Efficient Detection of Restricted Classes of Global Predicates

Craig M. Chase* Vijay K. Garg'

Parallel and Distributed Systems L aboratory
email: pdslab@ece.utexas.edu
Electrical and Computer Engineering Department
The University of Texas at Austin,
Austin, TX 78712

Abstract

We show that the problem of predicate detection in distributed systems is NP-complete. We intro-
duce aclass of predicates, linear predicates, such that for any linear predicate B there exists an efficient
detection of theleast cut satisfying B. Thedual of linearity is post-linearity. These properties generalize
several known propertiesof distributed systems, such asthe set of consi stent cutsformsalattice, and the
WCP and GCP predicate dectection results given in earlier work.

We defineamoregeneral class of predicates, semi-linear predicates, for which efficient algorithmsare
known to detect whether apredicate has occurred during an execution of adistri buted program. However,
these methods may not identify the least such cut. Any stable predicate is an example of a semi-linear
predicate. In addition, we show that certain unstable predicates can also be semi-linear, such as mutual
exclusion violation.

Finally, we show application of max-flow to the predicate detection problem. This result solves a
previously open problem in predicate detection, establishing the existence of an efficient algorithm to

detect predicates of theform z; + x5 ... + xny < k where z; are variables on different processes, & is
some constant, and NV islarger than 2.

keywords: distributed debugging, predicate detection, unstable predicates.

*supported in part by the Texas I nstruments/Jack Kilby Faculty Fellowship and by NSF Grant CCR-9409736

tsupported in part by the NSF Grant CCR-9110605, a TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant

1 Introduction

Detection of a globa predicate is a fundamental problem in distributed computing. This problem arisesin
many contexts such as designing, testing and debugging of distributed programs. For example, the detection
of global predicate arisesinimplementing the most basic command of adebugging system:* stop the program
when the predicate ¢ istrue.” To stop the program, it is necessary to detect the predicate ¢; anon-trivial task
if g requires access to the global state.

There have been three approaches in solving the detection of global predicates. Thefirst approach isbased
on the global snapshot algorithm by Chandy and Lamport [CL85, Bou87, SK86]. Their approach requires
repeated computation of consistent global snapshots of the computation till the desired predicate becomes
true. This approach works only for stable predicates, that is, predicates which do not turn false once they
become true. If the desired predicate ¢ were not stable then their approach would fail because ¢ may turn
true only between two successive snapshots. Further, their approach does not provide any indication as to
when the snapshot needs to be taken. Thus, it may either result in excessive overhead when the snapshots
are taken too often, or in significant delay between the occurrence and the detection of the predicate g.

The second approach to global predicate detection is based on the construction of the lattice of global
states. Thisapproach, first presented by Cooper and Marzullo [CM91], allows user to detect definitely: ¢ and
possibly: g where g isany predicate defined on asingle global state. The predicate possibly: ¢ istrueif inthe
lattice of global states there is a path from the initial global state to the final global state in which g istruein
some intermediate state. The predicate definitely: ¢ istrue if ¢ becomestruein al paths from theinitial state
to the final state. This approach works even for unstable predicates. However, given n processes each with
m “relevant” local states, their approach requires exploring O(m™) possible global statesin the worst case.

Thethird approach isbased on exploiting the structure of the predicate ¢. Thisapproach, instead of build-
ing thelattice, directly usesthe computation to deduceif ¢ becametrue. For example, [GW94, GW92] present
algorithmsto detect possibly: ¢ and definitely: ¢ of complexity O(n?m) when g isaconjunction of local pred-
icates. Similarly, [TG93] presents an efficient algorithm to detect =1 + z2 < k where z; and =, are variables
on different processes. In arecent paper [SS95], Stoller and Schneider propose combining this approach with
that of Cooper and Marzullo. Their method may require exponential complexity to detect some predicates.’

In this paper, we study techniques and limits of the third approach. This paper makes the following con-

tributions.

e We show that a detection algorithm for conjunctive predicates cannot be generalized to any arbitrary
boolean expression of local predicates. In particular, the problem of detecting whether a boolean ex-

pression became true in adistributed computation is an NP-complete problem. The problem stays NP-

! Stoller and Schneider’s method is exponential in the size of the fixed set. The cardinality of the fixed set isat most n — 1.

complete even when processes do not communicate with each other and each process executes asingle

instruction.

e Wedefine aproperty on the space of boolean predicates that we cal linearity. We show that there exists
apolynomial agorithm to detect the least global cut that satisfies agiven linear boolean predicate. We
also show that the set of global cuts satisfying a boolean predicate B isaninf-latticeif and only if B is
alinear boolean predicate. Thus, linearity captures the class of predicates for which efficient detection
of the least satisfying cut is possible. For example, the monotonicity condition on channel predicates

[GCKM95] isaspecia case of linearity.

e By considering the dual property of linearity, we get a necessary and sufficient condition for a given
set of global cutsto be alattice. This generalizes many earlier results. For example, the fact that the

set of al recoverable cuts form alattice [JZ90] is an easy consequence of our resullt.

e When the linearity property does not hold for a predicate B, we show that a weaker property, called
semi-linearity, is sufficient to permit detection of B with apolynomial algorithm. However, itisnot, in
general, possible to detect the least satisfying cut when B isonly semi-linear. The class of semi-linear
predicates subsumes stable predicates [CL85].

e Finaly, we show that for athird class of predicates, max-flow technique can be used to detect them.
In particular, we give an efficient algorithm to detect predicates of theform z1 + zo + ... + 2y < C.
This solves an open problem in [TG93] where the problem was solved for N = 2. Also see [BR94]
whereit isremarked that the technique in [TG93] does not appear to be generadizable to more than two

processes.

The techniques presented in this paper can be used in distributed debugging systems for implementing
breakpoints, in distributed fault monitoring systems for detecting an erroneous state reached by a distributed
program, and in the design of distributed algorithms by opti mizing the general predicate detection algorithm.

We haverestricted oursel vesto theglobal predicates defined on asingle cut of the distributed computation.
Other researchers have aso considered predicates that involve multiple cuts. For example, [MC88, GW92]
discuss linked predicates, [HPR93, BR94] discuss atomic sequences, and [FRGT94] discuss regular patterns.
We refer the reader to [BM 94, SM94] for surveys of stable and unstable predicate detection.

This paper is organized as follows. Section 2 describes our model of execution of adistributed program.
We use the notion of adeposet to model an execution. Section 3 provesthe intractability of the genera prob-
lem. Section 4 describes the linearity property and its applications. Section 5 describes the semi-linearity
property. Section 6 describes use of max-flow algorithms for detecting “Bounded Sum” predicates. Finaly,

Section 7 presents the concluding remarks.

2 Our Mode of the Execution of a Distributed Program

Wemodel the execution of asequential process as asegquence of distinct states. For each state, s, the program
prescribes what action will be taken to transition to next state. A distributed system consists of a set of N
processes P def {Pi, ..., Pn}. Processes do not share any clock or memory; they communicate and syn-
chronize with each other by messages over a set of channels. We assume that messages are not lost, altered,
or spuriously introduced into a channel. We do not assume that channels are FIFO.

We limit the type of actions any process P, may take to:

Al. Compute new values for some subset of the program variables. — We denote the set of program vari-

ables for process P; as X;.

A2. Send amessage on channel C;; forsomej : 1 < 5 < N — The contents of the message can be any

tuple of values of variablesin X;.
A3. Receive amessage from channel C; forsomej : 1 < j < N —weassume that receives are blocking.

We permit the value of program variables to change only during the transitions between states. Thus,
any state s from process P; defines a unique value for all variables in X;. We use S; to denote the set of
states generated by P; in one execution of the program. Similarly, we permit the contents of achannel C;; to
change only during transitions between states on P; or P;. Thus, any two states s € S; and ¢ € S uniquely
define the set of tuples (messages) in channel C;;. We say that for two states s and ¢, s <, t if and only
if s immediately precedes ¢ in some process P;. If s <, t then exactly one of the actions, A1, A2 or A3
occurs between s and ¢t. We define the initial and final states on each process as. Init(7) 4 min S; and
Final(7) L hax S;. Weuse s < ¢ to denote that s precedes t (not necessarily immediately).

We say that s ~ t (for states s € S; and ¢ € .S;) if and only if process P; transitions from s to some other
state by sending a message to F; and process P; transitions from some state to ¢ by receiving that message.
Following Lamport, we define the causally-precedes relation, —, (also known as “happened before”) asthe
transitive closure of { <, } U {~}.

Theset of states § & U;S; and therelation — form aniirreflexive partial order. More specificaly, (.S, —)
is a deposet (decomposed partialy ordered set) [Gar92, TG93]. The execution rules governing transitions

between states lead to the following definition:

Definition 1 Adeposet isatuple (S, ... Sy,~) suchthat (S, —) isanirreflexive partial order which sat-

isfies:

D1 Vu,Vi:u € S,1 <i < N :u Init(i)

D2. Vu,Vi:u € S,1 <i <N : Final(i) % u
D3. Vs,teS:s<imt=|{u|s~uVu~it}|<1

(D1) saysthat no state happens before the initial state of any process. Similarly, (D2) says that any final
state does not happen before any state. (D3) says that there is at most one message either sent or received
between any two consecutive states.

An important concept for deposets is that of a consistent cut. A cut is a subset of .S’ containing exactly
one state from each sequence S;. Given two states z,y € S, we say that z||y iff (z /4 y) A (y A =).
These two states are then called concurrent. A subset G C S is consistent (denoted by consistent(G)) iff
Vz,y € G : z||ly. Since each sequence S; is totally ordered, it is clear that if |G| = N and consistent(G)
then G must include exactly one state from each S;, i.e., G isaconsistent cut.

A consequence of the Definition 1 is the following.

Lemma 2 For any state s and any process P;, there exists a non-empty sequence of consecutive states called

the “ interval concurrent to s on ;" and denoted by I;(s)) such that:
1. I;(s) C S; —i.e, theinterval consists of only states from process P;, and
2. Vt € I;(s) : t||s —i.e, all statesin the interval are concurrent with s.

Proof: If sison P;, then the lemmaistrivialy true. Theinterval consists of exactly the set {s} (whichis
concurrent with itself). Sowe assumethat s isnot on P;. Define ;(s).lo = min{v|v € S; A v /4 s}. This
is well-defined since Flinal(i) # s dueto (D2). Similarly, on account of (D1), we can define I;(s).hi =
max{v|jv € S; A s 4 v}.

We show that I;(s).lo = I;(s).hi. If not, we do acase analysis.
Case l: Thereexistsv : I;(s).hi < v < I;(s).lo. Sincev < I;(s).loimpliesv — s and I;(s).hi < vimplies
s — v, we get acontradiction (v — v).
Case 2 I;(s).hi <im I;(s).lo. From the definition of I;(s).lo, it is easy to see that there must be a mes-
sage sent from the state previous to I;(s).lo. Similarly, from the definition of I;(s).hi, there exists amessage
received just after I;(s).hi. However, (D3) prohibits more than one send or receive event between two suc-
cessive states. Thus, this caseis also not possible.

From the above discussion it followsthat 7;(s).lo < I;(s).hi. Further, for any state ¢ such that ;(s).lo <
t X I;(s).hi, t A sand s /4 t holds. O

An important property of adeposet is given next.

Theorem 3 Any consistent subset G C S can be extended to a consistent cut. Thatis, VG : G C S :
consistent(G) = (3H : G C H: consistent(H) A |[H| = N).

4

Proof: It is sufficient to show that when |G| < N, thereexistsacut H D G such that consistent(#) and
|H| = |G| + 1. Consider any process P; which does not contribute a state to G. We will show that there
exists astate in S; which is concurrent with all statesin G. Let s and ¢ be two distinct statesin G. We show
that 7;(s) N 1;(t) # 0. If not, w.l.0.g. assumethat I;(s).hi < I;(t).lo. Asinthe proof of Lemmaz2, it follows
that there exists at |east one state, say v, between I;(s).hi and 1;(t).lo (dueto (D3)). Thisimpliesthat s — v
(because I;(s).hi precedes v) and v — ¢ (because v precedes I;(t).lo). Thus, s — ¢, a contradiction with
consistent(G). Thus, I;(s) N 1;(t) # 0.

Since any interval I;(s) isatotal order, it follows that:

ﬂ Ii(s) #0

seG

We now chose any state in (¢ I;(s) toextend G. O

The above property allows the algorithms in later sections to search for consistent subcuts rather than

consistent cuts.

3 NP-Completeness of Global Predicate Detection

We define aglobal predicate as any boolean valued function B of the variablesin X def U; X; and al tuples

(i.e., message) which may be present in the channels. During an execution, each state s € .S; definesavaue
for each variable z € X;. Each pair of states s € S; andt € S; define a set of tuples for channel Cj;.
We therefore use the notation B(G) to indicate the value of predicate B in a global state defined by a cut
G = {s1,...,sny}. Wewill ignore channels in the rest of this section. This simplification does not affect the
NP-completeness of global predicate detection.

The global predicate detection problem (GLOB) isadecision problem. It takes the form of:

Given: adeposet S of NV sequences, aset of variables X partitioned into NV subsets X1, ..., Xy,
and a predicate B defined on X.
Determineif there exists aconsistent cut G' € S such that B(G) has the value true.

We now show that the predicate detection problem is NP-Compl ete.
Theorem 3.1 GLOB is NP-complete.

Proof : First note that the problem isin NP. A verifier for the problem takes as input a cut G' and then deter-
minesif that cut is consistent and if the predicate istrue. The verification that the cut is consistent can easily

bedonein polynomial time (for example, using vector clocks [Mat89, Fid89] and examining al pairs of states

fromthe cut). Therefore, if the predicate itself can be eval uated in polynomial time, then the detection of that
predicate belongs to the set NP.

We show NP-completeness of the simplified predicate detection problem where all program variables are
restricted to taking the values “true” or “false”, and at most one variable from each X; can appear in B. We
reduce the satisfiability problem of aboolean expression to GLOB by constructing an appropriate deposet.

The deposet is constructed asfollows. For each variable u; € U, define aprocess P; which hosts variable
u; (i.e, X; = {u;}). Let the sequence S; consists of exactly two states. In the first state, u; has the value
fase. Inthe second state, u; has the value true. There are no messages exchanged during the computation
(e, Vs e S;,Vte Sj i#7: s||t).

Itiseasily verified that the predicate B istruefor somecutin S if and only if the expression is satisfiable.
[]

The above result shows that detection of agenera global predicate is intractable even for simple distributed
computation. Thisimplies that the class of predicates must be restricted to allow for efficient detection. The

remaining sections discuss three such restricted classes.

4 Linear Predicates

Inthissection, wedescribe aclassof global predicatesfor which efficient detection algorithms can be derived.
Wefirst define therelation < for cuts. Let Gg (or, ssmply G) bethe set of &l cuts for deposet S. For two cuts
G,H € G,wesay that G < H iff Vi : G[i] < H[i] where G[i] € S; and H[i] € S; are the states from
process P; in cuts G and H respectively. It isclear that for any deposet S, (G, <) isalattice.

A key concept in deriving an efficient algorithm isthat of aforbidden state. Given adeposet S, apredicate
B,andacut G C S, astate G[:] iscalled forbidden if itsinclusion inany cut H, where G < H, implies that
Bisfdsefor H. Formaly,

Definition 4 Given any boolean expression B, we define

forbidden(G, i) < VH : G < H : (G[i] # HI[i]) V ~B(H)

Based on the concept of aforbidden state, we define apredicate B to be linear with respect to deposet S if
for any cut G in the deposet, the fact that B isfalsein G impliesthat G contains aforbidden state. Formally,

Definition 5 A boolean predicate B islinear with respect to a deposet S iff:

VG € G : ~B(G) = Ji : forbidden(G, i)

Observe that the linearity of aboolean predicate also depends on the set G and, therefore, on the deposet
S. Wewould typically beinterested in predicates which are linear for all deposets consistent with a program.

The following is an easy consequence of the definition of linearity.

Lemma 6 The following are properties of linear predicates:
1. If By and By arelinear, then sois B; A Bs.
2. If B isdefined using variables of a single process, then B islinear.

3. The predicate that a cut is consistent islinear. That is, Let B(G) = Vi,j : G(4)||G(j). Then, B isa
linear predicate.

Proof: We just show thethird part. —=B(G) implies 34, j : G[i] — G[j]. Thisimpliesthat for al H > G,
G[i] = HJj]. Thus, weget —=(G[i| = H[i]) V ~B(H). Thus, B isalinear predicate. O

Observe that as a consequence of Lemma 6, weak conjunctive predicates [GW92] are linear.

4.1 ThelLeast Satisfying Cut Existsfor Linear Predicates

Note that any globa predicate, B, defines a (possibly empty) subset of cuts Gg € G where B holds for al
cutsin Gg. Wenow show that if B islinear then G isan inf-semilattice. Animplication of this result isthat
the least cut satisfying B is well-defined.

Lemma? LetGg C G.

Gp isaninf-semilattice iff B islinear with respect to G.

Proof: (<) We prove the contrapositive. Assume that B isnot linear. Thisimplies that there existsacut G
such that -B(G), and Vi : 3H; > G : (G[i] = H,[i]) and B(H;). Consider Y = U;{H;}. Note that all
elementsof Y € Gi. However, infY which is G isnot an element of G. Thisimpliesthat Gz is not an
inf-semilattice.

(=) We again show the contrapositive. Let Y = {H,, Hy,..H}} be any subset of Gp such that its
infimum G does not belong to Gg. Since G is infimum of Y, for any i, there exists j € 1..k such that
Gli] = Hj[i]. Since B(H;) istrue for all j, it follows that there exists a G for which linearity does not
hold. O

Some earlier results can be shown to be special cases of Lemma 7. For example, consider channel pred-
icates as described in [?]. Let C denote the state of any channel and M denote any set of messages.

Definition 8 A channel predicate, ¢(C'), is said to be monotonic iff:

VC i =¢(C) = (VM :: =c¢(CUM)) V (VM 2 —e(S — M))

That is, given any channel state, C, in which the predicate is false, then either sending more messagesis
guaranteed to |eave the predicate fal se, or receiving more messagesis guaranteed to leave the predicate false.
An example of amonotonic predicate is “channel C;; isempty”. If this predicate is false (i.e. the channel
is not empty), then sending more messages is guaranteed to leave the predicate false. A boolean predicate
is called a Generalized Conjunctive Predicate (GCP) iff it can be written as a conjunction of local predicates

and monotonic channel predicates. That is,
GCP = (ll AN 12 A ln AN (&] AN C2 AN ...Ce)

Note that many classical detection problemsin distributed systems, such astermination detection, buffer
overflow, and bounding global virtual time, are examples of GCPs.

The following is an easy application of Lemmas 6 and 7.

Theorem 4.1 Let B bea GCP be such that all of its channel predicates are monotone. Let (G, <) bethe set
of all global consistent cuts in which the GCP istrue. If G, H € G, then their greatest lower bound is also
ing.

Proof: Note that GCP(G) istrue iff
1. Gisaconsistent cut, and
2. dl loca predicates aretruein G, and
3. dl channel predicates aretruein G.
Each of the above clausesislinear. O
Example9 Asanother example, consider the predicate = + y > k where x and y are variables on processes
P, and P», and k is some constant. In general, this predicate isnot linear. Figure 1illustrates this. However,

assume that x is known to be monotonically decreasing. Inthiscase, x + y > k islinear. Given any cut, if

x +y < k, then we throw away the state with y variable.

We now discuss detection of linear global predicates. We will assume that given acut, G, it is efficient
to determine whether B istrue for G or not. On account of linearity of B, if B is evaluated to be falsein
some cut G, then we know that there exists a forbidden state in G. We will aso assume that there exists an

efficient algorithm to determine the forbidden state. With these assumptions, we get:

8

B(G): x+y>0

Xx=0 x=1

Figure 1: Example of aNon-Linear Predicate

(1) Vi : G[i] := Init(7);
) while =B(G) do

3 find ¢ such that forbidden(G, 7);
(4 if (G[i] = Flinal(i)) then return false
5 ese Gi] := Gi].next;
ggﬁ end while;
return true;

Figure 2: An efficient algorithm to detect alinear predicate

Theorem 10 If B isalinear predicate then there exists an efficient algorithm to determine the least cut that

satisfies B (if any).

Proof: An efficient algorithm to find the least cut in which B istrueisgiven in Fig. 2. We search for least
cut starting from theinitia state. If the predicate isfasein the current state (line 2), then we find the process
with the forbidden state (line 3). If thisisthe last state on the process, then we return false else we advance
along the process which has the forbidden state (line 5). O

The efficient algorithm can be visualized as searching for the first satisfying cut in the lattice of all cuts
by advancing with the help of the forbidden state. Thus, even though there are an exponential number of cuts
in the lattice, we explore at most i N cuts where mn is the maximum number of states along any process in
the deposet.

4.2 Dual Properties

Just as existence of the least cut requires that the predicate B be linear, the existence of the largest satisfying
cut requires a property that is dual of linearity.

Definition 11 A predicate B is post-linear iff
VG €G:-B(G)= 3i:VH <G :~(G[i] = H[i]) V-B(H)

In example 9, if z isknown to be monotonically increasing, then the predicate is post-linear.

All theresultsin the previous section have dual results for post-linear predicates. Thus, B isapost-linear
predicate iff Gp is asup-semilattice.

Further, there exists an efficient algorithm to find the largest cut for any post-linear predicate. The algo-
rithm in this case starts from the last cut and works its way backwards until it finds a cut which satisfies B.

Combining the results from the previous section and their duals, we get:
Theorem 12 G isalatticeiff B islinear wir.t. G and B isalso post linear wir.t. G.

Asan application of Theorem 12, we consider the problem of recovery in adistributed systems. We call
alocal state recoverable if after afailure, the state can be recovered from the disk using a checkpoint and
the message log. A cut is called recoverable if al states belonging to that cut are recoverable and the cut is
consistent 2

Thefollowing is an easy corollary of the Theorem 12.
Corollary 4.2 The set of all recoverable cutsis a lattice.

Proof sketch: Recoverability of astate islocal to aprocess. Any local property isboth linear and post-linear.

Similarly, the consistency property is linear as well as post-linear.

5 Semi-Linear Predicates

Now assume that the given predicate isnot linear. Thefirst implication isthat we cannot insist on getting the
least cut anymore (Lemma 7 states that such acut may not exist). Itisstill useful to find any cut that satisfies
B. We now give a property semi-linearity, which is weaker than linearity, such that for every semi-linear
predicate there exists an efficient algorithm to determine if there exists at least one cut that satisfies B.

Definition 13 Given any boolean expression B, we define

semi-forbidden(G, i) ¥ VH : G < H: G[i] # H[i]V

~B(H) V
3K > G : B(K) A G[i] < K[i]

ZNote that the notion of consistency in [JZ90] is slightly different from the one discussed in this paper.

10

Definition 14 A boolean predicate B is semi-linear with respect to a deposet S if:
VG € G : =B(G) = 3i : semi-forbidden(G, 7)

For an example of a semi-linear predicate, consider the execution of a mutual exclusion algorithm. To
ensure that the given execution is proper, we are interested in determining existence of a consistent cut G
such that B(G) def Ji,5 : CS(G[i]) AN CS(G[j]) A consistent(G). We first use Theorem 3 to reduce the
problemto detecting B(G) = 34, j : C'S(G[i]) ACS(G[j]) AG[i]||G]j]- Theorem 3, impliesthat the subcut

{G]i], G[j]} can be extended to a consistent cut. Now note that if B isfalsein G, then:
Vi, j 1 2OS(GlI]) v ~CS(GI]) v ~(Gla]]|G17])

If ~C'S(G[i]) holdsand there exists astate after G[i], then G|[i] issemi-forbidden. Now assumethat C'S(G|i])
istrue for al ¢ or G[i] is the last state on process 7. Without loss of generality assume the G[:] for which
C'S(G[i]) holds can be sorted (if not, then at least two are concurrent and the algorithm halts). After sorting,
the least G'[4] is semi-forbidden.

Remark 15 Ancther property that has been exploited in past is the following. A boolean predicate B sat-
isfies property (STABLE) if B(G) A consistent(G) = VH : G < H A consistent(H) : B(H). Any stable

property satisfies semi-linearity.

6 Bounded Sum Predicates

In this section, we describe a technique which can be used to compute predicates defined as alower bound
on the sum of variablesin adistributed program. The technique can be generalized for both upper and lower
bounds. The predicate (z; + ... + zn < k) belongs to this class of predicates, where z;’s are integers in
different processes and £ is a constant. The predicate becomes true when the sum of the z;’s falls below
the lower bound k. Bounded sum predicates were introduced in [TG93], where they were called “Relation
Predicates’ and algorithms were presented for the special case when N = 2.

Bounded sum predicates are useful for detecting global conditions such as loss of tokens and violations
of alimited resource. For example, consider a system in which there are & tokens indicating availability of
k resources. If z; denotes the number of tokens at process P, then °; x; < k indicates loss of one or more
tokens. As another example, consider a server which can handle at most & connections at atime. Client
processes P; have variables z; which indicates the number connections it has with the server. The predicate

(>°; =i > k) indicates a potential error.

11

X
W
1
w
x
f
1
N
@
w

Source Sink

e ®
T ©

Figure 3: Converting Deposets into Flow Graphs

The predicate to be detected, previously expressed as (z1 + z2 + ... + oy < k), can be stated formally

3G : consistent(G) = Y spw; <k
$;€G

We detect this predicate by computing
min G : consistent(G) : Y s;.w;
s;€Q
and then comparing this value to the constant .
We transform the deposet into a flow graph such that the max-flow in the graph is equal to the min-
vaue of the deposet. The resulting flow graph G is obtained as follows. G = (V,E), where V' =
U; Si U {source, sink} The edge set E is given below.

e First, we add edges from the source to al initial states s with the capacity co.
e For any two states s and ¢ such that s <;,,, ¢, we add an edge between them with capacity s.x.
e We add edges from al final states s to the sink with the capacity s.z.

e For any two states s and ¢ such that s ~» ¢, we first identify the successor to s, s <;,, s’. Notethat the
successor must exist as a consequence of Definition 1. We then add an edge from ¢ to s’ with capacity

Q.

Figure 3 shows an example. The original deposet ison theleft, and contains two states from each of two
processes. The flow graph that we construct is shown on the right. It can easily be seen that the minimum
value of 1 + x5 dong any consistent cut iseight. Eight isalso the maximum flow of the corresponding flow
graph.

The following result gives us a method for computing min-value of a deposet.

12

Theorem 6.1 The min-value of a deposet S isequal to the min cut of its flow graph G.

proof sketch: Werelate acut in the flow graph to acut in the deposet asfollows: If edge e connects vertices
sandtin G, andif e ispart of the cut of flow graph G, then the state corresponding to s is part of the cut in
deposet S.

e We first observe that any consistent cut of the deposet partitions the flow graph such that the source

and sink are isolated.

e Wealso notethat cut of G hasfinite value if and only if the cut isaconsistent cut of S.
[]

Based on the above result, a checker based algorithm can be devised as follows. First, the sequence of
states from each process is reduced by replacing the subsequence of states between any two message events
with asingle state. Thevalue of z; for this new state is defined as the minimum of z; over the original states.
Second, each process locally maintains the direct dependence relation (~») for each state. Each process cre-
atesalocal snapshot for every state, consisting of the value of z; and the direct dependence information. The
local snapshots are sent to a checker process which forms the flow-graph. The checker then runs a max-flow
algorithm to find the min cut. If this value isless than &, then the bounded sum predicate is detected.

Max-flow can be solved in O(|V||E|log(|V|?/|E|)) time by the agorithm due to Goldberg
and Tarjan[GT86], In our case, |V| = |E| = O(mN). Therefore, the checker process requires
O(m?N?log(mN)) timeto calculate this cut. The message complexity isonly O(mN) messages.

7 Conclusions

We have shown that the general problem of detecting a global predicate is NP-complete. We have defined
three classes of predicates — linear, semi-linear and bounded sum. We have given efficient algorithms to

detect predicates in these classes.

Acknowledgements

The authors gratefully acknowledge the contributions to this work by Alex Tomlinson. We thank him for

many valuable discussions and hisinsight into the importance of the linearity propery.

13

References

[BM94]

[Bou87]

[BRO4]

[CL85)]

[CMO1]

[Fidsg]

[FRGT94]

[Gar92]

[GCKMO5]

[GT86]

[GW92]

[GW94]

[HPRO3]

O. Babaoglu and K. Marzullo. Consistent global states of distributed systems. Fundamental
concepts and mechanisms. In Sape Mullender, editor, Distributed Systems, pages 55-96. Addi-
son Wesley, New York, NY, 2nd edition, 1994.

L. Bouge. Repeated snapshots in distributed systems with synchronous communication and
their implementation in CSP. Theoretical Computer Science, 49:145-169, 1987.

“O. Babaoglu and M. Raynal. Specification and detection of behavioral patterns in distributed
computations. In Proc. of 4th IFIP WG 10.4 Int. Conference on Dependable Computing for Crit-
ical Applications, San Diego, CA, January 1994. Springer Verlag Series in Dependable Com-
puting.

K. M. Chandy and L. Lamport. Distributed snapshots. Determining global states of distributed
systems. ACM Transactions on Computer Systems, 3(1):63—75, February 1985.

R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the Work-
shop on Parallel and Distributed Debugging, pages 163-173, Santa Cruz, CA, May 1991.
ACM/ONR.

C. J. Fidge. Partia ordersfor paralel debugging. In Proceedings of the ACM S GPLAN/S GOPS
Workshop on Parallel and Distributed Debugging, volume 24 of S GPLAN Notices, pages 183—
194, January 1989.

E. Fromentin, M. Raynal, V. K. Garg, and A. |. Tomlinson. On the fly testing of regular patterns
in distributed computations. In Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles,
IL, August 1994.

V. K. Garg. Some optimal algorithms for decomposed partially ordered sets. Information Pro-
cessing Letters, 44:39-43, November 1992.

V. K. Garg, C. Chasg, R. Kilgore, and J. R. Mitchell. Detecting conjunctive channel predicates
in a distribute programming environment. In Proc. of the International Conference on System
Sciences, volume 2, pages 232-241, Maui, Hawaii, January 1995.

A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In Proc. of
the Eighteenth Annual ACM Symposium on Theory of Computing, pages 136-146, 1986.

V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. In
Proc. of 12th Conference on the Foundations of Software Technology & Theoretical Computer
Science, pages 253-264. Springer Verlag, December 1992. Lecture Notesin Computer Science
652.

V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed programs.
|EEE Transactions on Parallel and Distributed Systems, 5(3):299-307, March 1994.

M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates in distributed
computations. In Proc. of the Workshop on Parallel and Distributed Debugging, pages 3242,
San Diego, CA, May 1993. ACM/ONR. (Reprinted in SIGPLAN Notices, Dec. 1993).

14

[JZ90]

[Mat89]

[MC88]

[SK86]

[SM94]

[SS95]

[TGO3]

D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message
logging and checkpointing. Journal of Algorithms, 11(3):462-491, September 1990.

F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed Al-
gorithms: Proceedings of the International Workshop on Parallel and Distributed Algorithms,
pages 215-226. Elsevier Science Publishers B. V, 1989.

B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proc. of the 8"
International Conference on Distributed Computing Systems, pages 316-323, San Jose, CA,
July 1988. IEEE.

M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc. of the 6! International
Conference on Distributed Computing Systems, pages 382—-388, 1986.

R. Schwartz and F. Mattern. Detecting causal relationships in distributed computations: In
search of the holy grail. Distributed Computing, 7(3):149-174, 1994.

Scott D. Stoller and Fred B. Schneider. Faster possibility detection by combining two ap-
proaches. In Proceedings of the Workshop on Distributed Algorithms, Le Mont Saint Michel,
France, September 1995. available as Cornell University Computer Science Technical Report
95-1511.

A. . Tomlinson and V. K. Garg. Detecting relational global predicates in distributed systems.
In Proc. of the Workshop on Parallel and Distributed Debugging, pages 21-31, San Diego, CA,
May 1993. ACM/ONR.

15

