
Efficient Detection of Restricted Classes of Global Predicates

Craig M. Chase� Vijay K. Gargy
Parallel and Distributed Systems Laboratory

email: pdslab@ece.utexas.edu
Electrical and Computer Engineering Department

The University of Texas at Austin,
Austin, TX 78712

Abstract

We show that the problem of predicate detection in distributed systems is NP-complete. We intro-
duce a class of predicates, linear predicates, such that for any linear predicate B there exists an efficient
detection of the least cut satisfyingB. The dual of linearity is post-linearity. These properties generalize
several known properties of distributed systems, such as the set of consistent cuts forms a lattice, and the
WCP and GCP predicate dectection results given in earlier work.

We define a more general class of predicates, semi-linear predicates, for which efficient algorithms are
known to detect whether a predicate has occurred during an execution of a distributed program. However,
these methods may not identify the least such cut. Any stable predicate is an example of a semi-linear
predicate. In addition, we show that certain unstable predicates can also be semi-linear, such as mutual
exclusion violation.

Finally, we show application of max-flow to the predicate detection problem. This result solves a
previously open problem in predicate detection, establishing the existence of an efficient algorithm to
detect predicates of the form x1 + x2 : : : + xN < k where xi are variables on different processes, k is
some constant, and N is larger than 2.

keywords: distributed debugging, predicate detection, unstable predicates.�supported in part by the Texas Instruments/Jack Kilby Faculty Fellowship and by NSF Grant CCR-9409736ysupported in part by the NSF Grant CCR-9110605, a TRW faculty assistantship award, a General Motors Fellowship, and an
IBM grant

1

1 Introduction

Detection of a global predicate is a fundamental problem in distributed computing. This problem arises in

many contexts such as designing, testing and debugging of distributed programs. For example, the detection

of global predicate arises in implementing the most basic command of a debugging system:“stop the program

when the predicate q is true.” To stop the program, it is necessary to detect the predicate q; a non-trivial task

if q requires access to the global state.

There have been three approaches in solving the detection of global predicates. The first approach is based

on the global snapshot algorithm by Chandy and Lamport [CL85, Bou87, SK86]. Their approach requires

repeated computation of consistent global snapshots of the computation till the desired predicate becomes

true. This approach works only for stable predicates, that is, predicates which do not turn false once they

become true. If the desired predicate q were not stable then their approach would fail because q may turn

true only between two successive snapshots. Further, their approach does not provide any indication as to

when the snapshot needs to be taken. Thus, it may either result in excessive overhead when the snapshots

are taken too often, or in significant delay between the occurrence and the detection of the predicate q.

The second approach to global predicate detection is based on the construction of the lattice of global

states. This approach, first presented by Cooper and Marzullo [CM91], allows user to detect definitely: q and

possibly: q where q is any predicate defined on a single global state. The predicate possibly: q is true if in the

lattice of global states there is a path from the initial global state to the final global state in which q is true in

some intermediate state. The predicate definitely: q is true if q becomes true in all paths from the initial state

to the final state. This approach works even for unstable predicates. However, given n processes each withm “relevant” local states, their approach requires exploring O(mn) possible global states in the worst case.

The third approach is based on exploiting the structure of the predicate q. This approach, instead of build-

ing the lattice, directly uses the computation to deduce if q became true. For example, [GW94, GW92] present

algorithms to detect possibly: q and definitely: q of complexity O(n2m) when q is a conjunction of local pred-

icates. Similarly, [TG93] presents an efficient algorithm to detect x1+x2 < k where x1 and x2 are variables

on different processes. In a recent paper [SS95], Stoller and Schneider propose combining this approach with

that of Cooper and Marzullo. Their method may require exponential complexity to detect some predicates.1
In this paper, we study techniques and limits of the third approach. This paper makes the following con-

tributions.� We show that a detection algorithm for conjunctive predicates cannot be generalized to any arbitrary

boolean expression of local predicates. In particular, the problem of detecting whether a boolean ex-

pression became true in a distributed computation is an NP-complete problem. The problem stays NP-1Stoller and Schneider’s method is exponential in the size of the fixed set. The cardinality of the fixed set is at most n� 1.

1

complete even when processes do not communicate with each other and each process executes a single

instruction.� We define a property on the space of boolean predicates that we call linearity. We show that there exists

a polynomial algorithm to detect the least global cut that satisfies a given linear boolean predicate. We

also show that the set of global cuts satisfying a boolean predicate B is an inf-lattice if and only if B is

a linear boolean predicate. Thus, linearity captures the class of predicates for which efficient detection

of the least satisfying cut is possible. For example, the monotonicity condition on channel predicates

[GCKM95] is a special case of linearity.� By considering the dual property of linearity, we get a necessary and sufficient condition for a given

set of global cuts to be a lattice. This generalizes many earlier results. For example, the fact that the

set of all recoverable cuts form a lattice [JZ90] is an easy consequence of our result.� When the linearity property does not hold for a predicate B, we show that a weaker property, called

semi-linearity, is sufficient to permit detection ofB with a polynomial algorithm. However, it is not, in

general, possible to detect the least satisfying cut when B is only semi-linear. The class of semi-linear

predicates subsumes stable predicates [CL85].� Finally, we show that for a third class of predicates, max-flow technique can be used to detect them.

In particular, we give an efficient algorithm to detect predicates of the form x1 + x2 + :::+ xN < C .

This solves an open problem in [TG93] where the problem was solved for N = 2. Also see [BR94]

where it is remarked that the technique in [TG93] does not appear to be generalizable to more than two

processes.

The techniques presented in this paper can be used in distributed debugging systems for implementing

breakpoints, in distributed fault monitoring systems for detecting an erroneous state reached by a distributed

program, and in the design of distributed algorithms by optimizing the general predicate detection algorithm.

We have restricted ourselves to the global predicates defined on a single cut of the distributed computation.

Other researchers have also considered predicates that involve multiple cuts. For example, [MC88, GW92]

discuss linked predicates, [HPR93, BR94] discuss atomic sequences, and [FRGT94] discuss regular patterns.

We refer the reader to [BM94, SM94] for surveys of stable and unstable predicate detection.

This paper is organized as follows. Section 2 describes our model of execution of a distributed program.

We use the notion of a deposet to model an execution. Section 3 proves the intractability of the general prob-

lem. Section 4 describes the linearity property and its applications. Section 5 describes the semi-linearity

property. Section 6 describes use of max-flow algorithms for detecting “Bounded Sum” predicates. Finally,

Section 7 presents the concluding remarks.

2

2 Our Model of the Execution of a Distributed Program

We model the execution of a sequential process as a sequence of distinct states. For each state, s, the program

prescribes what action will be taken to transition to next state. A distributed system consists of a set of N
processes P def= fP1; : : : ; PNg. Processes do not share any clock or memory; they communicate and syn-

chronize with each other by messages over a set of channels. We assume that messages are not lost, altered,

or spuriously introduced into a channel. We do not assume that channels are FIFO.

We limit the type of actions any process Pi may take to:

A1. Compute new values for some subset of the program variables. — We denote the set of program vari-

ables for process Pi as Xi.
A2. Send a message on channel Cij for some j : 1 � j � N — The contents of the message can be any

tuple of values of variables in Xi.
A3. Receive a message from channel Cji for some j : 1 � j � N — we assume that receives are blocking.

We permit the value of program variables to change only during the transitions between states. Thus,

any state s from process Pi defines a unique value for all variables in Xi. We use Si to denote the set of

states generated by Pi in one execution of the program. Similarly, we permit the contents of a channel Cij to

change only during transitions between states on Pi or Pj . Thus, any two states s 2 Si and t 2 Sj uniquely

define the set of tuples (messages) in channel Cij . We say that for two states s and t, s �im t if and only

if s immediately precedes t in some process Pi. If s �im t then exactly one of the actions, A1, A2 or A3

occurs between s and t. We define the initial and final states on each process as: Init(i) def= minSi andFinal(i) def= maxSi. We use s � t to denote that s precedes t (not necessarily immediately).

We say that s; t (for states s 2 Si and t 2 Sj) if and only if process Pi transitions from s to some other

state by sending a message to Pj and process Pj transitions from some state to t by receiving that message.

Following Lamport, we define the causally-precedes relation, !, (also known as “happened before”) as the

transitive closure of f�img [f;g.

The set of states S def= [iSi and the relation! form an irreflexive partial order. More specifically, (S;!)
is a deposet (decomposed partially ordered set) [Gar92, TG93]. The execution rules governing transitions

between states lead to the following definition:

Definition 1 A deposet is a tuple (S1; : : : SN ;;) such that (S;!) is an irreflexive partial order which sat-

isfies:

D1. 8u;8i : u 2 S; 1 � i � N : u 6; Init(i)
3

D2. 8u;8i : u 2 S; 1 � i � N : Final(i) 6; u
D3. 8s; t 2 S : s �im t)j fu j s; u _ u; tg j � 1

(D1) says that no state happens before the initial state of any process. Similarly, (D2) says that any final

state does not happen before any state. (D3) says that there is at most one message either sent or received

between any two consecutive states.

An important concept for deposets is that of a consistent cut. A cut is a subset of S containing exactly

one state from each sequence Si. Given two states x; y 2 S, we say that xjjy iff (x 6! y) ^ (y 6! x).
These two states are then called concurrent. A subset G � S is consistent (denoted by consistent(G)) iff8x; y 2 G : xjjy. Since each sequence Si is totally ordered, it is clear that if jGj = N and consistent(G)
then G must include exactly one state from each Si, i.e., G is a consistent cut.

A consequence of the Definition 1 is the following.

Lemma 2 For any state s and any process Pi, there exists a non-empty sequence of consecutive states called

the “interval concurrent to s on Pi” and denoted by Ii(s)) such that:

1. Ii(s) � Si — i.e., the interval consists of only states from process Pi, and

2. 8t 2 Ii(s) : tjjs — i.e., all states in the interval are concurrent with s.

Proof: If s is on Pi, then the lemma is trivially true. The interval consists of exactly the set fsg (which is

concurrent with itself). So we assume that s is not on Pi. Define Ii(s):lo = minfvjv 2 Si ^ v 6! sg. This

is well-defined since Final(i) 6! s due to (D2). Similarly, on account of (D1), we can define Ii(s):hi =maxfvjv 2 Si ^ s 6! vg.

We show that Ii(s):lo � Ii(s):hi. If not, we do a case analysis.

Case 1: There exists v : Ii(s):hi � v � Ii(s):lo. Since v � Ii(s):lo implies v ! s and Ii(s):hi � v impliess! v, we get a contradiction (v ! v).

Case 2: Ii(s):hi �im Ii(s):lo. From the definition of Ii(s):lo, it is easy to see that there must be a mes-

sage sent from the state previous to Ii(s):lo. Similarly, from the definition of Ii(s):hi, there exists a message

received just after Ii(s):hi. However, (D3) prohibits more than one send or receive event between two suc-

cessive states. Thus, this case is also not possible.

From the above discussion it follows that Ii(s):lo � Ii(s):hi. Further, for any state t such that Ii(s):lo �t � Ii(s):hi, t 6! s and s 6! t holds. 2
An important property of a deposet is given next.

Theorem 3 Any consistent subset G � S can be extended to a consistent cut. That is, 8G : G � S :
consistent(G)) (9H : G � H: consistent(H) ^ jHj = N).

4

Proof: It is sufficient to show that when jGj < N , there exists a cut H � G such that consistent(H) andjHj = jGj + 1. Consider any process Pi which does not contribute a state to G. We will show that there

exists a state in Si which is concurrent with all states in G. Let s and t be two distinct states in G. We show

that Ii(s)\ Ii(t) 6= ;. If not, w.l.o.g. assume that Ii(s):hi � Ii(t):lo. As in the proof of Lemma 2, it follows

that there exists at least one state, say v, between Ii(s):hi and Ii(t):lo (due to (D3)). This implies that s! v
(because Ii(s):hi precedes v) and v ! t (because v precedes Ii(t):lo). Thus, s ! t, a contradiction with

consistent(G). Thus, Ii(s) \ Ii(t) 6= ;.

Since any interval Ii(s) is a total order, it follows that:\s2G Ii(s) 6= ;
We now chose any state in

Ts2G Ii(s) to extend G. 2
The above property allows the algorithms in later sections to search for consistent subcuts rather than

consistent cuts.

3 NP-Completeness of Global Predicate Detection

We define a global predicate as any boolean valued function B of the variables in X def= SiXi and all tuples

(i.e., message) which may be present in the channels. During an execution, each state s 2 Si defines a value

for each variable x 2 Xi. Each pair of states s 2 Si and t 2 Sj define a set of tuples for channel Cij .
We therefore use the notation B(G) to indicate the value of predicate B in a global state defined by a cutG = fs1; : : : ; sNg. We will ignore channels in the rest of this section. This simplification does not affect the

NP-completeness of global predicate detection.

The global predicate detection problem (GLOB) is a decision problem. It takes the form of:

Given: a deposet S ofN sequences, a set of variables X partitioned intoN subsetsX1; : : : ;XN ,

and a predicate B defined on X .

Determine if there exists a consistent cut G 2 S such that B(G) has the value true.

We now show that the predicate detection problem is NP-Complete.

Theorem 3.1 GLOB is NP-complete.

Proof : First note that the problem is in NP. A verifier for the problem takes as input a cut G and then deter-

mines if that cut is consistent and if the predicate is true. The verification that the cut is consistent can easily

be done in polynomial time (for example, using vector clocks [Mat89, Fid89] and examining all pairs of states

5

from the cut). Therefore, if the predicate itself can be evaluated in polynomial time, then the detection of that

predicate belongs to the set NP.

We show NP-completeness of the simplified predicate detection problem where all program variables are

restricted to taking the values “true” or “false”, and at most one variable from each Xi can appear in B. We

reduce the satisfiability problem of a boolean expression to GLOB by constructing an appropriate deposet.

The deposet is constructed as follows. For each variable ui 2 U , define a process Pi which hosts variableui (i.e., Xi = fuig). Let the sequence Si consists of exactly two states. In the first state, ui has the value

false. In the second state, ui has the value true. There are no messages exchanged during the computation

(i.e., 8s 2 Si;8t 2 Sj : i 6= j : sjjt).
It is easily verified that the predicate B is true for some cut in S if and only if the expression is satisfiable.

The above result shows that detection of a general global predicate is intractable even for simple distributed

computation. This implies that the class of predicates must be restricted to allow for efficient detection. The

remaining sections discuss three such restricted classes.

4 Linear Predicates

In this section, we describe a class of global predicates for which efficient detection algorithms can be derived.

We first define the relation � for cuts. Let GS (or, simply G) be the set of all cuts for deposet S. For two cutsG;H 2 G, we say that G � H iff 8i : G[i] � H[i] where G[i] 2 Si and H[i] 2 Si are the states from

process Pi in cuts G and H respectively. It is clear that for any deposet S, (G;�) is a lattice.

A key concept in deriving an efficient algorithm is that of a forbidden state. Given a deposet S, a predicateB, and a cut G � S, a state G[i] is called forbidden if its inclusion in any cut H , where G � H , implies thatB is false for H . Formally,

Definition 4 Given any boolean expression B, we define

forbidden(G; i) def= 8H : G � H : (G[i] 6= H[i]) _ :B(H)
Based on the concept of a forbidden state, we define a predicate B to be linear with respect to deposet S if

for any cut G in the deposet, the fact that B is false in G implies that G contains a forbidden state. Formally,

Definition 5 A boolean predicate B is linear with respect to a deposet S iff:8G 2 G : :B(G)) 9i : forbidden(G; i)
6

Observe that the linearity of a boolean predicate also depends on the set G and, therefore, on the deposetS. We would typically be interested in predicates which are linear for all deposets consistent with a program.

The following is an easy consequence of the definition of linearity.

Lemma 6 The following are properties of linear predicates:

1. If B1 and B2 are linear, then so is B1 ^B2.

2. If B is defined using variables of a single process, then B is linear.

3. The predicate that a cut is consistent is linear. That is, Let B(G) � 8i; j : G(i)jjG(j). Then, B is a

linear predicate.

Proof: We just show the third part. :B(G) implies 9i; j : G[i] ! G[j]. This implies that for all H � G,G[i]! H[j]. Thus, we get :(G[i] = H[i]) _ :B(H). Thus, B is a linear predicate. 2
Observe that as a consequence of Lemma 6, weak conjunctive predicates [GW92] are linear.

4.1 The Least Satisfying Cut Exists for Linear Predicates

Note that any global predicate, B, defines a (possibly empty) subset of cuts GB � G where B holds for all

cuts in GB . We now show that if B is linear then GB is an inf-semilattice. An implication of this result is that

the least cut satisfying B is well-defined.

Lemma 7 Let GB � G.GB is an inf-semilattice iff B is linear with respect to G.

Proof: (() We prove the contrapositive. Assume that B is not linear. This implies that there exists a cut G
such that :B(G), and 8i : 9Hi � G : (G[i] = Hi[i]) and B(Hi). Consider Y = [ifHig. Note that all

elements of Y 2 GB . However, infY which is G is not an element of GB . This implies that GB is not an

inf-semilattice.()) We again show the contrapositive. Let Y = fH1;H2; ::Hkg be any subset of GB such that its

infimum G does not belong to GB . Since G is infimum of Y , for any i, there exists j 2 1::k such thatG[i] = Hj[i]. Since B(Hj) is true for all j, it follows that there exists a G for which linearity does not

hold. 2
Some earlier results can be shown to be special cases of Lemma 7. For example, consider channel pred-

icates as described in [?]. Let C denote the state of any channel and M denote any set of messages.

7

Definition 8 A channel predicate, c(C), is said to be monotonic iff:8C :: :c(C)) (8M :: :c(C [M)) _ (8M :: :c(S �M))
That is, given any channel state, C, in which the predicate is false, then either sending more messages is

guaranteed to leave the predicate false, or receiving more messages is guaranteed to leave the predicate false.

An example of a monotonic predicate is “channel Cij is empty”. If this predicate is false (i.e. the channel

is not empty), then sending more messages is guaranteed to leave the predicate false. A boolean predicate

is called a Generalized Conjunctive Predicate (GCP) iff it can be written as a conjunction of local predicates

and monotonic channel predicates. That is,GCP = (l1 ^ l2 ^ :::ln ^ c1 ^ c2 ^ :::ce)
Note that many classical detection problems in distributed systems, such as termination detection, buffer

overflow, and bounding global virtual time, are examples of GCPs.

The following is an easy application of Lemmas 6 and 7.

Theorem 4.1 Let B be a GCP be such that all of its channel predicates are monotone. Let (G;�) be the set

of all global consistent cuts in which the GCP is true. If G;H 2 G, then their greatest lower bound is also

in G.

Proof: Note that GCP(G) is true iff

1. G is a consistent cut, and

2. all local predicates are true in G, and

3. all channel predicates are true in G.

Each of the above clauses is linear. 2
Example 9 As another example, consider the predicate x+ y � k where x and y are variables on processesP1 and P2, and k is some constant. In general, this predicate is not linear. Figure 1 illustrates this. However,

assume that x is known to be monotonically decreasing. In this case, x+ y � k is linear. Given any cut, ifx+ y < k, then we throw away the state with y variable.

We now discuss detection of linear global predicates. We will assume that given a cut, G, it is efficient

to determine whether B is true for G or not. On account of linearity of B, if B is evaluated to be false in

some cut G, then we know that there exists a forbidden state in G. We will also assume that there exists an

efficient algorithm to determine the forbidden state. With these assumptions, we get:

8

x = 1x = 0

y = 0 y = 1

B(G): x + y > 0

P1

P2

Figure 1: Example of a Non-Linear Predicate

(1) 8i : G[i] := Init(i);
(2) while :B(G) do
(3) find i such that forbidden(G; i);
(4) if (G[i] = Final(i)) then return false
(5) else G[i] := G[i].next;
(6) end while;
(7) return true;

Figure 2: An efficient algorithm to detect a linear predicate

Theorem 10 If B is a linear predicate then there exists an efficient algorithm to determine the least cut that

satisfies B (if any).

Proof: An efficient algorithm to find the least cut in which B is true is given in Fig. 2. We search for least

cut starting from the initial state. If the predicate is false in the current state (line 2), then we find the process

with the forbidden state (line 3). If this is the last state on the process, then we return false else we advance

along the process which has the forbidden state (line 5). 2
The efficient algorithm can be visualized as searching for the first satisfying cut in the lattice of all cuts

by advancing with the help of the forbidden state. Thus, even though there are an exponential number of cuts

in the lattice, we explore at most mN cuts where m is the maximum number of states along any process in

the deposet.

4.2 Dual Properties

Just as existence of the least cut requires that the predicate B be linear, the existence of the largest satisfying

cut requires a property that is dual of linearity.

9

Definition 11 A predicate B is post-linear iff8G 2 G : :B(G)) 9i : 8H � G : :(G[i] = H[i]) _ :B(H)
In example 9, if x is known to be monotonically increasing, then the predicate is post-linear.

All the results in the previous section have dual results for post-linear predicates. Thus, B is a post-linear

predicate iff GB is a sup-semilattice.

Further, there exists an efficient algorithm to find the largest cut for any post-linear predicate. The algo-

rithm in this case starts from the last cut and works its way backwards until it finds a cut which satisfies B.

Combining the results from the previous section and their duals, we get:

Theorem 12 GB is a lattice iff B is linear w.r.t. G and B is also post linear w.r.t. G.

As an application of Theorem 12, we consider the problem of recovery in a distributed systems. We call

a local state recoverable if after a failure, the state can be recovered from the disk using a checkpoint and

the message log. A cut is called recoverable if all states belonging to that cut are recoverable and the cut is

consistent 2
The following is an easy corollary of the Theorem 12.

Corollary 4.2 The set of all recoverable cuts is a lattice.

Proof sketch: Recoverability of a state is local to a process. Any local property is both linear and post-linear.

Similarly, the consistency property is linear as well as post-linear.

5 Semi-Linear Predicates

Now assume that the given predicate is not linear. The first implication is that we cannot insist on getting the

least cut anymore (Lemma 7 states that such a cut may not exist). It is still useful to find any cut that satisfiesB. We now give a property semi-linearity, which is weaker than linearity, such that for every semi-linear

predicate there exists an efficient algorithm to determine if there exists at least one cut that satisfies B.

Definition 13 Given any boolean expression B, we define

semi-forbidden(G; i) def= 8H : G � H : G[i] 6= H[i] _:B(H) _9K � G : B(K) ^G[i] � K[i]2Note that the notion of consistency in [JZ90] is slightly different from the one discussed in this paper.

10

Definition 14 A boolean predicate B is semi-linear with respect to a deposet S if:8G 2 G : :B(G)) 9i : semi-forbidden(G; i)
For an example of a semi-linear predicate, consider the execution of a mutual exclusion algorithm. To

ensure that the given execution is proper, we are interested in determining existence of a consistent cut G
such that B(G) def= 9i; j : CS(G[i]) ^ CS(G[j]) ^ consistent(G). We first use Theorem 3 to reduce the

problem to detecting B(G) = 9i; j : CS(G[i])^CS(G[j])^G[i]jjG[j]. Theorem 3, implies that the subcutfG[i]; G[j]g can be extended to a consistent cut. Now note that if B is false in G, then:8i; j : :CS(G[i]) _ :CS(G[j]) _ :(G[i]jjG[j])
If:CS(G[i]) holds and there exists a state afterG[i], thenG[i] is semi-forbidden. Now assume thatCS(G[i])
is true for all i or G[i] is the last state on process i. Without loss of generality assume the G[i] for whichCS(G[i]) holds can be sorted (if not, then at least two are concurrent and the algorithm halts). After sorting,

the least G[i] is semi-forbidden.

Remark 15 Another property that has been exploited in past is the following. A boolean predicate B sat-

isfies property (STABLE) if B(G) ^ consistent(G)) 8H : G � H ^ consistent(H) : B(H). Any stable

property satisfies semi-linearity.

6 Bounded Sum Predicates

In this section, we describe a technique which can be used to compute predicates defined as a lower bound

on the sum of variables in a distributed program. The technique can be generalized for both upper and lower

bounds. The predicate (x1 + ::: + xN < k) belongs to this class of predicates, where xi’s are integers in

different processes and k is a constant. The predicate becomes true when the sum of the xi’s falls below

the lower bound k. Bounded sum predicates were introduced in [TG93], where they were called “Relation

Predicates” and algorithms were presented for the special case when N = 2.

Bounded sum predicates are useful for detecting global conditions such as loss of tokens and violations

of a limited resource. For example, consider a system in which there are k tokens indicating availability ofk resources. If xi denotes the number of tokens at process Pi, then
Pi xi < k indicates loss of one or more

tokens. As another example, consider a server which can handle at most k connections at a time. Client

processes Pi have variables xi which indicates the number connections it has with the server. The predicate(Pi xi > k) indicates a potential error.

11

a b

c d

c d

a b

x = 2
1x = 3

1

x = 5
2

x = 7
2

3

2

5

7

Source Sink

8
8

8

Figure 3: Converting Deposets into Flow Graphs

The predicate to be detected, previously expressed as (x1 + x2 + :::+ xN < k), can be stated formally

as: 9G : consistent(G) : Xsi2G si:xi < k
We detect this predicate by computingminG : consistent(G) : Xsi2G si:xi

and then comparing this value to the constant k.

We transform the deposet into a flow graph such that the max-flow in the graph is equal to the min-

value of the deposet. The resulting flow graph G is obtained as follows. G = (V;E), where V =Si Si [fsource; sinkg The edge set E is given below.� First, we add edges from the source to all initial states s with the capacity 1.� For any two states s and t such that s �im t, we add an edge between them with capacity s:x.� We add edges from all final states s to the sink with the capacity s:x.� For any two states s and t such that s; t, we first identify the successor to s, s �im s0. Note that the

successor must exist as a consequence of Definition 1. We then add an edge from t to s0 with capacity1.

Figure 3 shows an example. The original deposet is on the left, and contains two states from each of two

processes. The flow graph that we construct is shown on the right. It can easily be seen that the minimum

value of x1+x2 along any consistent cut is eight. Eight is also the maximum flow of the corresponding flow

graph.

The following result gives us a method for computing min-value of a deposet.

12

Theorem 6.1 The min-value of a deposet S is equal to the min cut of its flow graph G.

proof sketch: We relate a cut in the flow graph to a cut in the deposet as follows: If edge e connects verticess and t in G, and if e is part of the cut of flow graph G, then the state corresponding to s is part of the cut in

deposet S.� We first observe that any consistent cut of the deposet partitions the flow graph such that the source

and sink are isolated.� We also note that cut of G has finite value if and only if the cut is a consistent cut of S.

Based on the above result, a checker based algorithm can be devised as follows. First, the sequence of

states from each process is reduced by replacing the subsequence of states between any two message events

with a single state. The value of xi for this new state is defined as the minimum of xi over the original states.

Second, each process locally maintains the direct dependence relation (;) for each state. Each process cre-

ates a local snapshot for every state, consisting of the value of xi and the direct dependence information. The

local snapshots are sent to a checker process which forms the flow-graph. The checker then runs a max-flow

algorithm to find the min cut. If this value is less than k, then the bounded sum predicate is detected.

Max-flow can be solved in O(jV jjEj log(jV j2=jEj)) time by the algorithm due to Goldberg

and Tarjan[GT86], In our case, jV j = jEj = O(mN). Therefore, the checker process requiresO(m2N2 log(mN)) time to calculate this cut. The message complexity is only O(mN) messages.

7 Conclusions

We have shown that the general problem of detecting a global predicate is NP-complete. We have defined

three classes of predicates — linear, semi-linear and bounded sum. We have given efficient algorithms to

detect predicates in these classes.

Acknowledgements

The authors gratefully acknowledge the contributions to this work by Alex Tomlinson. We thank him for

many valuable discussions and his insight into the importance of the linearity propery.

13

References

[BM94] O. Babaoğlu and K. Marzullo. Consistent global states of distributed systems: Fundamental
concepts and mechanisms. In Sape Mullender, editor, Distributed Systems, pages 55–96. Addi-
son Wesley, New York, NY, 2nd edition, 1994.

[Bou87] L. Bouge. Repeated snapshots in distributed systems with synchronous communication and
their implementation in CSP. Theoretical Computer Science, 49:145–169, 1987.

[BR94] ¨O. Babaoğlu and M. Raynal. Specification and detection of behavioral patterns in distributed
computations. In Proc. of 4th IFIP WG 10.4 Int. Conference on Dependable Computing for Crit-
ical Applications, San Diego, CA, January 1994. Springer Verlag Series in Dependable Com-
puting.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Determining global states of distributed
systems. ACM Transactions on Computer Systems, 3(1):63–75, February 1985.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predicates. In Proc. of the Work-
shop on Parallel and Distributed Debugging, pages 163–173, Santa Cruz, CA, May 1991.
ACM/ONR.

[Fid89] C. J. Fidge. Partial orders for parallel debugging. In Proceedings of the ACM SIGPLAN/SIGOPS
Workshop on Parallel and Distributed Debugging, volume 24 of SIGPLAN Notices, pages 183–
194, January 1989.

[FRGT94] E. Fromentin, M. Raynal, V. K. Garg, and A. I. Tomlinson. On the fly testing of regular patterns
in distributed computations. In Proc. of the 23rd Intl. Conf. on Parallel Processing, St. Charles,
IL, August 1994.

[Gar92] V. K. Garg. Some optimal algorithms for decomposed partially ordered sets. Information Pro-
cessing Letters, 44:39–43, November 1992.

[GCKM95] V. K. Garg, C. Chase, R. Kilgore, and J. R. Mitchell. Detecting conjunctive channel predicates
in a distribute programming environment. In Proc. of the International Conference on System
Sciences, volume 2, pages 232–241, Maui, Hawaii, January 1995.

[GT86] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum flow problem. In Proc. of
the Eighteenth Annual ACM Symposium on Theory of Computing, pages 136–146, 1986.

[GW92] V. K. Garg and B. Waldecker. Detection of unstable predicates in distributed programs. In
Proc. of 12th Conference on the Foundations of Software Technology & Theoretical Computer
Science, pages 253–264. Springer Verlag, December 1992. Lecture Notes in Computer Science
652.

[GW94] V. K. Garg and B. Waldecker. Detection of weak unstable predicates in distributed programs.
IEEE Transactions on Parallel and Distributed Systems, 5(3):299–307, March 1994.

[HPR93] M. Hurfin, N. Plouzeau, and M. Raynal. Detecting atomic sequences of predicates in distributed
computations. In Proc. of the Workshop on Parallel and Distributed Debugging, pages 32–42,
San Diego, CA, May 1993. ACM/ONR. (Reprinted in SIGPLAN Notices, Dec. 1993).

14

[JZ90] D. B. Johnson and W. Zwaenepoel. Recovery in distributed systems using optimistic message
logging and checkpointing. Journal of Algorithms, 11(3):462–491, September 1990.

[Mat89] F. Mattern. Virtual time and global states of distributed systems. In Parallel and Distributed Al-
gorithms: Proceedings of the International Workshop on Parallel and Distributed Algorithms,
pages 215–226. Elsevier Science Publishers B. V, 1989.

[MC88] B. P. Miller and J. Choi. Breakpoints and halting in distributed programs. In Proc. of the 8th
International Conference on Distributed Computing Systems, pages 316–323, San Jose, CA,
July 1988. IEEE.

[SK86] M. Spezialetti and P. Kearns. Efficient distributed snapshots. In Proc. of the 6th International
Conference on Distributed Computing Systems, pages 382–388, 1986.

[SM94] R. Schwartz and F. Mattern. Detecting causal relationships in distributed computations: In
search of the holy grail. Distributed Computing, 7(3):149–174, 1994.

[SS95] Scott D. Stoller and Fred B. Schneider. Faster possibility detection by combining two ap-
proaches. In Proceedings of the Workshop on Distributed Algorithms, Le Mont Saint Michel,
France, September 1995. available as Cornell University Computer Science Technical Report
95-1511.

[TG93] A. I. Tomlinson and V. K. Garg. Detecting relational global predicates in distributed systems.
In Proc. of the Workshop on Parallel and Distributed Debugging, pages 21–31, San Diego, CA,
May 1993. ACM/ONR.

15

