Repeated Computation of Global Functions in a
Distributed Environment

Vijay K. Garg and Joydeep Ghosh

Abstract—In a distributed system, many algorithms need re-
peated computation of a global function. These algorithms
generally use a static hierarchy for gathering necessary data
from all processes. As a result, they are unfair to pro-
cesses at higher levels of the hierarchy, who have to perform
more work than processes at lower levels. In this paper, we
present a new revolving hierarchical scheme, in which the
position of a process in the hierarchy changes with time.
This reorganization of hierarchy is achieved concurrently
with its use. It results in algorithms that are not only fair
to all processes, but also less expensive in terms of mes-
sages. The reduction in the number of messages is achieved
by reusing messages for more than one computation of the
global function. The technique is illustrated for distributed
branch-and-bound problem, and for asynchronous compu-
tation of fixed points.

Keywords— Global Functions, Distributed Programs, Hier-
archy, Permutations

I. INTRODUCTION

In a distributed system, many algorithms compute a
global function that requires information from all processes.
These algorithms are sometimes called consensus protocols
[13,2,3] , or total algorithms [19] Moreover, in many appli-
cations, the global function is computed several times [5].
Examples of applications which require repeated computa-
tion of a global function are deadlock detection [7] clock
synchronization [11], distributed branch and bound [17],
parallel alpha-and-beta search [9], global snapshot compu-
tation [6], and N+1-section search [1]. Examples of infor-
mation necessary to compute the global function are local
wait-for graphs for the deadlock detection problem, and
the value of local bounds for distributed branch-and-bound
search. Any centralized algorithm for gathering informa-
tion is necessarily unfair towards the coordinator which has
to do more work than others [15]. A centralized coordina-
tor may also become a performance bottleneck. At the
other extreme, an equitable ring-based algorithm takes a
long time to collect the entire information [14, 19].

A common compromise is to logically map the processes
onto a k-ary tree. Each process in the tree is responsible
for relaying the information needed from its sub-tree to its
parent. The root of the tree plays the role of coordinator.
This approach guarantees that any process has to commu-
nicate with at most k& 4+ 1 other processes. In addition, the
intermediate processes may perform partial computations

This work was supported in part by the NSF Grant CCR 9110605, the
Navy Grant N00039-91-C-0082, NSF Grant MIP-9011787 TATP Grant
14-9712, a TRW faculty assistantship award, and IBM Agreement 153.

Authors are with the Electrical and Computer Engineering Dept, Uni-
versity
of Texas at Austin, Austin, TX 78712-1084; vijay@pine.ece.utexas.edu;
ghosh@pine.ece.utexas.edu

so that the root has less work to do. The approach is still
unfair to processes at the higher levels of the tree who, in
general, have to perform more work than processes at the
lower levels.

This paper introduces a new revolving hierarchical scheme
in which every process has to perform the same amount of
work over time. In this scheme, the place of a process in the
logical hierarchy changes with time. Moreover, information
from previous hierarchies is used so that the reorganization
of hierarchy is done concurrently with its use. This tech-
nique, when applied to any hierarchical algorithm, results
in an algorithm that is not only fair to all processes, but
also less expensive in terms of messages. The reduction
in the number of messages is achieved by reuse of a mes-
sage for more than one computation of the global function.
We illustrate applications of this technique in distributed
branch-and-bound problems and asynchronous computa-
tion of fixed points.

The 1dea of reorganization has appeared in the literature
in many contexts. Many systems provide fault-tolerance
by reorganizing the computation when a process/processor
fails [21, 20, 16]. Worm programs [18] reorganize them-
selves to adapt to the availability of idle workstations and
their failure. For example, a worm may consist of many
more segments at night than during daytime. All the above
systems adopt an ad-hoc approach to reorganization, which
is done as an exception rather than a rule. Also, they em-
phasize fault-tolerance and not equitable workload distri-
bution, which is the main aim of our scheme.

The algorithms in this paper are applicable to problems
where the degree of each of the N processes in the underly-
ing communication graph is at least Q(log(N)), and where
the communication graph is known to all processes in the
system. Similar conditions have been 1mposed for total
algorithms [19], and consensus protocols [2,3] for computa-
tion of global functions. These approaches use the same al-
gorithm several times if repeated computation of the global
function is required, thus resulting in many wasteful mes-
sages. For example, K computations of a global function
by [2] requires O(K N log(N)) messages. Our algorithms
require only O(K N) messages.

This paper is organized as follows. Section II summa-
rizes the desirable properties of a distributed data gather-
ing problem. The properties that are desirable include light
load on processes, high concurrency, and equitable work-
load distribution. We show that none of the existing meth-
ods satisfy all these properties. Section III describes the

revolving hierarchal scheme and shows that it possesses all
the desirable properties outlined in Section II. The scheme
is based on permutations which satisfy constraints that
arise from the need to reuse messages and distribute the
workload equally. A systematic method is given for gener-
ating such permutations. Section IV discusses an efficient
implementation of the technique. Section V deals with a
stricter requirement that no process at any step sends or
receives more than one message, and presents a unifying
scheme that can be used both for data gathering and re-
sults dissemination. Section VI generalizes the results of
the previous sections for an arbitrary number of processes,
and asynchronous communication. Section VII describes
applications of our techniques.

II. REQUIREMENTS FOR DISTRIBUTED DATA GATHERING

In this paper, by a distributed system we mean a set
of processes that communicate with each other using syn-
chronous messages, that is, the sender of a message waits
till the receiver is ready (as in CSP). This can be easily
implemented by ensuring that the sender does not proceed
till it receives an acknowledgement from the receiver. How-
ever, the latter part of the paper also discusses applications
of our technique for distributed systems with asynchronous
messages. It is assumed that transmission is error-free and
none of the processors crash during the computation.

A distributed data gathering problem requires that one
process receives enough data from everybody, directly or
indirectly, to be able to compute a function of the global
state. Let a time step of the algorithm be the time it
takes for a process to send a message. Clearly, a process
cannot send two messages in one time step. The desirable
properties of any algorithm that achieves data gathering in
a distributed system are:

1. Light Load: Let there be N processes in the system.
No process should receive more than k& messages in one time
step of the algorithm, where k is a parameter dependent
on the application, and on the physical characteristics of
the network. A small value of k guarantees that no process
is swamped by a large number of messages.

2. High Concurrency: Given the above constraint
and the fact that there must be some communication, di-
rectly or indirectly, from every process to the coordinator
process, it can be deduced that any algorithm takes at least
logi(N) time steps. To see this, note that at the end of the
first step, a process knows the state of at most k + 1 pro-
cesses. By the same argument, at the end of j* time step,
a process knows the state of at most (k/ +k/ "1+ k4=2.. +1)
processes. It follows that at least logy(N) — 1 step are re-
quired. The second requirement is that the algorithm must
not take more than O(log(N)) steps.

3. Equal Load: For the purposes of load-balancing
and fairness each process should send and receive the same
number and the same size of messages over time. In addi-
tion, they should perform the same set of operations in the
algorithm. This requirement assumes special importance
for algorithms that run for a long time or when the pro-
cesses belong to different individuals/organizations. The

condition of equitable load is different from the symme-
try requirement in [5,3], as processes in our algorithms can
have different roles at a specific phase of the algorithm.
However, in most practical applications, it is sufficient to
ensure that all processes share the workload and responsi-
bilities equally over time, rather than at every instant.

Let us consider the three main approaches taken for dis-
tributed data gathering, in light of the requirements stated
above.

Centralized: In this scheme, every process sends its data
directly to a pre-chosen coordinator. This scheme violates
the requirements on light and equal load. The load on the
coordinator can be reduced by constraining it to receive
only k messages per time step, but then it takes N/k time
steps to gather all the required information.

Ring-based: In this scheme, processes are organized in a
ring fashion, and any process communicates directly only
with its left and right neighbors. Ring-based algorithms
can result in an equal load on all processes, but the level of
concurrency is low since it takes N — 1 time steps for one
process to receive information from all other processes [8].

Hierarchy based: A logical k-ary tree is first mapped onto
the set of processes. At every time step, each process sends
states of processes in its sub-tree to 1ts parent. This means
that the root process receives information from all pro-
cesses in O(log(N)) time. This approach also satisfies the
constraint on the number of messages received per unit
time; however, it violates the requirement of fairness, since
processes at the higher levels of a hierarchy have to do more
work than processes at the lower levels.

IIT. AN EQUITABLE, REVOLVING HIERARCHY

In this section, we present an algorithm based on revolv-
ing hierarchy among processes [10], that satisfies all three
desired properties of a distributed data gathering scheme.
That is, the algorithm does not require a process to receive
more than k£ messages per time step, computes the global
function in O(log(N)) steps, and puts an equal work load
on all processes.

Let there be N processes, numbered uniquely from the
set P = {l,..., N}, that are organized in the form of a
k-ary tree. This tree also has N positions. Let pos(x,t)
be the position of the process x at time ¢t. For simplicity,
let pos(x,0) = « for all # € P. The reconfiguration of
hierarchy consists of the remapping of processes to different
positions. This reconfiguration is defined using a function
next : P — P which gives the new position of the process
which was earlier in position x#. That is, if for some y
and ¢, pos(y,t) = », then pos(y,t + 1) = next(x). As two
processes cannot be assigned the same position, next is a 1-
1 and onto function on the set P. Such functions are called
permutations. Any permutation can be written as product
of disjoint cycles [12]. For any permutation f defined on
the set P, the orbit of any element x € P is defined to be:

orbit(x) = { [/ (a)]i > 0}

That is, orbit(z) contains all elements in the cycle that
contains x. f is called primitive if there exists a € P

time message 1 message 2 idle
0 1,3 —2 57— 6 4
1 2,6 — 4 1,3—5 7
2 45— 7 2,6 — 1 3
3 71 —3 45 — 2 6

Fig. 1. A message sequence for repeated computation of a
global function

such that orbit(z) = P. We require next to be primitive
so that any process occupies all positions in N time units.

As an illustration of a revolving hierarchy, consider the
case when N =7 and k = 2. Figure 1 shows a sequence of
message transmissions that exhibit the desired properties
outlined in Section II. At time ¢ = 1, process 4 is able
to obtain information from all other processes, since the
messages received by it from processes 2 and 6 include the
(possibly partially processed) messages sent by processes 1,
3,5 and 7 in the previous time step. Thus it can compute
a global function at the end of this time step. Similarly, at
t = 2, process 7 can compute a global function.

The sequences of messages given in Fig. 1 is actually ob-
tained by the revolving hierarchy illustrated in Fig. 2. To
recognize this, consider an initial assignment of process ¢
to node ¢ of tree 71, using an wnorder labeling. At t = 0,
the leaves of this tree send a message to their parents. At
t = 1, we want to continue the propagation of these mes-
sages to the root of 77, and simultaneously initiate mes-
sages needed for the next global computation. This can be
achieved by defining another tree 7% of N nodes such that
the internal nodes of T form one subtree of 75, say the left
subtree, and the leaf processes are remapped onto the root
and the other subtree of T5. The messages sent at ¢ = 1
are precisely those sent by the leaf nodes of T5 to their
parents. Subsequent message sequences are obtained in a
similar fashion by forming a new tree at each time step, as
illustrated in Fig. 2. The trees 77,75, ..., are called gather
trees since each such tree determines the sequence of mes-
sages used to collect all information required to compute
one global function. Thus, a throughput of one global re-
sult per unit time is achieved after an initial startup delay
of [log N1 — 1 steps. Note that this is possible because of
the use of a message in [log N — 1 gather trees. Also, all
messages may not be of equal size, since a message sent
by a process may include a portion of the messages that it
received in the previous time step. The actual content of
messages 1s application dependent, and will be examined
in Section VII. In this section, we shall concentrate on the
sequence of messages generated, and on the properties that
they satisfy.

The sequence of logical trees 77,75, ..., represents the
time evolution of the assignment of the N processes to po-
sitions in a revolving tree. At every step, the processes are
remapped onto the nodes of this tree according to a per-
mutation function, next(x), applied to the current position
z, 1 <& < N. For the example in Fig. 2, with an inorder

Fig. 2. Overlapping trees that determine message
sequences

labeling of the nodes, this permutation is:
(1234567) (1)
5172634
Thus, process 1 which is in position 1 in 77, goes to position
5 1in T and position 6 in T5.

To generate a revolving hierarchy, next(x) must satisfy
the following two constraints:

1) Gather Tree Constraint: The interior nodes of T;
should form a subtree of T;;1. That is, interior nodes
at level j in T; should be mapped to level j 4+ 1 in T;41,
and the parent-child relationships among these nodes be
preserved. This restriction ensures that the message se-
quences required for the root process at each snapshot to
obtain global information are not disturbed during the re-
organization needed to initiate messages for the next com-
putation.

The following permutation function on inorder labels sat-
isfies the gather tree constraint:

next(x) = x/2, for even(x)

2) Fairness Constraint: The permutation should be prim-
itive. This ensures that a process visits each position in the
logical tree exactly once in NV steps. Thus, if different posi-
tions require different workload, then each process will end
up doing an equal amount of work after N time units.

We now present a permutation that satisfies gather-tree
and fairness constraints. Define lead0(x) as a function that
returns the number of leading zeros in the n bit binary

representation of x. For x = 1,2,...,N = 2" — 1, consider
the following next(x) function:
next(x)

/* Type T move */
if (even(z)) then

= x/2;

/* Type 1T move */
if (odd(x) A (z < 2771)) then
2= % 2]ead0(x) 4 1’

/* Type IIT move */
if (odd(x) A (z > 2771)) then
= (z+1);
if (@ = N+1) then 2’ :=2'/2;

return(z’);

1

The next function is applied to determine the next po-
sition of a process in an inorder labelled complete binary
tree. Let the NV nodes be divided into four disjoint groups:

Name Members

Rint even(z) A (z > 2771
Lint even(z) A (z < 277 1)
LLeaf odd(z)A(z <2771
RLeaf odd(z)A(z>2""1)

Type I moves are required by the gather-tree constraint.
Thus, if # is even it moves down the tree till 1t becomes a
left leaf. Type II and Type III moves just visit the right
subtree using inorder traversal. For a Type Il move, z *
2lead0(x) gives the last node visited in the right subtree.
The next node to be visited i1s obtained by adding 1 to the
previous node visited. Note that as @ € LLeaf for a Type
IT move, lead0(x) > 1, hence 2’ is odd. Also the msb of &’
is 1, because z is multiplied by 2/¢44°(#) Thus, a Type 11
move maps a left leaf node to a right leaf node. A Type
IIT move just visits the next node in the inorder traversal,
unless * = N in which case z’ is made to be the root to
start the cycle all over again.

To show that next satisfies fairness and gather-tree con-
straints, we need a few Lemmas.

Lemma 1 Let f : P — P be a permutation.
Let Py, Py, ..., Pp_1 be a partition of P into m disjoint sets
such that

f(PZ) = P(i+1) mod m (2)
Then, f is primitive if and only if Jx € Py : Py C orbit(x)

Proof: Tt f is primitive, orbit(z) = P, and therefore in-
cludes Py. We now show the converse. For any = € P,
Py C orbit(z) implies that Vj : fI(Py) C fI(orbit(z)).
Since f(orbit(z)) C orbit(z), we get that Vj : f/(P;) C
orbit(x). Further, as f(P;) = P(it1) mod m, it follows that
Vj: P; Corbit(z). Hence, P C orbit(z).

We say that @ C P is a core of P with respect to f iff
for any x that is in P, but not in (), there exists an ¢ such
that fi(z) € Q. Intuitively, Q is any subset of P which
has non-empty intersection with all cycles in P. We define
restriction of a permutation f : P — P to its core Q C P

(denoted by fo : @ — Q) as follows:
fo(z) = fi(z) where j = min;>1{i|f*(z) € Q}.

The following Lemma proves that fg is also a permuta-
tion.

Lemma 2 If f : P — P s a permutation, then fo : Q —
Q 1s also a permutation for any core () of P with respect

to f.

Proof: We have to show that fg is a 1-1 and onto function.
As both the domain and the range of fg are finite and have
the same cardinality, it is sufficient to show that fg is 1-1.
We show this by contradiction. Let z,y € @ such that
r #£y, but fo(z) = Jo(y). Let k = min;>1{i|f*(x) € Q},
and { = min;>1{i|f*(y) € @}. k and [exist as Q is a core.
Assume without loss of generality that & > {. Then, by
definition of fo, f*(x) = f'(y). As f is a permutation
and therefore invertible, we deduce that f*~!(z) = y. If
k =1, we get that x = y, which is a contradiction. If £ > [,
we have found a strictly smaller number than &k such that
ff=!(z) € Q, again a contradiction.

n
The next Lemma provides the motivation of defining fg.

Lemma 3 A permutation f : P — P s primitive iff there
exists a core Q C P such that fg s primitive.

Proof: One side is obvious. If f is primitive, fp is also
primitive trivially. We show the converse. Let the permu-
tation f not be primitive. This implies that f has a cycle
C of length strictly smaller than |P|. Since @ is a core,
there is no cycle in P —). This implies that C' contains
some but not all elements of @, 1.e., C'N @ is a non-empty
proper subset of (). Consider any © € C'N Q. Its orbit with
respect to fg is also C' N Q. Hence, fg also has a cycle
smaller than |Q|, proving that fg is also not primitive.

L L eaf

Fig. 3. Node groups and transitions

We are now ready for our first main result.

Theorem 1 The function next(.) is ¢ primitive permuta-
tion that satisfies the gather tree constraint.

Proof. We first show that next is a permutation. Let
z,y € {1,...,N} be such that # # y. Type I move is 1-
1 because for any even 1, s, (#1/2 = x2/2) implies that
(x1 = x2). Type Il move is 1-1, because for any odd #1, z2,
iflead0(x1) # lead0(x2), then 2 x2lead0(z1) + xo#2lead0(z2)
as they have different number of trailing zeros. Otherwise,
z) = &}, clearly implies that 7 = z5. Type IIT is also 1-1.
Also, no element other than N maps to (N + 1)/2 since
the only other possibility, z = (N +1)/2 -1 =2""1 — 1,
does not belong to the domain of type III moves. Thus,
if the same type of move is applicable for both x and y,
then next(z) # next(y) because each type of move (type
I, type II, and type III) is 1-1. Furthermore, the ranges
of different types of move are disjoint; for illustration see
Figure 3. Hence, if different types of moves are applied to
z and y, then also next(x) # next(y). Therefore, next is
1-1. Further, the domain and the range of next have finite
and equal cardinality, therefore it is also onto. Thus, it 1s
a permutation.

To show that the permutation next is primitive, first ob-
serve that Q = LLeaf U RLeaf U RInt forms a core of P
with respect to next. This is because for any & € Lint,
there exists i such that next'(z) € LLeaf. By Lemma 2,
nextg is also a permutation. We now apply Lemma 1 to
show that nextq is primitive. We partition @) into three
sets Qo = LlLeaf, @1 = RLeaf, and Q) = RInt. It can
be easily checked that nextq(Q;) = Qit1 mod 3. Moreover,
any cycle starting from a node « in RLeaf first visits ver-
tex # + 1 (or (x + 1)/2) in RInt, followed by a vertex in
LLeaf, which is followed again by the next vertex in Rleaf.
Thus, the vertices in RLeaf are visited in sequence, and
orbit(z) = RLeaf. Applying Lemma 1, we conclude that
nextg is primitive. As @) is a core of P and nextg is prim-
itive, by applying Lemma 3, nezt is also primitive.

Lastly, next also satisfies the gather tree constraint be-
cause of Type I moves.

Significance: If next(x) is used to determine the remapping
of the processes to nodes for the next time step. in each
time step, then:

(i) A global function can be computed in [log N —1 steps
after its initiation; and

(ii) A throughput of one global function computation per
time step can be obtained.

Note that the gather trees are only tools to determine
the sequence of message transmissions. The goal is to find
at any time ¢, whether a given process needs to send a
message, and if so, which process should be the recepient
of that message.

Let parent(x) yield the parent of node x, and msg(x, 1)
be the process number to which process « sends a message
at time ¢. If & does not send a message at time ¢, then
msg(x,t) = nil. For an inorder labeling, a node has an
odd label #ff it is a leaf node. Since only leaf nodes send
messages, we obtain:

next™"' (parent (next'(z)))
nil otherwise

For an inorder labeling, the parent of a leaf node has the
same binary representation as that node excepting that the
two least significant bits are 10. For example, node 1010 is
the parent of nodes 1001 and 1011. Thus, the parent can
be readily evaluated.

msg(x,t) =

IV. IMPLEMENTATION ISSUES

We can simplify the computation of next!(x) and next™'(x)

by renumbering the tree nodes in the sequence traversed
by a process. This is shown in Fig. 4, where the tree nodes
are relabeled 0 through N-1. The old (inorder) labelling
is given in parenthesis. ! Let the processes be numbered
0,...,N-1 also, and process ¢ be mapped onto node ¢z at t = 0.
This relabeling causes the next(.) and parent(.) functions
to be transformed into new_nezt(.) and new_parent(.) re-
spectively. Moreover, new_next!(z) is simply equal to z+t.
Therefore,

new_parent(x +1) — ¢ if z+1t isa leaf;
nil otherwise

msg(z,1) = {

For N = 31, we obtain:

leaf node,s 0 15 7 22 3 10 18 25
new_parent(i): 30 30 14 14 6 6 21 21

leaf node,i : 1 4 8 11 16 19 23 26

newparent(d): 2 2 9 9 17 17 24 24
(4)
We only need to store the new_parent function for the leaf
nodes to determine whom to send a message at any time ¢.
Thus, the destination can be calculated in constant time,
by looking up a table of size O(N). Alternatively, one can
generate the new_parent function and trade off storage for

computation time.
Let us define a communication distance set, C'DS, as:

CDS ={i|i=new_parent(j)—j; j aleaf node}. (5)

Lemma 4 Process x will send a message (at some time)
to process y iff y—x € C'DS.

Proof. =: y—x € CDS means that there exists a leaf
node j; such that y — x = new_parent(ji) — j1.
Let t1 = j1—«. Then y—a = new_parent(z+t1)—(x+11)
or y = new_parent(x + 1) —t1. Since (x + 1) = j1 is a
leaf, from Eq. 3 we infer that & sends a message to y at
time ¢;.
<: Let x send a message to y at time t3. From Eq. 3,
we have
y = new_parent(x +1t2) —ta and that x + 1 is a leaf node.
Substituting j» = x + 12, we get
y = new_parent(j2)— (jo—x), or y—x = new_parent(ja)—
jo € CDS
since jo is a leaf node.

Mt can be shown that, even though the function nezt(.) gets trans-

formed by changing the labeling of the tree nodes, the derived function,
msg(z,t), is unique for a given nest(.) function.

if odd(next'(z))

(3)

27 (16)

13 (12)

14(6) 6 (10/ ><14)

30 (2)

0(1)

12 (24)

20 (28)

9(22) 17 (26/ ><(30)

5 (20)

2 (18)

15(3) 7(5) 22(7) 3(9) 10 (11) 18(13) 25 (15) 1(17) 4 (19) 8(21) 11(23) 16(25) 19(27) 23(29) 26(31)

Fig. 4. Node labels generated by nezt. Original inorder labels are shown in parentheses.

Using the above lemma one can define a communication
graph corresponding to a given next function with a node
for each process, and a directed edge (a,b) between two
nodes only if @ sends a message to b at some time. Each
node of this graph has the same in-degree and out-degree,
given by the size of the set C'DS.

The next function is not the only permutation that satis-
fies the gather tree and fairness constraints. Type I moves
are mandated by the gather tree constraint, but there are
several choices for Type Il and Type III moves. The fol-
lowing two criteria are proposed for chosing among several
candidates for the nezt function:

a) If the derived new_parent function is simpler to generate,
it 1s preferred.

b) A next function whose corresponding C'DS set has a
smaller size is preferred.

In the following, we show that the next function has
CDS of size 2(log2(N + 1) — 1).

We assume that the tree is labelled using inorder. Let
n = logs(N + 1). We partition the set of 27"=2 left leaf
nodes, LLeaf, into n — 1 disjoint groups by defining
LLeaf(i) = {x € LLeafl|lead0(z) =i }.

Note that since b,,_1 = 0 and by = 1, 7 takes values from 1
to n— 1. The size of LLeaf(i) is 2" 27 for 1 <i<n—2,
and 1 for ¢ = n—1. The importance of this partition is that
the cycle of permutation next visits a node in LLeaf(?)
after visiting exactly ¢ internal nodes. This 1s because a
right internal node is characterized by its most significant
bit (msb) = 1, and each move of type T one adds one leading

zero. All these moves except the last visit left internal
nodes.

We partition the cycle of permutation next into 27?2
segments. Each segment starts from a node in RLeaf and
ends in a LLeaf. The first segment starts at the leftmost
leaf in RLeaf, which is labelled 1. Thus, we have parti-
tioned all N elements into 272 segments numbered from

1..2n=2,

Lemma 5 The size of the segment m is trail0(m) + 3,
where trail0(m) gives the number of trailing zeros in the
binary representation of m.

Proof: Nodes in RInt are visited in inorder by the defi-
nition of next. In an inorder traversal the height of 7**
node visited is equal to the number of trailing zeros in bi-
nary representation of ¢. Thus, in segment m, we visit one
node in RLeaf, one node at the height ¢rail0(m) in Rlnt,
trail(0) nodes in Lint, and one node in LLeaf with the
total of trail0(m) + 3 nodes.

Let V(m) be the label of the left leaf node at the end of

segment m. Clearly,
V(m) = trailo(j) + 3m
j=1

Let S(k) = Zle trail0(j). We need the following proper-
ties of S(k).

Lemma 6 1. S(a2') = a2’ —a+ S(a) for any i, a > 0;
2. S(2a.2071) — S((2a — 1).2i71) = 20~ for any odd a.

Proof: We use induction on 1.

Base case:(i=1) We need to show that S(2a) = a 4+ S(a).
We again use induction on a. It is true for ¢ = 1 as
S(2%1)=1=S(1)+ 1. Assume that it is true for a < k.
Then S(2k) = S(2k—2)+trail0(2k —1)+trail0(2k). Thus,
using induction hypothesis,

S(2k) = Stk — 1)+ (k= 1) + trail0(2k — 1) + trail0(2k).

Since trail0(2k — 1) = 0 and ¢rail0(2k) = trail0(k)+ 1, we
get that

S2k) =Sk —1)+k—1+trail0(k) + 1 = S(k) + k.

Induction Assume that the Lemma is true for ¢ < k.
S(a2*) = S(2a.2%~1). Using induction hypothesis, S(a2*) =
2a.2¥=1—2a+4 5(2a). Using the base case to replace S(2a),
we get S(a2%) = a2¥ — 2a + S(a) + a = a2* — a+ S(a)

2. Using part 1, we get S(2a.2°71) — S((2¢ — 1).2°71) =
2071 14 5(2a) — S(2a — 1) = 2171 — 1 +trail0(2a) = 211
as trail0(2a) is 1 for any odd a.

Lemma 7 The nodes in LLeaf(i) are labelled as V((2a —
D2Y, a=1,2,3,...,27" 271 Moreover, for an odd value
of “a” (corresponding to a left child), the labels of the corre-
sponding parent and right sibling are given by V(a2it1)—1
and V(a2it! + 21 respectively.

Proof: A segment m ends in LLeaf(¢) if and only if it
visits exactly ¢ internal nodes. From Lemma 5, the seg-
ment m visits exactly ¢rail0(m) + 1 internal nodes. Thus,
segments ending in LLeaf(i) are given by m such that
trail0(m) 4+ 1 = 4. Thus, m is of the form
(2a — 1)2'~1 for some 1 < a < 27727%. We will now focus
on those LLeaf(i) which have more than 1 leaves, that is
1<i<n-3.

Then, odd values of a give the labels for left children,
and even values for the right children in LLeaf. Since the
nodes in RInt at any level are visited from left to right,
(i) the parent of a left child in LLeaf(i) is visited in the
next segment that terminates in group LLeaf(i + 1). Tt
terminates in group LLeaf(i + 1) because the parent of
the child has same number of leading zeros as the child
and the next element of the segment will have one more
leading zero than the parent. The index of this segment is
(2a — 1)2i=1 4 2071 = 2%,

(ii) the right sibling is visited in the next segment that
terminates in group LLeaf(i). The index of this segment
is (2a +1)20~ 1

n

Theorem 2 For N = 2" — 1, the CDS for the next(x)
labelling is of size 2(n — 1), and its members are given by

U (6)

i=1 to n—1

CDS = {20 -1, =271},

Proof: From Lemma 7, the contributions to CDS come
from differences in labels of parents and leaves. Consider-
ing the nodes in group LLeaf(i), 1 < i< n —3, which are
left children of their parents we get :

V(a2') —1—V((2a — 1)2°71)
= S(a2’) + 3a2° — 1 — S((2a — 1)2°~1) — 3(2a — 1)2i~1
=2i=1 — 1 +3.2°~! (using Lemma 6)
=21 _ 1.

Considering the nodes in group LLeaf(i), 1 <i<n—3,
which are right children of their parents we get:
V(a2tt) — 1 — V(a2it! + 2%)
where a takes only odd values. On simplifying as before,
this expression is equal to —2i1.

LLeaf(n—2) and LLeaf(n—1) contribute —1 and 2"~ —
1 Finally, the nodes in RLeaf add 1 and -2 to the set CDS.
Therefore, the CDS for the next(z) labelling is given by
Eq. 6.

Note that the CDS given by Eq. 6 is incremental, so that
the communication set for a smaller number of communi-
cating processes is a subset of the CDS for a larger number
of processes. Also, the positive elements of the CDS are one
less (mod N) in magnitude from some negative element.
This means that the communication requirements can be
satisfied by a homogeneous topology of degree 2n — 1 using
bidirectional links and a two step communication scheme.
In this topology, each node is connected to nodes at a dis-
tance of £2¢, 0 < i < n — 1, as indicated in Fig. 5. Mes-
sages destined for a node at distance 2! — 1 for some i are
sent in two steps. This topology preserves the incremental
property which is attractive when mapping the processes
onto a multicomputer system.

X-8 X+8

X+4

X+2

x-1 x x+1

Fig. 5. Physical connectivity required based on a
two-step routing procedure

V. RESTRICTED MESSAGE RECEPTION

In the previous sections, we proposed techniques for re-
peated computation of global functions where each process
could receive messages from at most two other processes in
a time slice. In this section, we consider a more restricted

scenario in which a process can receive a message from only
one other process in a given time slice, i.e., & = 1. With-
out loss of generality, let N = 27. A list representation is
more convenient in this situation than the binary tree rep-
resentation used in the previous section. Thus, if 5 sends a
message to 1, and 2 to 8 in some time step, we can denote
this by the list (5 1 2 8) or by the pairs, 5 — 1 and 2 — 8.
The list positions are numbered as 0,1,...,2" — 1.

Again, the message patterns in the next step can be de-

by bo = 1. In the next round, these positions are mapped
onto the left half of the list so that the winners play among
themselves. Moreover, this procedure is repeated recur-
sively for each sublist of positions 0 through 2/ —1, i = n—1
down to 0, till we get a list of size two, denoting the “final”
match.

To show the fairness constraint we divide the list posi-
tions into four equal sets: ROdd, LOdd, LEven and REven,
depending on the position being on the left (b,_1 = 0) or

termined by a suitable permutation, snext(x). Let by_1, ..., boright half (b,_1 = 1) of the list, and whether the position

be the binary representation of x, and ¢;_1, ..., ¢o that of

is odd (bg = 1) or even. We observe that:

2’ = snext(x). Furthermore, let the operations RS0, RS1, LS{i) S2 moves define a one-to-one mapping between LFEven

and LS1 yield the numbers obtained by a right (left) shift
of the bits with a 0/1 in the most (least) significant bit
position.

The global function needs to be determined in log N
steps, which is a tight lower bound for £ = 1. If we draw
an analogy with a knock-out tournament in which the re-
ceiving process is a winner, then the winners should play
among themselves until there 1s a single winner. At the
same time, the losers of the previous rounds also play to
determine winners for following tournaments.

Thus, for the list representation, instead of the gather
tree constraint, we have the following n Tournament con-
straints:
bo =1 = ¢,_1 =0; /* winners play among themselves
*/
fore=1 to n—1:

(bo = 1) A (bn—la b =10, 0) = Cpne1y .-y Ci—1 =0, ..., 0;

/* till the finals, yielding one winner. */

Consider the following function, where [is the number of
consecutive zeros after the most significant bit, and N =
2™

snext(x)
{
/* Type S1 move */
if (bp = 1) then 2’ := RSO0(x);

/* Type S2 move */
it ((bg =0)A (by—1 =0)) then 2’ :=1,b,_9,...,b0 ;
/* Type S3 move */
if ((bp = 0) A (by—1 = 1)) then
if (¢ =N—=2)thena =2+1
else 2/ := LS1*(z) + 2;

return(z’);

1

Figure 6 shows a partial sequence of the message patterns
generated by snext(.) with n = 4.

Theorem 3 The function snext(.) satisfies both the fair-
ness and the tournament constraints.

Proof: The S1 moves guarantee that the tournament con-
straints are satisfied. Winning positions are characterized

and RFwven positions;

(ii) S3 moves define a one-to-one mapping between RFEven
and ROdd positions;

(iii) One or more consecutive invocations of S1 moves takes
one from a position in ROdd to a unique position in LFEven
(iv) S3 moves ensure that the positions in LEven are vis-
ited in sequence, i.e. the position (z 4+ 2) mod (N/2) is
visited after the position x,z € LFEven.

From Lemma 3 and arguments similar to Theorem 1, we
get that snext(.) is a primitive permutation.

As in Section III, we can simplify the calculation of
snext(x) by relabelling the position numbers in the list
in the sequence traversed by any process. For example,
to obtain a function n_snext(z) from snewxt(x) such that
n-snext(x) = x+1(mod N), the new labels for N = 16 are:

list position 0 1 2 3 4 b5 6 7
label 4 3 8 2 11 7 14 1

(7)
list positton 8 9 10 11 12 13 14 15
label 5 10 9 6 12 13 15 O

The new function, n_snext(.) is such that n_snext’(z) =
x +t. If y1s the new label of an even location in the list,
then it sends a message to the label dest(y) corresponding
to the next odd position. For these positions, rec(y) = nil
signifying that no messages are received. If y is an odd
location, then dest(y) = nil, signifying that no message is
sent, while rec(y) yields the label of the process from which
it receives a message. For N = 16, we obtain:

Yy o 1 2 3 4 5 6 7 8
dest(y) nil nil nil nil 3 10 nd nil 2
rec(y) 15 14 8 4 nil nil 9 11 nil

Yy 9 10 11 12 13 14 15
dest(y) 6 nil 7 13 nil 1 0
rec(y) nil 5 nil nil 12 nil nil
(8)
At t =0, let process = be in position labeled « in the list.
Then, for ¢ > 0,

msg(x,t) = dest(x+1)—1t. (9)
The communication distance set 1s:

CDS ={i|i=dest(j) —j; dest(j) # nil}. (10)

time messages (sender — receiver)

0 4—3 8§—=2 11 -7
1 3—2 7T—1 10—6
2 2—1 6—-0 9—5
3 1—0

14 —1 5—10 9—6 12—13 15—0
3—-0 4—9 8—5 11—12 14—-15
12—15 3—8 7—4 10—11 13—14

Fig. 6. Message Sequences Generated by snext

For the snext(.) function defined above, with N = 16,
we get:

CDS = {1,3,5,—6,—4, -3, —1}.

As in Section IV, we would like to determine a lower
bound for the size of CDS. The labelling of the list positions
by n_snext2(z) described below, results in a CDS of size
log N. List position 0 is labelled as 0 by n_snext2(z) to
form a convenient starting point. The position z’ to be
labelled next is determined from the current list position,
x, as follows:

if by =1 then 2’ ;= RS0(x);

else if (bg = 0)A (bp—1 = 1) then 2’ := 2+ 1;

else ©’ := first available position in REven
(from left to right).

The labels generated by n_snext2(z) for N = 16 are:

list position 0 1 2 3 4 b5 6 7

label 0 15 7 14 3 6 10 13 (11)

list positton 8 9 10 11 12 13 14 15
1

label 2 4 5 8 9 11 12

The corresponding CDS is { 1, 3,7, 15 }.

The labelling obtained by n_snext2(z) is similar to the
new_next2(z) labelling given in Section IV. The labels of
the L Even positions are given by the numbers in V,,(7), 0 <
i < N/4—1. We can group the positions in LFwven into
sizes of N/8, N/16,...,2,1, with the 7th group being charac-
terized by bn_1,...,0h—i—1 = 0,...,0,1, excepting for the
last group which consists solely of position 0. The la-
belling can be analyzed as before through a sequence of
segments, each starting at an REven position, visiting the
next ROdd position and terminating at an LFEven posi-
tion via none or more LOdd positions. It can be seen that
the Leven positions in the ¢th group contribute the number
V(29) -V (28=1)—1 = 2¢+1 1 to the CDS. Also the number
1 belongs to the CDS since the label of an ROdd position is
one more than the label of the preceeding REven position.
This yields the following result:

Theorem 4 For N = 2", the CDS for the n_snext2(x) la-
belling is of size n, and its elements are given by

U {2'-1.

i=1 ton

CDS = (12)

A. Broadcasting of Messages

In several applications, such as the distributed branch-
and-bound algorithm explained in Section VII, the result R,
of a global computation also needs to be transmitted to all

the processes. In this section, we show that if snext(x) sat-
isfies some further conditions, then such broadcasts can be
performed by attaching a copy of the result to the same set
of message sequences that are used to gather information
for future computations of B. Furthermore, this broadcast
is achieved in log(N) time steps, which is the lower-bound
for the single sender case.

To be able to broadcast in n = log NV steps, the number
of processes having a copy of R must double at each step.
This means that each of these processes must become a
sender of a message in the next time step, and the recipi-
ents of these messages must be processes that have not yet
obtained a copy of R.

We first observe that the message sequence shown in
Fig. 6 does not satisfy the broadcasting requirements. At
t = 0, process 4 computes R. At ¢t = 1, a copy of R is
passed on to process 3. These two processes further pass
on copies of R to 2 and 9 respectively in the next time
step. However, at ¢ = 3, we see that 4, which already has
a copy of R, 1s a receiver again. Therefore, the number of
processes to whom R, 1s broadcast after 3 steps is less than
23. Clearly, snext(.) needs to satisfy additional constraints
to double as a broadcasting function.

Theorem 5 Let b,_1,...,bg be the current position of a
process, and ¢,_1, ..., cq be its next position as indicated by
snext(.). The function snext(.) can also perform a broad-
cast of result R in n time steps provided the following ad-
ditional n — 1 constraints are met:

biy...60=0,...,0=> ¢;_1,...,c0=0,...,0; fori=1to n—1.

(13)
Proof. The process that computes R at time ¢ is in posi-
tion 1 at that instant. We show by induction that, at time
to+3, j = 1ton, the 27 processes whose positions at time
to + j are characterized by b,_;,...,00 = 0,...,0, have a
copy of R. This assertion is clearly true for j = 1. Assume
that it is valid for j = m < n—1. The constraints given by
Eq. 13 guarantee that, at the next time step, all the pro-
cesses that already have a copy of R will be in a sending po-
sition, (¢g = 0), characterized by ¢p—_m-1,...,c0 = 0,...,0.
Furthermore, these positions will be unique since snext(.)
is a permutation. Each of these processes can convey a copy
of R to the processes occupying positions ¢,_m_1,...,¢1 =
0,...,0;co = 1. Thus, at time tg4+m+1, the 2% processes
in positions with b, _,,_1,...,01 = 0, ..., 0 can obtain a copy

of R.
n

On examining snext(.), we see that it was not able to
perform a concurrent broadcast because the S3 moves failed

to satisfy Eq. 13. Now consider the partial sequence of
messages shown in Figure 7. The reader can verify that a
global function is broadcast in 4 steps after it is computed,
if this sequence 1s used.

The message sequence of Fig. 7 was generated by the
function benext(.) given below:
benext(x)
{
/* Type S1 move */
if (bp = 1) then 2’ := RSO0(x);

/* Type S2 move */
if ((b = 0) A (by = 0)) then &' := RS1(x) ;

/* Type S3 move */
if ((bp = 0) A (by = 1)) then
z' = LS14((LS0% () + 2) mod 2771);

return(z’);

}

where a and b are the number of leading zeros and ones
respectively, in the argument.

The right-shifts cause the constraints of Eq. 13 to be au-
tomatically satisfied for S1 and S2 moves. For S3, b; = 1,
so the constraints do not apply. Therefore, benext(.) satis-
fies the broadcast requirements. Moreover, it can be easily
show that bcenext is a primitive permutation. Therefore,
we have:

Theorem 6 The function benext(.) satisfies the broad-
casting, fairness and tournament constraints, and therefore
generates message sequences that:

1. allow a new global computation at every time step t,
t>log N;

enable a process to gather information for a global
computation in log N steps; and

enable broadcast of the results of a global computation

to all processes in log N steps.

2.

3.

VI. EXTENSIONS

This section shows that the technique to generate an ad-
missible permutation for a binary tree can be generalized
to any k-ary tree. The revolving hierarchy scheme 1s also
shown to apply even when it is not possible to impose a
complete k-ary tree on the network, and also when asyn-
chronous messages are used instead of synchronous mes-
sages.

General k: We have shown the methods to generate
suitable permutations for binary trees. The technique eas-
ily generalizes to any k-ary tree. A complete k-ary tree of
height n has k" leaves, which can be divided into k& groups
of equal size corresponding to the &k subtrees rooted at the
children of the root of the k-ary tree. The behavior of any
suitable permutation, k-ary next function on internal nodes
is unique due to the gather-tree constraint, and is similar
to type I move of Theorem 1. The k-ary next function
needs to define a 1-1 mapping from leaves in one group to
leaves in the successive group using a move similar to type

10

IT in Theorem 1. Finally, the last leaf group is mapped to
internal nodes using type III move.

General N: So far we had assumed that N = (k/ —
1)/(k — 1), so that a complete k-ary tree could be used.
Given any general N, we can find j such that &/=1 — 1 <
(k—1)N < k/ — 1. We now supplement the network with
enough virtual nodes so that the total number of nodes can
form a complete tree. Thus, the number of virtual nodes
is

v = (kN = 1)/(k—1)— N < (ki — k=Y /(k-1)
=k t<Nk—-1)+1.

This implies that if the load of virtual nodes 1s dis-
tributed fairly, no node has to carry the burden of more
than & — 1 virtual nodes. A real node sends and receives
messages on behalf of the virtual nodes it is responsible
for. We can reduce the maximum load on any node, by
reducing the arity of the tree at the expense of increasing
its height.

Asynchronous Messages: So far we had assumed that
the communication is done via synchronous messages. To
see that the technique works even with asynchronous mes-
sages, note that every process becomes root in any consec-
utive N steps. This process must receive messages directly,
or indirectly from all processes. It relinquishes its position
as the root only after receiving all information needed to
compute a global function. This property automatically
synchronizes the algorithm. Observe that algorithms for
distributed search in Section VII work even if the messages
are asynchronous.

VII. APPLICATIONS

Our techniques can be applied to derive algorithms for
a wide variety of distributed control problems, especially
those requiring computation of asynchronous global func-
tions. In an asynchronous global function, if information
from a process 1s available regarding two different times,
the older information can always be discarded. For ex-
ample, consider a distributed implementation of a branch-
and-bound algorithm for the minimum traveling salesman
path(TSP) problem. Each processor explores only those
partial paths which have cost smaller than the minimum
of costs of all known complete paths. If a processor knows
of a path with cost 75 at time step ¢ and another of cost
70 at time step £+ 1, then it needs to propagate only 70 as
the cost of its current minimum path. In this example, the
root does not need the current best path determined by
each processor at each time step to compute the (current)
global minimum. The states that it receives may be stag-
gered in time, i.e. its own state may be current whereas the
state of its sons one phase old, and the state of its grand-
sons two phases old. We next describe our technique for
two problems which satisfy the asynchrony condition on the
global function. These are distributed branch-and-bound
algorithms, and distributed computation of fixed points.

A. Distributed Branch-and-Bound Algorithms

These algorithms are most suitable for our technique.
They satisfy not only the asynchrony condition, but also

time messages (sender — receiver)

0 4—-3 10—-2 12—9 15—1 5—11 13—-8 6—14 7—0
1 3—2 9—1 11—8 14—20 4—10 12—7 H—=13 6—15
2 2—1 8§—=0 10—7 13—15 3—9 1—6 4—12 5—14
3 1—0

Fig. 7. Message sequence generated by benext

have an additional attractive property: it is feasible for in-
ternal nodes to perform some intermediate operations and
reduce the overall state sent to their parents. For exam-
ple, in the TSP problem, an internal node needs to forward
only that message which contains the minimum traveling
path and not all the messages it received from its chil-
dren. Thus, a hierarchical algorithm (static or dynamic)
for this problem reduces the total amount of information
flow within the network. In general, if the required global
function is associative in its arguments (such as min), then
information can be reduced by performing operations at
internal nodes.

A distributed branch-and-bound problem requires mul-
tiple processors to cooperate in search of a minimum solu-
tion. Each processor reduces its search space by using the
known bound on the required solution. In our description
of the algorithm, we assume that search (knownbound) pro-
cedure searches for a solution for some number of steps and
returns the value of its current minimum solution. The cru-
cial problem then, is the computation of the global bound
and its dissemination to all processes. To solve this prob-
lem, we apply the results obtained in Section V which per-
mit us to use the same permutation for the gather tree and
the broadcast tree. This permutation is implemented by
means of tosend and torec functions as described earlier.
The function fosend returns -1 if no message needs to be
sent in the current time step. In the algorithm described
below, we have assumed that at most one message can be
received in one time step.

Process 1i;

var
knownbound, mymin, hismin: real;
step, numsteps, dest:integer;

begin
Initialization:
knownbound := infinity;
for step:=0 to numsteps do
begin
mymin := search(knownbound);
dest = tosend(i, step);

if (dest <> -1) then
send(dest, mymin)
else begin
receive(torec(i, step), hismin);

knownbound := min(mymin, hismin);
end; (* else *)
end; (* for *)

end; (* process i *);

11

Each process uses tosend and torec to find out when and
with whom 1t should communicate. From Theorem 6, each
process receives a global minimum bound every 2.log(N)
steps, and sends/receives an equal number of messages.

A static hierarchical algorithm for this problem requires
2(N — 1) messages per computation of a global function:
N — 1 messages for the gather-tree;, and N — 1 messages
for the broadcast tree. Each message is of constant size
required to represent the minimal solution known to the
sender. Our algorithm requires only N/2 messages, which
is about four times less expensive than the static hierarchi-
cal algorithm. The reduction in the number of messages
does not lead to any increase in the size of messages. It is
obtained by reusing a message for multiple global function
computations. Moreover, our algorithm exhibits a totally
fair workload distribution - each process has to send and
receive an equal number of messages.

B. Asynchronous Distributed Computation of Fized Points

This problem exemplifies the class of asynchronous global
functions which do not allow reduction of information at
internal nodes. Assume that we are given N equations in
N variables. We are required to find a solution of this set
of equations. Formally, we have to determine x; such that,
;= fi(zy, 2, .. en) forall 1 <i< N.

This problem arises in many contexts, such as compu-
tation of stationary probability distributions for discrete
Markov chains. Moreover, an iterative asynchronous com-
putation of these equations will yield their solution under
conditions posed in [4] We assume that equations are on
different processors, and every processor computes one co-
ordinate of the z vector. In the algorithm given below, we
have used an array ¢ to record the time step at which values
of ¥ coordinates are computed.

Process 1i;

var
(* N is the number of processes *)
x, hisx: array[1..N] of real;
t, hist: array[1..N] of integer;
(* t[j] = time step for which x[j] is known *)
j,step: integer;
begin
step := 0;
x[i] := initial; t[i] := step;

(* values of x[j] are not known at time 0 *)
for j:=1 to N do
if (j<>i) x[j1,t[j1:=0,-1;

while (not fixed_point) do
begin
dest = tosend(i, step);
if (dest <> -1) then
send(dest, x,t)
else begin
receive(torec(i, step), hisx, hist);

(* update coordinates of my vector *)
for j:=1 to N do
if hist[j] > t[j] then
x[31, t[j] := hisx[j], hist[j];
(* recompute my coordinate *)
x[i] := £_ilx];
t[i] := step;
end; (* else *)
step step + 1;
end; (* while *)
end; (* process i *);

Each process in the above algorithm sends or receives the
x vector using tosend and {orec primitives. On receiving an
x vector, it updates the value of any coordinate z[j] which
has its {[4] less than the received hist[j]. These steps are re-
peated till the computation reaches a fixed point. We have
not considered the detection of fixed point in the above al-
gorithm. To detect the fixed point, it is sufficient to note
that if a process on becoming root finds that its « vector
has not changed since the last time, then the computation
must have reached its fixed point. To ensure that all pro-
cesses terminate at the same step, any process that detects
fixed point should broadcast a time step when all processes
must stop. The details are left to the reader.

The algorithm requires N/2 messages per computation
and broadcast of the global computation. The message
size in this algorithm is of order O(N) assuming that it
requires a constant number of bits to encode state of one
process. This size can be reduced at the expense of time
In the
above algorithm, a change in any coordinate 1s propagated
to all processes within 2log(N) steps. This is because any
change in a process is gathered in log(N) steps by a root
process due to tournament constraints, and propagated to
all other processes in another log(V) steps due to broadcast
constraints. We observe that even if broadcast constraints
are not used, every process will receive the change in O(N)
steps due to fairness constraints. This property can be
exploited to reduce the message size by requiring every

required for propagation of a change as follows.

process to send states of only a selected set of processes
instead of the entire system. Let there be N = 2" processes
in the system. At every time step, 2/ processes need to send
states of only 2777 ~! processes for values of j between 0
and n — 1. That is, one process needs to send states of
N/2 processes, two processes need to send states of N/4
processes, and so on. Therefore, the total number of bits
sent in any time step 1s

D 2(N/2H) = O(nN) = O(N log(N))

i=0

12

Thus, on an average a message is of O(log(N)) size.

VII. CONCLUSIONS

We have presented a general technique for repeated com-
putation of global functions in a distributed environment.
Our technique is based on a new dynamic hierarchical scheme.
This hierarchical scheme determines the messages that need
to be sent at any given time. As the computations evolve,
the hierarchy changes in such a way that it results in an
equitable distribution of work among all processes.

Our techniques, when applied to a large class of dis-
tributed algorithms, not only result in an even workload,
but also lower communication overheads by reducing the
total number of messages. We have successfully applied
these techniques to problems such as distributed branch-
and-bound and distributed asynchronous fixed-point com-
putation.

Some related issues still need to be resolved. First, the
choice of a permutation, on which the message patterns
generated depends, i1s not unique. Recollect that the logi-
cal neighbors for communication is given by the set C'DS
corresponding to the chosen permutation. An implemen-
tation issue 1s to keep this set small and easily mapable
onto the physical interconnection network. A systematic
scheme for including connectivity considerations in select-
ing a permutation remains an open problem.

We have assumed error-free transmission of messages in
this paper. Generalization of our techniques in the presence
of faulty communication channels or malicious processes is
a topic of future research.

ACKNOWLEDGEMENTS

We would like to thank anonymous referees for their
helpful suggestions on an earlier version of this paper.

REFERENCES

S.G.AKkl, The Design and Analysis of Parallel Algorithms, Pren-
tice Hall, 1989.

J-C. Bermond, J-C. Konig, and M. Raynal, “General and Ef-
ficient Decentralized Consensus Protocols,” Distributed Algo-
rithms, 2nd International Workshop, Amsterdam 1987, Lecture
Notes in Computer Science 312, Springer Verlag 1988, pp 41-56.
J-C. Bermond, and J-C. Konig, “General and Efficient Decen-
tralized Consensus Protocols I1,” Parallel and Distributed Al-
gorithms, International Workshop, Paris 1988, North Holland
1989, pp 199-210.

D.P.Bertsekas and J. Tsitsiklis, Parallel and Distributed Com-
putation, Prentice Hall, 1989.

L. Bouge, “Repeated Snapshots in Distributed Systems with
Synchronous Communication and their implementation in
CSP,” Theoretical Computer Science, Vol. 49, 1987, pp 145-169.
K.M. Chandy and L. Lamport, “Distributed Snapshots: Deter-
mining global states of distributed systems”, ACM Transactions
on Computer Systems 3(1):63-75, February 1985.

K.M. Chandy, J. Misra, and L. Haas, “Distributed Deadlock
detection”, ACM Transactions on Computer Systems 1(2):145-
156, May 1983.

E.W. Dijkstra, W.H.J. Feijen and A.J.M. VanGasteren,
“Derivation of a Termination Detection Algorithm for Dis-
tributed Computation,” Information Processing Letters, 16,
June 1983, pp 217-219.

R.A. Finkel, and J.P. Fishburn, “Parallelism in alpha-beta
search,” Artificial Intelligence 19,89-106.

[10] V.K. Garg and J. Ghosh, “Symmetry In Spite of Hierarchy,”
Proc. 10th IEEE International Conference on Distributed Com-
puting Systems, Paris, France 1990, pp 4-11.

[11] R. Gussella, “Tempo: A clock synchronization algorithm”,
Tech. Report, Computer Science Division, University of Cali-
fornia, Berkeley, 1986.

[12] LI.N. Herstein, Topics in Algebra, Wiley Eastern Limited 1975.

[13] T.V. Lakshman and A.K. Agrawala, “Efficient Decentralized
Consensus Protocols,” IEEE Transactions on Software Engi-
neering, vol. SE-12, no. 5, 1986, pp 600-607.

[14] G. Le Lann. “Distributed Systems - Toward a Formal Ap-
proach”, Proc. AFIP Congress 77, 1977, pages 155-160.

[15] D. Menasce and R.R. Muntz, “Locking and Deadlock Detection
in Distributed Data Bases”. IEEE Transactions on Software
Engineering, SE-35, No. 3, May 1979, pp. 195-202.

[16] M.L.Powell and D.L.Presotto, “Publishing - A reliable broad-
cast communication mechanism”, Operating Systems Review,
17, 5, 100-109.

[17] M.J.Quinn, Designing Efficient Algorithms for Parallel Com-
puters, McGraw-Hill, 1986.

[18] J. F. Shoch and J. A. Hupp. “The “worm” programs—Early ex-
perience with a distributed computation ” Communications of
the ACM, 25(3):172-180, March 1982.

[19] G. Tel, “Total Algorithms,” Parallel and Distributed Algo-
rithms, International Workshop, Paris 1988, North Holland
1989, pp 187-198.

[20] W.T.Tsai, “The design and maintenance of large hierarchical
networks”, Ph.D. dissertation, University of California, Berke-
ley, 1985.

[21] A.M. Van Tilborg, and L.D.Wittie, “Wave Scheduling: Dis-
tributed allocation of task forces in network computers,” Proc.
of the 2nd International Conference on Distributed Computing
Systems, IEEE, pp 337-347, 1981.

Vijay K. Garg (S'84-M’89) received his Bach-
elor of Technology degree in computer engi-
neering from the Indian Institute of Technol-
ogy, Kanpur, in 1984. He continued his educa-
tion at the University of California, Berkeley
where he received his MS in 1985 and Ph.D. in
1988 in Electrical Engineering and Computer
Science. He is currently an assistant profes-
sor in the Department of Electrical and Com-
puter Engineering at the University of Texas,
Austin. His research interests are in the areas
of distributed systems and supervisory control of discrete event sys-
tems. He has authored or co-authored more than 50 research articles
in these areas. He has served as a program committee member of
the IEEE International Conference on Distributed Computing Sys-
tems and as an organizer of the minisymposium on Discrete Event
Systems in the STAM Conference on Control and Applications.

Joydeep Ghosh (5'83-M’'88) receiveda Ph.D.
in Computer Engineering from the University
of Southern California in 1988, where he was
the first student in the School of Engineering
to be awarded an " All-University Predoctoral
Merit Fellowship” for four years. He is cur-
rently an Associate Professor in the Depart-
ment of Electrical and Computer Engineering
at the University of Texas, Austin. Joydeep’s
research interests include parallel computer ar-
chitecture and artificial neural networks, and
he has over 50 refereed publications in this areas. He served as the
general chairman for the SPTE/SPSE Conference on Image Processing
Architectures, Santa Clara, Feb. 1990, and cochair for ANNIE’93. He
is a member of the editorial board of IEEE Computer Society Press,
and of Pattern Recognition. Dr. Ghosh received the 1992 Darling-
ton Award for best journal paper from IEEE Circuits and Systems
Society.

13

