detected Wllth gveryalpd requiring just2t + 1 messages of siz&(ms) each.
in a system, then fusion causes no overhead in time.
e) Recovery TimeThis parameter refers to the time com-
plexity of recovery at the client, after it has acquired thegtes
of the relevant data structures. In the case of fusion, tovac  Given n primaries, we present a fusion-based technique
fromt (¢t < f) crash faults, we need to decode the backups witbr fault tolerance that guarante€Xn) savings in space as
total time complexityO(mst?n). For replication, this is only compared to replication with almost no overhead during radrm
O(mst). For Byzantine faults, fusion take3(m fs + nst?) to operation. We provide a generic design of fused backups and

IX. CONCLUSION
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TABLE |
REPLICATION VS. FUSION
Rep-Crash Fusion-Crash Rep-Byz Fusion-Byz

Number of Backups nf I 2nf nf+f

Backup Space nmsf msf 2nms f nmsf +msf
Max Load/Backup O(1) O(n) O(1) O(n)

Normal Operation Time | O(p) O(p) O(p) O(p)
Recovery Time O(mst) O(mst?n) O(msf) O(msf + nst?)

Normal Operation Messages f msgs, sizes each

f msgs, siz&s each

2f msgs, sizes each f msgs sizes, f msgs

size2s
Recovery Messages t msgs, sizens each n—t mMsgs, Sizens each || 2t + 1 msgs, sizems | nf +n + f msgs, size
each ms each
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APPENDIX Fusion (Encoding) The algorithm comprises of generating
ann x (n+ f) information dispersal matri3, that satisfies
the following properties:

The design of fused backup for linked lists can be general-e The n x n matrix in the firstn columns is an identity
ized for most commonly used data structures. We explain this matrix.
using the example of balanced binary search trees (BBST)e Any sub-matrix formed by the deletion ¢f columns of
Fig. 9(i) shows two primary BBSTs and a fused backup. For the matrix, is invertible.
simplicity, we explain the design using just one backup. Théence,B can be represented as the combination of an identity
index structure a#; for X; is a BBST containing a root andmatrix I and another matris, i.e., B = [I S]. B is derived
two children, identical in structure t&’;. The algorithms for from a Vandermonde matrix with elementary matrix operation
inserts and deletes at both primaries and backups is simil@&t D be the data vector an® the encoded vector obtained
to linked lists except for the fact that at the primary, we argfter multiplyingD with B, i.e.,[D] x [B] = [D] x[I 5] =
inserting into a primary BBST and similarly at the backuQP} = [D C}, whereC' is the set of check sums (the fused
we are inserting into a BBST containing the order informatiodata) computed for the data sBt
rather than a list. The update to the backup stack is idénticaUpdate Whenever a data word; is updated tad}, all the
to that of linked list primaries. Fig. 9(ii) shows the stafe)s; code words can be updated just using the differefice d;
and F; after the delete ofi; followed by the insert ofis. The andc;:
aux list at X; specifies the ordefa; — aa — a4), which is ¢ = cj +bji(d; — d;)

the order in which the elements df; are maintained af’. e ath . , , .
L . C whereb; ; is (j,4)"" element of the information dispersal matrix
Similarly, indexz BBS[1] maintains the order of the element D ; .
. . Since the new code word is computed without the value of
at X,. For example, as the root &f; containsa, the root of . .
the other code words, updates are very efficient in RS erasure

index BBST[1] points to the fused node containing. . . .
So far we have focused only on the insert and dele(t:odlng. This update corresponds to thgdateCode routine

i 1o the data struct . th the ¢ tu%ed in Fig. 4 and 5.
operations 1o the data SITUCIUre, since those are the apea Recovery (Decoding)n the case of erasures, we can recover
that add and delete data nodes. However, since we maintain

tire ind truct t the back t all of t tWe data words using the encoded vedtoand the information
entire index structure at the backups, we support all operst ; persal matribx3. Data word erasures are reflected by deleting
that do not involve decoding the values in the fused nodes

. 2 e corresponding columns frof and P to obtainB’ and P’
the backup. We illustrate this with the example of the baéan%at satisfypto thegequationD % B' = P'. When exactlyf data

operation in the BBST shown in Fig. 9(iii). The balance at th\?/ords fail, B' is an x n matrix. As mentioned above, any sub-

primary just involves a change in.the rela}tive ordering of t atrix generated by deletinfycolumns fromB is an invertible
elements. The update corresponding to this at the fusedipac atrix. Hence, matrixB’ is guaranteed to be invertible. The

will change the relative ordering of the elements in the mdedata words can be generated as followé:x (B')~' = D

BBST, identical to that at the primary. In conclusion, ouside We consider the time complexity of recovery for fused

for fused backups can support all types of data structuréds Wba kups using RS codes as the fusion operator. As seen in

many complex opergtions._ Based on this we have implementgg III-B, to recover failed data structures, wheté< f)
fusible backups for linked lists, vectors, queues, haslessind is the actual number of failures, we need to iterate through

tree maps. In Fig. .10,.we _pr_esent the results of our expeFEmeme remaining structures and decode the values. Giveata
for tree maps, which is similar to the results for linkeddist values, the cost of recoveringvalues, each of size by RS
decoding isO(nst?) [20], wheret is the actual number of
crash faults. Since the number of nodes in the fused list is
bound by the size of the primary list;, the time complexity

In this section, we present the Reed Solomon (RS) erastwerecovery isO(nmst?) where each primary ha3(m) nodes
codes that can be used as a fusion operator to corfeciof O(s) size each. Recovery is much cheaper in replication and
crash faults among the primaries usiigbackups. Readershas time complexityO(mst).
are referred to standard texts on coding theory [2], [129][1 2) Cauchy RS Coding:This technique is different from
for a thorough treatment. For simplicity, we first describe t Vandermonde RS coding in two important ways:
classical Vandermonde RS codes to explain the basic opesati 1) Consider the information dispersal matrix represented

A. Fused Backups for Complex Data Structures

B. Reed Solomon Codes as Fusion Operator

of encoding and decoding. Later, we describe the best known as B = [IS], where I is the n x n identity matrix.
implementation of RS codes called the Cauchy RS codes [3], In Vandermonde RS codingB is derived from the
[22]. Vandermonde matrix, but in Cauchy RS coding, is
1) Vandermonde RS Coding:Given n data words the transpose of a Cauchy matrix. Ahx n Cauchy
{dy,ds,...d,}, Vandermonde RS erasure coding genergtes matrix is defined over the finite field’F'(2*), where
checksum words{cy, ¢, ...cy} that can correctf erasures n+ f < 2% as follows [22]. LetX = {x;1...2,} and
among the data and the checksum words. All operations are Y = {y;...y,} be defined such that;, y; are distinct
performed over the finite field7F'(2*), wheren + f < 2. elements of7F(2") and X NY = ¢. The Cauchy matrix
The word sizes ar@” and the typical values ai are chosen defined byX andY has1/(x; + y;) in elementi, j.

to 4, 8 and 16 so that 32 and 64 bit machine words can be?) In Vandermonde RS coding, all operations are performed
evenly divided into code-words. over the finite fieldGF(2"), which is costly for values



primBBST

R

& b ®-

auz List P

Xi

o
@4 as + b2
@4 a1+ by

(if) X, Fy after delete a3 and insert ay

dataStackT os

tos(1]

tos[2]

N

as

: / index BBST2)
as + by
index BBSTI1]

a]+b]

dataStack

F

D<1—|D_<»—t>a2+ b2
a; + by

(€2

(iii) Xy, F after balance

Fig. 9. Fused Backups for Balanced Binary Search Trees (Keyshown due to space constraint)

(i) Size Test, Faults = 3, Updates/primary = 500

(iii) Recovery Test, Faults = 3, Updates/primary = 500

O-0 Replication
G-© Van-Fusion
— Cauchy-Fusion [u}

O-0 Replication
©-© Van-Fusion
— Cauchy-Fusion

g

N
s
3
S
s

8000

30000

6000]
25000

20000

Backup Size

4000
15000

2000 10000

Recovery Time in Microseconds

o
S
3
S

m m m m m

m m

©
-
5

s 6 7
Number of Primaries

Fig. 10. Tree Map Tests

4 5 6 7
Number of Primaries

m d
9 10

Update Time/Operation in Microseconds

(i) Update Time Test, Primaries = 1, Faults = 1

-0 Replication
G-© Van-Fusion
— Cauchy-Fusion

16

of w > 1, since they involve multiple table look- difference of the primary elements andb;. For RS codes,
ups. In Cauchy RS coding, each element®f(2*) is we first generate the checksum blocks= [c1 Ca C3] for
represented by & x w vector of bits (refer to [3] for D = [al bl]. The fused nodes in th&" position of Fy, Fy

details). This replaces all operations ovgf'(2%) with

and F3 will contain the values:;, co andcs respectively. In

simple zor operations. The information dispersal matrixig. 3(ii), when an element is inserted in;, the 2"¢ node
is now converted into an x (wn+wf) matrix. Instead of Fy and F; is updated tau} + b3 anda} — b3 respectively.
of dividing the data int words of siz2"”, the entire data With RS codes as the fusion operator, the code value of the
block is divided intow packetswhere each packet's size2"? node in the fused backup; (j : 1...3) is updated with
must be a multiple of the machine’s word size (32 or 6fbld code value ;1 (a})].

bit). Note that, while in Vandermonde RS codinghad
to be limited to 4,8 and 16, in Cauchy RS codingcan
be chosen as small as possible.

The basic operations of encoding, update and decoding are

identical to Vandermonde RS coding. Since e operations
replace the operations over the larger finite fields, engpdin
and decoding is much faster in Cauchy RS coding. In the
following paragraph, we give an example illustrating the us
of these codes in our fused backups. For simplicity, we assum
Vandermonde RS codes.

In Fig. 3(i), we have used simple sum-difference as the fusio
operator that can correct two crash faults. In this exampée,
use RS codes to correct three crash faults. Hence, we nmaintai
three fused backupB;, F, and F3, each of identical structure
but with different values in the data nodes. We first generate
the information dispersal matri8 = [/ S| forn =3, f =3
andw =4 (n+ f < 2%). In Fig. 3, consider the fused node
in the 0** position in F; and F,, that contain the sum and



