
Overview of Presentation

" Overview of dead-locks

" Deadlock avoidance (advance reservations)

" Deadlock prevention (four necessary conditions)

" Related subjects
� Other types of hangs

� Detection and recovery

� Priority inversion

Why Study Deadlocks?

" A major peril in cooperating parallel processes

" They result in catastrophic system failures

" They generally result from careless design

" Finding them through debugging is very painful

" It is much easier to prevent them at design time

" An ounce of prevention is worth a pound of cure

" If you understand them, you can avoid them

Types of Deadlocks

" Different deadlocks require different solutions

" Commodity resource deadlocks
� e.g. memory, queue space

" General resource deadlocks
� e.g. files, critical sections

" Heterogeneous multi-resource deadlocks
� e.g. P1 needs a file, P2 needs memory

" Producer-consumer deadlocks
� e.g. P1 needs a file, P2 needs a message from P1

Commodity vs General Resources

" Commodity Resources
� clients need an amount of it (e.g. memory)

� deadlocks result from over-commitment

� avoidance can be done in resource manager

" General Resources
� clients need a specific instance (e.g. files, mutexes)

� deadlocks result from specific dependency network

� Prevention often requires help from clients



Avoidance – Advance reservations

" Require advance reservations for commodities

" Resource manager tracks outstanding promises

" Only grants reservations if resources are available

" Over-subscriptions are detected before client runs
� before client has yet allocated any resources

" Refused reservation failures must still be handled
� But these do not result in deadlocks

" Dilemma: over-booking vs under-utilization

Achieving better resource utilization

" Problem: reservations overestimate requirements
� clients seldom need all resources all the time

� all clients won't need max allocation at the same time

" Question: can one safely over-book resources?

" What is a safe resource allocation?
� one where everyone will be able to complete

� Some people may have to wait for others to complete

� we must be sure there are no deadlocks

Bankers' Algorithm - Assumptions

" All critical resources are known and quantifiable
� e.g. money or memory

� no other resources can cause deadlocks

" All clients reserve for their maximum requirement
� they will never need more than this amount

" If a client gets his maximum, he will complete
� Upon completion, he frees all his resources

� those resources then become available for others

Bankers' Algorithm

" Given a resource "state" characterized by:
� total size of each pool of resources

� reservations granted to each client for each resource

� current allocations of each resource to each client

" A state is "safe" if ...
� enough resources to allow at least one client to finish

� after that client frees its resources, resulting state is safe

� and so on, until all clients have completed

" A proposed allocation can be granted if ...
� the resulting state would still be "safe"



Bankers' Algorithm – limitations

" Quantified resources assumption
� not all resources are measurable in units

� other resources can introduce circular dependencies

" Eventual completion assumption
� all resources are released when client completes

� completion is a transaction or batch notion

� In a time sharing system many tasks run for months

" Likelihood of resource "convoy" formation
� reduced parallelism, reduced throughput

Practical Commodity Management

" Advanced reservations are definitely useful
� e.g. Unix setbreak system call

" System should guarantee all reservations
� allocation failures only happen at reservation time

� failures will not happen at request time

� system behavior more predictable, easier to handle

" Clients must deal with reservation failures
� hang onto resources and try again later doesn't cut it

� they must complete (or abort) with current resources

� If they can't they should have reserved more up front!

Prudent Advance Reservations

" System services must never deadlock for memory

" potential deadlock: swap manager
� invoked to swap out processes to free up memory

� may need to allocate memory to build I/O request

� If no memory available, unable to swap out processes

" Solution
� pre-allocate and hoard a few request buffers

� keep reusing the same ones over and over again

� Little bit of hoarded memory is a small price to pay

General Resource deadlocks

" Necessary condition #1: mutual exclusion
� If P1 is using resource, P2 cannot use it

" Necessary condition #2: block holding resources
� Process already has R1 blocks to wait for R2

" Necessary condition #3: circular dependencies
� P1 has R1 and needs R2 while P2 has R2 and needs R1  

" Necessary condition #4: no preemption/revocation
� P1 has R1 and it can only be freed when P1 completes



Attack #1 – Mutual Exclusion

" Deadlock requires mutual exclusion
� P1 having the resource precludes P2 from getting it

" You can't deadlock over a shareable resource

" Whenever possible, make resources sharable
� maintain with atomic instructions

" Even reader/writer locking can help
� readers become a non-problem

� writers may be attacked in other ways

Attack #2: hold and block

" Deadlock requires you to block holding resources

" Allocate all of your resources in a single operation
� you hold nothing while blocked

� when you return, you have all or nothing

" Disallow blocking while holding resources
� you must release locks prior to blocking

� reacquire them after you resume (lock dance)

" Non-blocking requests
� a request that can't be satisfied immediately will fail

Attack #3: circular dependencies

" Global resource ordering
� all requesters allocate resources in same order

� first allocate R1 and then R2 afterwards

� someone else may have R2 but he doesn't need R1

" assumes we know how to order the resources
� some objects have natural ordering (e.g. processes)

� relationships may order (e.g. parents before children)

" may require a lock dance
�  release R2, allocate R1, reacquire  R2

Attack #4: no preemption/revocation

" deadlock can be averted by resource confiscation
� time-outs and lock breaking

� resource can be reallocated to new client

� old client gets "stale handle" error and must restart

" current owner can be killed
� all resources will be reclaimed from the corpse

� this is an extreme measure, use it sparingly



Who can prevent deadlocks?
" advance reservations

� operating system, basic APIs, resource managers

" eliminating mutual exclusion
� application developer

" eliminating blocks while holding resources
� operating system, basic APIs

" eliminating circular dependencies
� application developer, resource managers 

" implementing revocation
� operating system, basic APIs, resource managers

Divide and Conquer!
" You don't have to pick one solution for all resources

" You have to solve the problem for each resource

" Solve individual problems any way that you can
� resource hoards for key system services

� reservations for commodity resources

� sharable resources where feasible

� ordered allocation where feasible

� lock breaking when nothing else will work

" OS is only responsible for deadlocks in OS services
�  applications are responsible for their own behavior

Closely related forms of "hangs"
" live-lock

� process not blocked, but won't free R1 until it acquires R2

" sleeping beauty
� process is blocked, awaiting a particular message

� message must be sent by another process

� for some (unknown) reason, the message is never sent

" program goes rogue
� program continues to run, but ceases to do useful work

" none of these are true deadlocks
� but they all leave you just as hung

Deadlock detection vs "hang" detection

" Deadlock detection seldom makes sense
� it is extremely complex to implement

� only detects "true deadlocks" in enumerated resources

" Service/application "health monitoring" does
� monitor progress or submit test transactions

� if progress is too slow, declare service to be "hung"

� this is very easy to implement

� detects and cures a wide range of problems



Deadlock/Hang Recovery

" recovery should be automatic

" determine which service has failed
� presumably the service whose audit timed out

� this may be a symptom of some other failure

" primary recovery
� kill and restart the failed application

� switch-operation over to a hot-stand-by

" determine efficacy of primary recovery
� retries, and escalations

When does formal detection make sense?

" Problem: Priority Inversion (a demi-deadlock)
� low priority process P1 has mutex M1 and is preempted

� high priority process P2  blocks for mutex M1 

� process P2  is effectively reduced to priority of P1 

" Solution: mutex priority inheritance
� detect when the problem when blocking for mutex

� compare priority of current mutex owner with blocker

� temporarily promote holder to blocker's priority

� return to normal priority after mutex is released

Deadlock – wrap-up

" deadlocks are a real and common hazard
� we must be wary of the danger, and prevent them

" there are different types of resources
� they are subject to different types of deadlocks

" there are several techniques for averting deadlock
� attack the four necessary conditions for deadlock

" deadlock detection is generally not practical
� hang detection is more useful

� recovery mechanisms are also very important


