
Copyright

by

Wei-Lun Hung

2016

The Dissertation Committee for Wei-Lun Hung
certifies that this is the approved version of the following dissertation:

Asynchronous Automatic-Signal Monitors with

Multi-Object Synchronization

Committee:

Vijay K. Garg, Supervisor

Christine Julien

Sarfraz Khurshid

Neeraj Mittal

Dewayne E Perry

Keshav Pingali

Asynchronous Automatic-Signal Monitors with

Multi-Object Synchronization

by

Wei-Lun Hung, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

December 2016

Dedicated to my family.

v

Asynchronous Automatic-Signal Monitors with

Multi-Object Synchronization

Wei-Lun Hung, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Vijay K. Garg

One of the fundamental problems in parallel programming is that there is

no simple programming paradigm that provides mutual exclusion and syn-

chronization with efficient implementation at the same time. For monitor

[Hoa74, Han75] (lock-based) systems, only experienced programmers can de-

velop high-performance fine-grained lock-based implementations. Program-

mers frequently introduce bugs with traditional monitors. Researchers have

proposed transactional memory [HM93, ST95], which provides a simple and

elegant mechanism for programmers to atomically execute a set of memory

operations so that there is no deadlock in transactional memory systems. How-

ever, most of transactional memory systems lack conditional synchronization

supports [WLS14, LW14]. Hence, writing multi-threaded programs with con-

ditional synchronization is rather difficult. In this dissertation, we develop

a parallel programming framework that provide simple constructs for mutual

exclusion and synchronization as well as efficient implementation.

vi

Our framework includes four components. The first part is AutoSynch,

which introduces automatic signaling monitor with an efficient implementa-

tion. Most programming languages use monitors with explicit signals for syn-

chronization in shared-memory programs. Requiring programmers to signal

threads explicitly results in many concurrency bugs due to missed notifica-

tions, or notifications on wrong condition variables. By using our monitor

object and the waituntil statement, programmers are able to write simpler

parallel programs than before. The second component is ActiveMonitor, which

enhances monitor objects with asynchronous executions. Tradition montors

inhibit parallelism by enforcing serial executions of critical sections, and thus

the performance of parallel programs with monitors scales poorly with number

of processes. By using our system, programmers can increase the parallelism

of their programs without any extra effort. The third part enables multi-

object synchronization. We introduce the multisynch construct for multi-

object mutual exclusion, which lets the system determine the order of locking

multiple objects. Furthermore, we allow waituntil to take global predicates

that across multiple monitor objects. Our method allows efficient monitoring

of the conditions without any global lock. The last part introduces logical

composition operations, OR, AND, selectone, and selectall. With our logi-

cal operations, programmers avoid reinventing the wheel since they can easily

reuse well-developed concurrent objects together. Our experimental results

indicate that our implementations outperform lock-based and transactional

memory implementations on most of the test cases.

vii

Table of Contents

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Motivation . 1

1.2 Automatic-Signal Monitors . 3

1.3 Asynchronous Monitor Method Executions 11

1.4 Multi-Object Synchronization 14

1.5 Logical Compositionality . 19

1.6 Our Framework and Actual Usage 20

1.7 Overview . 22

Chapter 2. Automatic-Signal Monitors 23

2.1 Background: Monitors . 27

2.2 Predicate Evaluation . 29

2.3 Relay Invariance . 32

2.4 Predicate Tag . 35

2.4.1 Predicate Tagging . 37

2.4.2 Tag Signaling . 38

viii

2.5 Evaluation . 42

2.5.1 Experimental environment 42

2.5.2 Signaling mechanisms 43

2.5.3 Test problems . 43

2.5.3.1 Shared predicate synchronization problems . . . 44

2.5.3.2 Complex predicate synchronization problems . . 44

2.5.3.3 Synchronization problems requiring signalAll
in explicit . 45

2.5.4 Experimental results . 45

2.6 Summary . 52

Chapter 3. Asynchronous Monitor Method Executions 53

3.1 Concept and Design . 53

3.2 Monitor Tasks . 56

3.2.1 Asynchronous Execution of Tasks 58

3.3 Runtime Library for Asynchronous Execution of Tasks 59

3.3.1 Execution of Monitor Tasks 59

3.3.2 Implementation . 61

3.3.3 Storage of Tasks: Single Consumer Optimal Bounded
Queue . 62

3.3.4 Monitor Thread Management 65

3.4 Evaluation . 65

3.4.1 Results . 68

3.5 Related Work . 71

3.6 Discussion . 74

ix

3.7 Summary . 75

Chapter 4. Multi-Object Synchronization 76

4.1 Multi-Object Mutual Exclusion 77

4.2 Efficient Automatic Notification of Global Conditions 79

4.2.1 Preliminaries . 81

4.2.2 Atomic-Variable Approach 82

4.2.3 Critical-Clause Approach 84

4.2.4 Global Conditions with Complex Predicates 90

4.3 Evaluation . 90

4.3.1 Evaluation for multisynch Statements 91

4.3.1.1 Examples Using multisynch Statements 91

4.3.1.2 Results . 92

4.3.2 Evaluation for Global Condition Problems 93

4.3.2.1 Applications and Examples 94

4.3.2.2 Results . 96

4.4 Related Work . 99

4.5 Summary . 100

Chapter 5. Logical Compositionality 102

5.1 Guarded Monitor Methods . 103

5.2 Synchronous Execution of Compositional Operations 104

5.3 Asynchronous Execution of Compositional Operations 107

5.3.1 Implementing Composition Operators in ActiveMonitor . 108

5.4 Evaluation . 110

x

5.4.1 Application: Multicast Channels Communication 110

5.4.2 Results . 111

5.5 Summary . 112

Chapter 6. Future Work 113

6.1 Monitors with Read/Write Lock 113

6.2 Asynchronous Monitor with Fairness and Priority 114

6.3 Enhancing Support of Asynchronous Monitor 117

6.3.1 Exception Handling . 118

6.3.2 Thread Dependent Variables/Functions 118

6.3.3 Blocking recursive method 119

Appendix 120

A.1 The H2O Problem . 120

A.2 Round-Robin Access Pattern 121

A.3 Ticket Readers/Writers Monitor Example 122

A.4 Sleeping Barber Problem . 123

Bibliography 124

xi

List of Tables

2.1 The CPU usage for the round robin access pattern 49

3.1 Short description of problems evaluated. Critical section (CS) is
light/heavy if the total number of operations performed inside
it are small/large. 66

xii

List of Figures

1.1 The bounded-queue using traditional Java 5

1.2 The bounded-queue using our approach 6

1.3 Bounded-Queue with ActiveMonitor 13

1.4 The Code Snippet of Dining Philosophers Problem 15

1.5 The Bounded Queue Example 17

1.6 The Code Snippet of Pizza Store Problem 18

1.7 The Bounded Queue Example 20

1.8 The framework of AutoSynch 21

2.1 The parameterized bounded-queue using traditional Java . . . 24

2.2 The parameterized bounded-queue using our approach 25

2.3 The parameterized bounded-queue using AutoSynch 28

2.4 The results of bounded-buffer problem 46

2.5 The results of H2O problem 46

2.6 The results of round-robin access pattern 47

2.7 The results of readers/writers problem 48

2.8 The results of dining philosophers problem 48

2.9 The results of the parameterized bounded-buffer problem . . . 50

2.10 The number of context switches of the parametrized bounded-
buffer problem . 50

2.11 The runtime ratio of round-robin 51

2.12 The runtime ratio of ticket readers/writers 51

3.1 Bounded-Queue with ActiveMonitor 55

3.2 BoundedQueue for single consumer and multiple producers . . 64

3.3 Throughput for PSSSP using priority queue (x-axis shows the
number of threads) . 69

3.4 Throughput for Bounded FIFO Queue (x-axis shows the num-
ber of threads) . 70

xiii

3.5 Throughput for SLL, and RR (x-axis shows the number of threads) 70

4.1 An example of the multisynch statement 78

4.2 The Critical-Clause Example 89

4.3 Throughput for the Dining Philosopher Problem 93

4.4 Runtime for genome+ . 93

4.5 The code snippet of Distributed Discrete-Event Simulation . . 95

4.6 Throughput for Atomic Take and Put 97

4.7 Throughput for the Pizza Store Problem 98

4.8 False Evaluation for the Pizza Store Problem 98

4.9 Throughput for the Discrete-Event Simulation 99

5.1 The Code Snippet of Multicast Channels Communication . . . 111

5.2 Throughput for Multicast Channels Communication 112

6.1 The examples of readers/writers monitor with priority annotation116

A.1 The H2O our framework . 120

A.2 The round robin access pattern using our framework 121

A.3 The ticket readers/writers monitor using our framework 122

A.4 The sleeping barber problem using our framework 123

xiv

Chapter 1

Introduction

1.1 Motivation

Multicore hardware is now ubiquitous. Programming these multicore

processors is still a challenging task due to bugs resulting from concurrency

and synchronization. Although there is widespread acknowledgement of dif-

ficulties in programming these systems, it is surprising that by and large the

most prevalent methods of dealing with synchronization are based on ideas

that were developed in early 70’s [Dij68,Hoa74,Han75]. For example, the most

widely used threads package in C++ [Str00], pthreads [But97], and the most

widely used threads package in Java [GJS+14], java.util.concurrent [Lea05], are

based on the notion of monitors [Hoa74,Han75](or semaphores [Dij65,Dij68]).

Therefore, we propose a new approach, based on asynchronous automatic sig-

naling monitor that allows gains in productivity of the programmer as well as

gain in performance of the system.

In this dissertation, we develop a system and programming paradigms

that are simpler than current parallel programming methods by shifting many

programming tasks from programmers to our system. These include automatic

notification of threads for conditional synchronization, creation of additional

1

threads for asynchronous execution, multi-object synchronization, and com-

position operations for monitor objects. By shifting these decisions to system,

our goal is to make the parallel programming not only less error prone but

also faster. To achieve the goal, our framework includes the following four

components.

The first part is AutoSynch, which introduces automatic signaling mon-

itor with an efficient implementation. Most programming languages use moni-

tors with explicit signals for synchronization in shared-memory programs. Re-

quiring programmers to signal threads explicitly results in many concurrency

bugs due to missed notifications, or notifications on wrong condition variables.

AutoSynch eliminates such concurrency bugs by removing the burden of sig-

naling from the programmer.

The second component of our framework is called ActiveMonitor, which

improves parallelism by exploiting asynchronous execution of critical sections.

The original design of monitor enforces blocking (synchronous) executions for

a thread to execute critical sections. Therefore, even if multi-core resources

are available, threads are forced to wait for accessing critical sections; thus,

the benefit of multi-core devices is limited. ActiveMonitor allow asynchronous

execution for monitor objects to increase performance of the overall system.

In the third part of our framework, we deal with multi-object synchro-

nization problems. Current monitor based systems require the programmers

to manually determine the order of locking operations, and use global locks

or perform busy waiting for operations that depend upon a condition that

2

spans multiple objects. We propose new monitor based methods that provide

automatic signaling for global conditions that span multiple objects. First, we

introduce the multisynch construct for multi-object mutual exclusion, which

lets the system determine the order of locking multiple objects. Second, our

system provides automatic notification for global conditions. Assuming that

the global condition is a Boolean expression of local predicates, our method

allows efficient monitoring of the conditions without any need for global locks.

Finally, our system solves the compositionality problem of monitor sys-

tems without requiring global locks. With current programming systems, solv-

ing this problem is extremely difficult [HS08]. An ad hoc way to deal with

compositionality problem is by using a global lock. But this approach results

in slower performance and poor scalability due to the global lock.

We have implemented our constructs on top of Java and have evaluated

their overhead. Our results show that on most of the test problems, not only

our code is simpler but also faster than Java’s reentrant-lock as well as the

Deuce transactional memory system.

1.2 Automatic-Signal Monitors

For conditional synchronization, both pthreads and Java require pro-

grammers to explicitly signal threads that may be waiting on certain condition.

The programmer has to explicitly declare condition variables and then signal

one or all of the threads when the associated condition becomes true. Us-

ing the wrong waiting notification (signal versus signalAll or notify versus

3

notifyAll) is a frequent source of bugs in Java multithreaded programs. In Au-

toSynch, there is no notion of explicit condition variables and it is the respon-

sibility of the system to signal appropriate threads. This feature significantly

reduces the program size and complexity. In addition, it allows us to com-

pletely eliminate signaling more than one thread resulting in reduced context

switches and better performance. The idea of automatic signaling was initially

explored by Hoare in [Hoa74], but rejected in favor of condition variables due

to efficiency considerations. The belief that automatic signaling is extremely

inefficient compared to explicit signaling is widely held since then and all the

prevalent concurrent languages based on monitors use explicit signaling. For

example, Buhr, Fortier, and Coffin claim that automatic monitors are 10 to

50 times slower than explicit signals [BBF+95]. We show in this dissertation

that the widely held belief is wrong. The reason for this drastic slowdown in

previous implementations of automatic monitor is that they evaluate all pos-

sible conditions on which threads are waiting whenever the monitor becomes

available.

With careful analysis of the conditions on which the threads are wait-

ing and evaluating as few conditions as possible, automatic signaling can be

as efficient as explicit signaling. In AutoSynch, the programmer simply spec-

ifies the predicate P on which the thread is waiting by using the construct

waituntil(P) statement. When a thread executes the waituntil statement,

it checks whether P is true. If it is true, the thread can continue; otherwise,

the thread must wait for the system to signal it. The AutoSynch system has a

4

condition manager that is responsible for determining which thread to signal

by analyzing the predicates and the state of the shared object.

1 class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 Lock mutex = new ReentrantLock();

5 Condition notFull = mutex.newCondition();

6 Condition notEmpty = mutex.newCondition();

7 public BoundedQueue(int n) {

8 items = new Object[n];

9 putPtr = takePtr = count = 0;

10 }

11 public void put(Object item) {

12 mutex.lock();

13 while (count == items.length) {

14 notFull.await();

15 }

16 items[putPtr++] = item;

17 putPtr %= items.length;

18 ++count;

19 notEmpty.signal();

20 mutex.unlock();

21 }

22 public Object take() {

23 mutex.lock();

24 while (count == 0) {

25 notEmpty.await();

26 }

27 Object x = items[takePtr++];

28 takePtr %= items.length;

29 --count;

30 notFull.signal();

31 mutex.unlock();

32 return ret;

33 }

34 }

Figure 1.1: The bounded-queue using traditional Java

5

1 monitor class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 public BoundedQueue(int n) {

5 items = new Object[n];

6 putPtr = takePtr = count = 0;

7 }

8 public void put(Object item) {

9 waituntil(count < items.length);

10 items[putPtr++] = item;

11 putPtr %= items.length;

12 ++count;

13 }

14 public Object take() {

15 waituntil(count >= num);

16 Object x = items[takePtr++];

17 takePtr %= items.length;

18 --count;

19 return ret;

20 }

21 }

Figure 1.2: The bounded-queue using our approach

6

Fig. 1.1 and 1.2 show the difference between the Java and the our

proposed implementation for the producer-consumer problem, also known as

the bounded-buffer problem [Dij65,Dij71]. In this problem, producers put an

item into a shared queue, while consumers take an item out of the queue.

The put function has a parameter item; the take function has no parame-

ter. There are two requirements for synchronization. First, every operation

on a shared variable, such as items, should be done under mutual exclu-

sion. Second, we need conditional synchronization; a producer must wait when

the queue is full, and a consumer must wait when the queue is empty. The

explicit-signal bounded-queue is written in Java. Programmers need to explic-

itly associate conditional predicates with condition variables and call signal

(signalAll) or await statement manually. Note that, the unlock statement

should be done in a finally block, try and catch blocks are also need for the

InterruptedException that may be thrown by await. However, for simplic-

ity, we avoid the exception handling in Fig. 1.1 and 1.2. The automatic-signal

bounded-queue is written using our framework. We use monitor modifier to

indicate that the class is a monitor as in line 1. A monitor class provides mutu-

ally exclusive access to its member functions. For conditional synchronization,

we use waituntil as in line 9. There are no signal or signalAll calls in

the our approach. Note that, the waituntil statement can take any Boolean

condition just like the if and while statements. Clearly, the automatic-signal

monitor is much simpler than the explicit-signal monitor.

In this dissertation, we argue that automatic signaling is generally as

7

fast as explicit signaling (and even faster for some examples). The explicit sig-

naling has to resort to signalAll in some examples; however, our automatic

signaling never uses signalAll. Thus AutoSynch is considerably faster for

synchronization problems that requires signalAll. The design principle un-

derlying AutoSynch is to reduce the number of context switches and predicate

evaluations.

Context switch: A context switch requires a certain amount of time to

save and load registers and update various tables and lists. Reduc-

ing unnecessary context switches boosts the performance of the system.

A signalAll call introduces unnecessary context switches; therefore,

signalAll calls are never used in AutoSynch.

Predicate evaluation: In the automatic-signal mechanism, signaling a

thread is the responsibility of the system. The number of predicate

evaluations is crucial for efficiency in deciding which thread should be

signaled. By analyzing the structure of the predicate, our system reduces

the number of predicate evaluations.

There are three important novel concepts in AutoSynch that enable

efficient automatic signaling — closure of predicates, relay invariance, and

predicate tagging.

The technique of closure of a predicate P is used to reduce the number of

context switches for its evaluation. In the current systems, only the thread that

8

is waiting for the predicate P can evaluate it. When the thread is signaled, it

wakes up, acquires the lock to the monitor and then evaluates the predicate P .

If the predicate P is false, it goes back to wait resulting in an additional context

switch. In AutoSynch system, the thread that is in the monitor evaluates the

condition for the waiting thread and wakes it only if the condition is true.

Since the predicate P may use variables local to the thread waiting on it,

AutoSynch system derives a closure predicate P ′ of the predicate P , such that

other threads can evaluate P ′. The details of closure are in Section 2.2.

The idea of relay invariance is used to avoid signalAll calls in Au-

toSynch. The relay invariance ensures that if there is any thread whose waiting

condition is true, then there exists at least one thread whose waiting condition

is true and is signaled by the system. With this invariance, the signalAll call

is unnecessary in our automatic-signal mechanism. This mechanism reduces

the number of context switches by avoiding signalAll calls. The details of

this approach are in Section 2.3.

The idea of predicate tagging is used to accelerate the process of deciding

which thread to signal. All the waiting conditions are analyzed and tags

are assigned to every predicate according to its semantics. To decide which

thread should be signaled, we identify tags that are most likely to be true

after examining the current state of the monitor. Then we only evaluate the

predicates with those tags. The details of predicate tagging are in Section 2.4.

Our experimental results indicate that AutoSynch can significantly im-

prove performance compared to other automatic-signal mechanisms [BH05].

9

In [BBF+95,BH05] the automatic-signal mechanism is 10-50 times slower than

the explicit-signal mechanism; however, AutoSynch is only 2.6 times slower

than the explicit-signal mechanism even in the worst case of our experiment

results. Furthermore, AutoSynch is 26.9 times faster than the explicit-signal

mechanism in the parameterized producer-consumer problem that relies on

signalAll calls. Besides, the experimental results also show that AutoSynch

is scalable; the performance of AutoSynch scales well even if the number of

threads increases for many problems studied in the dissertation.

Although the experiment results show that AutoSynch is 2.6 times

slower than the explicit-signal mechanism in the worst case, it is still desirable

to have automatic signaling. First, automatic signaling simplifies the task of

concurrent programming. In explicit-signal monitor, it is the responsibility

of programmers to explicitly invoke a signal call on some condition variable

for conditional synchronization. Using the wrong notification, and signaling a

wrong condition variable are frequent sources of bugs. The idea is analogous to

automatic garbage collection. Although garbage collection leads to decreased

performance because of the overhead in deciding which memory to free, pro-

grammers avoid manual memory deallocation. As a consequence, memory

leaks and certain bugs, such as dangling pointers and double free bugs, are re-

duced. Similarly, automatic-signal mechanism consumes computing resources

in deciding which thread to be signaled; programmers avoid explicitly invoking

signal calls. As a result, some bugs, such as using wrong notification and sig-

naling a wrong condition variable, are eliminated. Secondly, in explicit-signal

10

monitor, the principle of separation of concerns is violated. Any method that

changes the state of the monitor must be aware of all the conditions, which

other threads could be waiting for, in other methods of the monitor. The

intricate relation between threads for conditional synchronization breaks the

modularity and encapsulation of programming. Finally, AutoSynch can pro-

vide rapid prototyping in developing programs and accelerating product time

to market.

1.3 Asynchronous Monitor Method Executions

In this section, we present ActiveMonitor, a programming paradigm that

provides significant programming ease in writing thread-safe programs as well

as improves the runtime performance of these programs by exploiting asyn-

chronous delegated executions on modern multi-core hardware. Most, if not

all, programmers follow a standard recipe to implement shared memory par-

allel programs: they identify the critical sections in the serial implementation

of the program, and make them thread-safe in the style of monitors [Hoa74].

Monitors provide dual abstractions: mutual exclusion and synchronization

between threads. Their simplicity and elegance of use, and ready availabil-

ity of mutexes/locks are two key factors behind such a wide adoption of this

style. By enforcing serialized executions of critical sections, mutexes trivially

guarantee the safety of data. Under high contention scenarios, however, such

serialized executions become obvious performance bottleneck. In addition,

mutexes force memory fencing due to which latency hiding techniques such as

11

caching, pre-fetching, and operation re-ordering cannot be exploited. Mutexes

are synchronous: a thread invoking an acquire-lock operation must wait for

the lock to become available and cannot perform any other useful work in the

meanwhile. As a combined effect of all these factors, programs in traditional

monitor-style fare poorly in terms of throughput and scalability on multi-core

CPUs.

The design of monitors to enforce blocking executions was envisioned

in 1970’s when saving processor cycles of the single-core CPUs was a pri-

mary programming concern. In contrast, not only multi-core processors are

now ubiquitous, but they are also significantly cheaper and faster. In order

to exploit the multi-core resources, we enhance and allow a monitor object

to exist as a thread — hence it becomes an active artifact of the program.

With this change, method invocations on this monitor object can be dele-

gated [OTY99]. In addition, we allow the monitor thread to execute critical

sections asynchronously, so that calling threads can return to their local work

without waiting for their completion.

Fig. 1.3 shows the actual usage of ActiveMonitor with monitor, and

asynchronous keywords. The put method is defined as asynchronous since

we do not need to wait for the completion of the method call. Hence, threads

invoke put can continuously execute other tasks. However, take() method

will be made synchronous by the framework as it returns a value and is not

explicitly declared asynchronous. Threads invoke take may need its return

value to achieve tasks.

12

1 monitor class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 asynchronous void put(Object item) {

5 waituntil(count < items.length);

6 items [putPtr++] = item;

7 putPtr = putPtr % item.length;

8 ++count;

9 }

10 Object take() {

11 waituntil(count > 0);

12 Object x = items[takePtr++];

13 takePtr = takePtr % item.length;

14 --count;

15 return x;

16 }

17 }

Figure 1.3: Bounded-Queue with ActiveMonitor

Our design and implementation integrates seamlessly with current con-

structs provided by most programming languages, and can thus benefit existing

programs with only a handful of syntactic changes. The results of our exper-

imental evaluation on five multi-threading problems show that ActiveMonitor

outperforms, by a factor of two or more in some cases, traditional monitor

based programs implemented using Java’s ReentrantLock [Lea05], and dele-

gation technique [OTY99] on most of these problems. In our current imple-

mentation of ActiveMonitor, support for recursive synchronous operations is

not currently available, and use of thread dependent variables and functions is

restricted. Note that this only disables the asynchronous executions provided

by ActiveMonitor and the framework can still be used for such problems. We

13

discuss these two issues in 3.6.

1.4 Multi-Object Synchronization

Multi-core processors are now widely available but parallel program-

ming on these processors is still challenging due to bugs resulting from con-

currency and synchronization. The complex synchronization mechanisms and

the nondeterministic nature of threads limit productivity of programmers. For

example, synchronization on global conditions – conditions that span multiple

objects – currently either requires complex code by the programmer, or use of

a global lock. No current parallel programming paradigm provides simple con-

structs with efficient performance for multi-object synchronization. For exam-

ple, transactional memory based systems support multi-object operations but

do not support conditional waiting constructs [HMJH05, SR13]. The thread

itself needs to recheck every time there is an update of the variables in the

transaction. If there are multiple threads waiting on that condition, then each

one of them will recheck the condition. Our focus is on efficient detection and

signaling exactly one thread. In this dissertation, we propose and describe an

implementation of simple constructs for global conditional synchronization in

monitor-based systems to improve the productivity of programmers and the

performance of the system.

Programmers often introduce deadlocks in parallel programming. Trans-

actional memory [HM93, ST95] provides a simple and elegant mechanism for

programmers to atomically execute a set of memory operations so that there

14

is no deadlock in transactional memory systems. However, there is no sim-

ilar construct for monitor approaches. In this dissertation, we introduce

multisynch constructs for avoiding deadlock. Fig. 1.4 shows the deadlock-

free implementation for dining philosophers problem by using our multisynch

construct with monitor objects as parameters. Programmers can access moni-

tor objects in any order without deadlock. Our system automatically guaran-

tees atomicity for the statement. In contrast, programmers need to maintain

consistent locking order to avoid deadlock by using traditional monitors.

1 public void eat() {

2 multisynch(leftFork, rightFork) {

3 leftFork.pick();

4 rightFork.pick();

5 System.out.println("Philosopher is eating");

6 leftFork.put();

7 rightFork.put();

8 }

9 }

Figure 1.4: The Code Snippet of Dining Philosophers Problem

Many applications require certain action to be taken only if a condi-

tion that spans multiple objects is true. We call such a condition, a global

condition or a global predicate. Suppose that there are two queues Q1 and Q2

in a system such that they are initially empty and a thread can continue its

execution only when one of the queues becomes nonempty. Here, the con-

dition (!Q1.isEmpty() || !Q2.isEmpty()) is a global predicate. Waiting

for such a global predicate to become true without continual evaluation is

15

hard in current systems. If a thread waits on a condition queue associated

with Q1, then Q2 may become nonempty and vice-versa. In this example,

we would like the thread to be notified when either of the queues becomes

nonempty. Since a thread can sleep either in the condition queue associated

with Q1 or with Q2, it is impossible to solve this problem using just local locks

in current monitor-based programming systems. The current monitor systems

would either require a global lock for both queues, or require that the Queue

class contain a nonblocking method isEmpty(), and then check the condi-

tions of both the queues continually. For this example, we support a construct

waituntil(!Q1.isEmpty() || !Q2.isEmpty()) which requires the system

to wake the thread up whenever the global condition becomes true. We give

an efficient implementation of this construct.

We extend AutoSynch with multi-object synchronization. Every method

of a monitor is a critical section. If programmers need a critical section across

multiple monitor objects, they can use the multisynch statement, which takes

those monitor objects as parameters. Our system ensures that the operations

in the statement are executed in a mutually exclusive fashion without any

deadlock. If a thread has to wait (block) for a certain global condition to

become true, programmers can still use the waituntil statement with the

condition as an argument. The thread waits if the condition is false and our

system will signal it automatically when the condition has become true.

Fig. 1.5 shows the bounded queue implementation that demonstrates

the actual usage of waituntil statement with global conditions, and the

16

1 monitor class BoundedQueue {

2 public static void takeAndPut(BoundedQueue srcQ, BoundedQueue destQ) {

3 multisynch(srcQ, destQ) {

4 waituntil(!srcQ.isEmpty() && !destQ.isFull());

5 destQ.put(srcQ.take());

6 }

7 }

8 }

Figure 1.5: The Bounded Queue Example

multisynch statement. In this example, producers put an item into a shared

queue, while consumers take an item out of the queue. We use monitor modi-

fier to indicate that the class is a monitor as in line 1. A monitor class provides

mutually exclusive access to its member methods. The takeAndPut method

enables a thread to atomically take an item from srcQ and put the item in

destQ. In this method, we use multisynch statement in line 4 so that all

operations on both the queues in the scope of the multisynch statement are

done under mutual exclusion. Furthermore, we need global conditional syn-

chronization – a thread must wait when queue srcQ is empty or queue destQ

is full. We use waituntil in line 5 for global conditional synchronization.

As another example, consider a pizza store with two types of threads:

cooks and suppliers. The cooks loop forever, first waiting for ingredients, and

then making a pizza. The cooks may require different ingredients to make

different types of pizza. The suppliers also loop forever, producing ingredients

when they are insufficient. Since traditional monitor approaches do not sup-

port global conditional synchronization, they would rely on a coarse-grained

17

lock and condition variables to achieve this goal. However, using a coarse-

grained lock limits the parallelism since cooks requiring different ingredients

would not be able to make their pizzas concurrently. By using our approach,

every ingredient can be considered as a monitor object and there is no need

for a coarse-grained lock. Fig. 1.6 demonstrates the code snippet for this prob-

lem using our constructs. A cook thread waits till it has enough quantity of

each of the resources it needs. This is achieved by using the global predicate

in waituntil statement. Each of the ingredients, cheese, tomato and pep-

peroni, is a different monitor object and the entire operation is done under

multisynch to guarantee atomicity.

1 multisynch(cheese, tomato, pepperoni) {

2 waituntil(cheese.quantity()>= 6 &&

3 tomato.quantity()>= 3 && pepperoni.quantity()>= 5);

4 cheese.consume(6);

5 tomato.consume(3);

6 pepperoni.consume(5);

7 }

Figure 1.6: The Code Snippet of Pizza Store Problem

Thus, our multi-object synchronization monitor provides an alternative

parallel programming paradigm to the traditional monitors and transactional

memory systems. Our experimental results show that our approach is efficient

as well as scalable in synchronization problems that involve global conditions.

We believe that our research can complement current parallel programming

paradigms and fill the gap between the traditional monitors and the transac-

tional memory systems. Although our discussion on automatic notification has

18

been from the perspective of monitors, it is equally applicable to transactional

memory [ST95, HLR10, SSAT+06]. Techniques implemented in multi-object

synchronization can also be used for conditional synchronization in transac-

tional memory.

1.5 Logical Compositionality

Our system addresses another important problem with current mech-

anisms for synchronization called the compositionality problem [HS08]. Con-

tinuing with the example of two queues, suppose that the programmer wants

to delete an item x from any of the nonempty queues Q1 or Q2. Each of the

queues is a monitor object and provides a blocking method call take() that

returns an item from the queue. Since the programmer does not know in ad-

vance which queue is going to be nonempty, any method call Q1.take() or

Q2.take() may result in thread blocking even though the other queue has an

item available. An ad hoc way to implement this functionality is by using

a global lock and a nonblocking implementation of take. In our system, we

provide a construct called OR that executes exactly one of its operand task.

For this example, the programmer can use the construct as (x = Q1.take())

OR (x = Q2.take()). This OR construct is a mechanism that takes multiple

monitor methods as its argument and executes exactly one of them whenever

the enabling condition of one of the monitor becomes true. In addition to OR,

our system also provides AND, selectone, and selectall. Fig. 1.7 shows an

example using OR and selectone. For putInAQueue, we use the OR construct

19

so that a producer is able to put an item in Q1 or Q2 depending on whichever

queue is not full. A producer can put an item in any of the queues from an

array of queues by using the selectone statement in putInAnyQueue.

1 monitor class BoundedQueue {

2 public static void putInAQueue(BoundedQueue Q1,

3 BoundedQueue Q2, Object item) {

4 Q1.put(item) OR Q2.put(item);

5 }

6 public static void putInAnyQueue(

7 BoundedQueue[] queues, Object item) {

8 selectone(int i = 0; i < buffs.length; ++i;

9 queues[i].put(item));

10 }

11 }

Figure 1.7: The Bounded Queue Example

To evaluate the performance of our composition operations, we imple-

ment both synchronous and asynchronous approaches for multicast channels

communication. The results highlight the benefit of our synchronous compo-

sition operations since they are much faster than asynchronous approaches,

global lock implementations, and transaction memory approaches.

1.6 Our Framework and Actual Usage

The framework for the implementation is shown if Fig. 1.8. It is com-

posed of a preprocessor and a Java library. The preprocessor translates our

proposed constructs into traditional Java code. Our developed techniques

were implemented in the Java library, which is responsible for signaling an

20

appropriate thread for conditional synchronization and managing threads for

asynchronous executions.

AutoSynch

Java Library

AutoSynch

Preprocessor

AutoSynch

Code
Java Code Standard Java

Compiler

Java

Bytecode

Figure 1.8: The framework of AutoSynch

Using our framework involves the following steps:

1. Programmers write a monitor based parallel program using our key-

words, which includes: monitor, waituntil, asynchronous, synchronous,

and multisynch. Note that, the multisynch statement involves multi-

ple monitor objects. Furthermore, waituntil state can deal with global

conditions within the scope of multisynch statements. Programmers

can use additional operators OR, AND, selectone, and selectall for

compositionality across multiple monitor objects. Our system automat-

ically manages the use use of locks, and their acquisition/release so that

the user is not required to explicitly program them. The user is also free

from the responsibility of checking the predicate condition(s) and signal-

ing appropriate threads. The framework observes the values of predicate

conditions at runtime, and signals the appropriate threads automatically.

21

2. Programmers then runs our pre-processor to generate the program’s

equivalent Java code. The pre-processor injects code snippets to pro-

vide the corresponding functionality of framework keywords. The pre-

processor also links invocations of our runtime library API in the gener-

ated code.

3. The program is then compiled as a standard Java program, and the

binaries benefit from asynchronous executions of critical sections, and

automatic signaling. If needed, the user can easily disable asynchronous

executions at runtime by simply passing a flag.

Although we discuss the key implementation details of our framework

and its prototype implementation in Java, our techniques are also applicable to

other programming languages and models, such as pthread and C# [HWG03].

1.7 Overview

This dissertation is organized as follows. Chapter 2 presents design and

implementation of our automatic signaling monitor. Chapter 3 demonstrates

asynchronous executions of monitor tasks. In Chapter 4, we discusses multi-

object synchronization. Our logical composition operands for monitor objects

are shown in Chapter 5. Chapter 6 discuss the future work.

22

Chapter 2

Automatic-Signal Monitors

In this chapter, we demonstrate AutoSynch, which achieves efficiency in auto-

matic signaling synchronization based on three novel ideas. We introduce an

operation called closure that enables the predicate evaluation in every thread,

thereby reducing context switches during the execution of the program. Sec-

ondly, AutoSynch avoids signalAll by using a property called relay invari-

ance that guarantees that whenever possible there is always at least one thread

whose condition is true which has been signaled. Finally, AutoSynch uses a

technique called predicate tagging to efficiently determine a thread that should

be signaled. To evaluate the efficiency of AutoSynch, we have implemented

many different well-known synchronization problems such as the producers/-

consumers problem, the readers/writers problems, and the dining philosophers

problem. The results show that AutoSynch is almost as efficient as the explicit-

signal monitor and even more efficient for some cases.

The following motivating example demonstrates the simplicity of au-

tomatic signaling monitors. Fig. 2.1 and 2.3 show the difference between the

Java and the our proposed implementation for the parameterized producer-

consumer problem, a variant producer-consumer problem (also known as the

23

1 class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 Lock mutex = new ReentrantLock();

5 Condition insufficientSpace = mutex.newCondition();

6 Condition insufficientItem = mutex.newCondition();

7 public BoundedQueue(int n) {

8 items = new Object[n];

9 putPtr = takePtr = count = 0;

10 }

11 public void put(Object[] objs) {

12 mutex.lock();

13 while (objs.length + count > items.length) {

14 insufficientSpace.await();

15 }

16 for (int i = 0; i < items.length; i++) {

17 items[putPtr++] = objs[i];

18 putPtr %= items.length;

19 }

20 count += objs.length;

21 insufficientItem.signalAll();

22 mutex.unlock();

23 }

24 public Object[] take(int num) {

25 mutex.lock();

26 while (count < num) {

27 insufficientItem.await();

28 }

29 Object[] ret = new Object[num];

30 for (int i = 0; i < num; i++) {

31 ret[i] = items[takePtr++];

32 takePtr %= items.length;

33 }

34 count -= num;

35 insufficientSpace.signalAll();

36 mutex.unlock();

37 return ret;

38 }

39 }

Figure 2.1: The parameterized bounded-queue using traditional Java

24

1 monitor class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 public BoundedQueue(int n) {

5 items = new Object[n];

6 putPtr = takePtr = count = 0;

7 }

8 public void put(Object[] objs) {

9 waituntil(count + objs.length <= items.length);

10 for (int i = 0; i < objs.length; i++) {

11 items[putPtr++] = objs[i];

12 putPtr %= items.length;

13 }

14 count += objs.length;

15 }

16 public Object[] take(int num) {

17 waituntil(count >= num);

18 Object[] ret = new Object[num];

19 for (int i = 0; i < num; i++) {

20 ret[i] = items[takePtr++];

21 takePtr %= items.length;

22 }

23 count -= num;

24 return ret;

25 }

26 }

Figure 2.2: The parameterized bounded-queue using our approach

25

bounded-buffer problem) [Dij65,Dij71]. In this problem, producers put items

into a shared queue, while consumers take items out of the queue. The put

function has a parameter items; the take function has a parameter, num,

indicating the number of items taken. There are two requirements for syn-

chronization. First, every operation on a shared variable, such as buff, should

be done under mutual exclusion. Second, we need conditional synchroniza-

tion; a producer must wait when the queue does not have sufficient space,

and a consumer must wait when the queue has no sufficient items. The

explicit-signal bounded-queue is written in Java. Programmers need to explic-

itly associate conditional predicates with condition variables and call signal

(signalAll) or await statement manually. Note that, the unlock statement

should be done in a finally block, try and catch blocks are also need for the

InterruptedException that may be thrown by await. However, for simplic-

ity, we avoid the exception handling in Fig. 2.1 and 2.3. The automatic-signal

bounded-queue is written using our framework. We use monitor modifier to

indicate that the class is a monitor as in line 1. An monitor class provides mu-

tually exclusive access to its member functions. For conditional synchroniza-

tion, we use waituntil as in line 9. There are no signal or signalAll calls in

the our approach. Note that, the waituntil statement can take any Boolean

condition just like the if and while statements. Clearly, the automatic-signal

monitor is much simpler than the explicit-signal monitor. Furthermore, the

experimental results indicates that our approach is faster than the traditional

monitor implementation since our system avoids signalAll calls.

26

2.1 Background: Monitors

According to Buhr and Harji [BH05], monitors can be divided into two

categories according to the different implementations of conditional synchro-

nization.

Explicit-signal monitor In this type of monitor, condition variables, signal

and await statements are used for synchronization. Programmers need

to associate assertions with condition variables manually. A thread waits

on some condition variable if its predicate is not true. When another

thread detects that the state has changed and the predicate is true, it

explicitly signals the appropriate condition variable.

Automatic-signal (implicit-signal) monitor This kind of monitor uses

waituntil statements, such as line 9 in automatic-signal program in

Fig. 2.3, instead of condition variables for synchronization. Programmers

do not need to associate assertions with variables, but use waituntil

statements directly. In monitor, a thread will wait as long as the condi-

tion of a waituntil statement is false, and execute the remaining tasks

only after the condition becomes true. The responsibility of signaling a

waiting thread is that of the system rather than of the programmers.

We note that the signalAll call is essential in explicit-signal mech-

anism when programmers do not know which thread should be signaled. In

Fig. 2.1, a producer must wait if there is no space to put num items, while a

27

1 monitor class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 public BoundedQueue(int n) {

5 items = new Object[n];

6 putPtr = takePtr = count = 0;

7 }

8 public void put(Object[] objs) {

9 waituntil(count + objs.length <= items.length);

10 for (int i = 0; i < objs.length; i++) {

11 items[putPtr++] = objs[i];

12 putPtr %= items.length;

13 }

14 count += objs.length;

15 }

16 public Object[] take(int num) {

17 waituntil(count >= num);

18 Object[] ret = new Object[num];

19 for (int i = 0; i < num; i++) {

20 ret[i] = items[takePtr++];

21 takePtr %= items.length;

22 }

23 count -= num;

24 return ret;

25 }

26 }

Figure 2.3: The parameterized bounded-queue using AutoSynch

28

consumer has to wait when the buffer has insufficient items. Since produc-

ers and consumers can put and take different numbers of items every time,

they may wait on different conditions to be met. Programmers do not know

which producer or consumer should be signaled at runtime. Therefore, the

signalAll call is used instead of signal calls in line 21 and 35. Although

programmers can avoid using signalAll calls by writing complicated code

that associates different conditions to different condition variables; the com-

plicated code makes the maintenance of the program hard.

The signalAll call is expensive; it generally decreases the performance

because it introduces redundant context switches, requiring computing time

to save and load registers and update various tables and lists. Furthermore,

signalAll calls cannot increase parallelism because threads are forbidden to

access a monitor simultaneously. Although multiple threads are signaled at a

time, only one thread is able to acquire the monitor. Other threads may need

to go back to waiting state since another thread may change the status of the

monitor.

2.2 Predicate Evaluation

In AutoSynch, it is the responsibility of the system to signal appropriate

threads automatically. The predicate evaluation is crucial in deciding which

thread should be signaled. We discuss how to preform predicate evaluations

of waituntil statements.

A predicate P (~x) : X → B is a Boolean condition, where X is the space

29

spanned by the variables ~x = (x1, . . . , xn). A variable of a monitor object is a

shared variable if it is accessible by every thread that is accessing the monitor.

The set of shared variables is denoted by S. The set of local variables, denoted

by L, is accessible only by a thread calling a function in which the variables

are declared.

Predicates can be used to describe the properties of conditions. In

our approach, every condition of waituntil statement is represented by a

predicate. We say a condition has been met if its representing predicate is true;

otherwise, the predicate is false. Furthermore, we assume that every predicate,

P = ∨n
i=1ci, is in disjunctive normal form (DNF), where ci is defined as the

conjunction of a set of atomic Boolean expressions. For example, a predicate

(x = 1) ∧ (y = 6) ∨ (z 6= 8) is in DNF, where c1 = (x = 1) ∧ (y = 6) and

c2 = (z 6= 8). Note that, every Boolean formula can be converted into DNF

using De Morgan’s laws and distributive law.

Predicates can be divided into two categories based on the type of their

variables [BH05].

Definition 1 (Shared and complex predicate). Consider a predicate P (~x) :

X → B. If X ⊆ S, P is a shared predicate. Otherwise, it is a complex

predicate.

The automatic-signal monitor has an efficient implementation [Kes77]

by limiting the predicate of a waituntil to a shared predicate; however, we

do not limit the predicate of a waituntil statement to a shared predicate.

30

The reason is that this limitation will lead AutoSynch to be less attractive and

practical since conditions including local variables cannot be represented in

AutoSynch.

Evaluating a complex predicate in all the threads is not feasible because

the accessibility of the local variables in the predicate is limited to the thread

declaring them. To evaluate a complex predicate in all the threads, we treat

local variables as constant values at runtime and define closure as follows.

Definition 2 (Closure). Given a complex predicate P (~x,~a) : X × A → B,

where X ⊆ S and A ⊆ L. The closure of P at runtime t is the new shared

predicate

Gt(~x) = P (~x, ~at),

where ~at is the values of ~a at runtime t.

The closure can be applied to any complex predicate; a shared predicate

can be derived from the closure. For example, in Fig. 2.3, the consumer C

wants to take 48 items at some instant of time. Applying the closure to the

complex predicate (count ≥ num) in line 19, we derive the shared predicate

(count ≥ 48).

Definition 3 (Waituntil Period). Given a thread T waiting on predicate P .

The waituntil period indicates the duration that T waits on P ; that is, between

the first time that T evaluates P as false, and the time that T awakes up and

evaluates P as true.

31

The following proposition shows that the complex predicate evaluation

of waituntil statement in all threads can be achieved through the closure.

Proposition 1. Consider a complex predicate P (~x,~a) in a waituntil state-

ment. P (~x,~a) and its closure P (~x, ~at) are semantically equivalent during the

waituntil period, where t is the time instant immediately before invoking the

waituntil statement.

Proof. Only the thread invoking the waituntil statement can access the local

variables of the predicate; all other threads are unable to change the values

of those local variables. Therefore, the value of ~a cannot change during the

waituntil period. Since ~at is the value of ~a immediately before invoking the

waituntil statement, P (~x,~a) and P (~x, ~at) are semantic equivalent during the

waituntil period.

Proposition 1 enables the complex predicate evaluation of waituntil

statement in all threads. Given a complex predicate in a waituntil statement,

in the sequel we substitute all the local variables with their values immediately

before invoking the statement. The predicate can now be evaluated in all other

threads during the waituntil period.

2.3 Relay Invariance

As mentioned in Section 2.1, signalAll calls are sometimes unavoid-

able in the explicit-signal mechanism. In AutoSynch, signalAll calls are

avoided by providing the relay invariance.

32

Definition 4 (Active and inactive thread). Consider a thread that tries to

access a monitor. If it is not waiting in a waituntil statement or has been

signaled, then it is an active thread for the monitor. Otherwise, it is an inactive

thread.

Definition 5 (Relay invariance). If there is a thread waiting for a predicate

that is true, then there is at least one active thread; i.e., suppose WT is the set

of waiting threads whose conditions have become true, AT is the set of active

threads, then

WT 6= φ⇒ AT 6= φ

holds at all time.

AutoSynch uses the following mechanism for signaling.

Relay signaling rule: When a thread exits a monitor or goes into waiting

state, it checks whether there is some thread waiting on a condition that has

become true. If at least one such waiting thread exists, it signals that thread.

Proposition 2. The relay signaling rule guarantees relay invariance.

Proof. Suppose a thread T is waiting on the predicate P that is true. Since T

is waiting on P , P must be false before T went to waiting state. There must

exist another active thread R after T such that R changed the state of the

monitor and made P true. According to the rule, R must signal T or another

thread waiting for a condition that is true before leaving the monitor or going

33

into waiting state. The thread signaled by R then becomes active. Therefore,

the relay invariance holds.

Our framework guarantees progress by providing relay invariance. The

concept behind relay invariance is that, the privilege to enter the monitor is

transmitted from one thread to another thread whose condition has become

true. For example, in Fig. 2.3, the consumer C tries to take 32 items; however,

only 24 items are in the buffer at this moment. Then, C waits for the predicate

P : (count ≥ 32) to be true. A producer, D, becomes active after C; D puts

16 items into the buffer and then leaves the monitor. Before leaving, D finds

that P is true and then signals C; therefore, C becomes active again and takes

32 items of the buffer. Proposition 2 shows that the relay invariance holds

in our automatic-signaling mechanism. Thus, signalAll calls are avoided in

AutoSynch. Note that, although at most one thread is signaled at any time;

the signaled thread is not guaranteed to get the lock. Some other thread trying

to acquire the lock could also get the lock. The signaled thread may need to

go back as a waiting thread, since the state of the monitor may have changed.

However, this situation is rare in comparison with the signalAll call. The

problem is now reduced to finding a thread waiting for a condition that is true.

34

2.4 Predicate Tag

In order to efficiently find an appropriate thread waiting for a predicate

that is true, we analyze every waiting condition and assign different tags to

every predicate according to its semantics. These tags help us prune pred-

icates that are not true by examining the state of the monitor. The idea

behind the predicate tag is that, local variables cannot be changed during the

waituntil period; thus the values of local variables are used as keys when we

evaluate predicates. First, we define two types of predicates according to their

semantics.

Definition 6 (Local and shared expression). Consider an expression E(~x) :

X → D, where D represents one of the primitive data types in Java. If X ⊆ L,

then E is a local expression. Otherwise, if X ⊆ S, E is a shared expression.

We use SE to denote a shared expression, and LE to denote a local

expression.

Definition 7 (Equivalence predicate). A predicate P : (SE = LE) is an

equivalence predicate.

Definition 8 (Threshold predicate). A predicate P : (SE op LE) is a thresh-

old predicate, where op ∈ {<, ≤, >, ≥}.

Note that, many predicates that are not equivalence or threshold pred-

icates can be transformed into them. Consider the predicate (x− a = y + b),

where x, y ∈ S and a, b ∈ L. This predicate is equivalent to (x − y = a + b)

35

which is an equivalence predicate. Thus, these two types of predicates can

represent a wide range of conditions in synchronization problems.

Given an Equivalence or a Threshold predicate, we can apply the closure

operation to derive a constant value on the right hand side of the predicate. In

AutoSynch, there are three types of tags, Equivalence, Threshold, and None.

Every Equivalence or Threshold tag represents an equivalence predicate or

a threshold predicate, respectively. If the predicate is neither equivalence nor

threshold, it acquires the None tag. For example, consider the Threshold

predicate x+b > 2y+a where a and b are local variables with values 11 and 2.

We first use the closure to convert it to (x− 2y > 9), which is represented by

the tag (Threshold, x− 2y, 9, >). The formal definition of tag is as follows.

Definition 9. A tag is a four-tuple (M, expr, key, op), where

• M ∈ {Equivalence, Threshold, None};

• expr is a shared expression if M ∈ {Equivalence, Threshold}; other-

wise, expr =⊥;

• key is the value of a local expression after applying closure if M ∈

{Equivalence, Threshold}; otherwise, key =⊥;

• op ∈ {<, ≤, >, ≥} if M = Threshold; otherwise, op =⊥.

We say that a tag is true (false) if the predicate representing the tag is

true (false).

36

2.4.1 Predicate Tagging

Tags are given to every predicate by the algorithm shown in Algo-

rithm 1. A tag is assigned to every conjunction. The tags of conjunctions of a

predicate constitute the set of tags of the predicate. When assigning a tag to

a conjunction, the equivalence tag has the highest priority because the set of

values that make an equivalence predicate true is smaller than the set of values

that make a threshold predicate true. For example, the equivalence predicate

x = 8 is true only when the value of x is 8, whereas the threshold predicate

x > 3 is true for a much larger set of values. Therefore, the Equivalence tags

can help us prune predicates that are false more efficiently than other kinds

of tags. If a conjunction does not include any equivalence predicate, then we

check whether it includes any threshold predicate. If yes, then a Threshold

tag is assigned to the conjunction; otherwise, the conjunction has a None tag.

Algorithm 1 predicateTagging(P)

Input: A DNF predicate P
Output: Returns tags for P
1: tags.empty()

2: for each conjunction C of P do
3: if C contains an equivalence predicate se = le then
4: Tag t = null
5: t = (Equivalence, se, closure(le), null)
6: else if C contains a threshold predicate seople then
7: t = (Threshold, se, closure(le), op)
8: else
9: t = (None, null, null, null)

10: tags.add(t)

Creating all tags for a conjunction is unnecessary. If a conjunction

37

includes multiple equivalence predicates or threshold predicates, only one ar-

bitrary Equivalence tag or Threshold tag is assigned to the conjunction. If

there are a large number of tags, then the performance may decrease because

of the cost of maintaining tags. Assigning multiple tags to a conjunction

cannot accelerate the searching process. For example, consider a conjunction

(x = 8) ∧ (y = 9). If only a tag (Equivalence, x, 8, null) is assigned to

the conjunction, we check the predicate when the tag is true. Adding another

tag (Equivalence, y, 9, null) cannot accelerate the searching process since

we need to check both the tags. Note that multiple predicates with a shared

conjunct may share a tag. For example, the predicates (x = 5) ∧ (z ≤ 4) and

(x = 5) ∧ (y ≥ 4) would have a shared equivalence tag of (x = 5).

As another example, consider the predicate p = ((x < 5) ∧ (y =

3)) ∨ ((x > 5) ∧ (foo2())) ∨ foo1(), where x and y are shared variables, and,

foo1() and foo2() are boolean functions. The predicate p has three tags,

(Equivalence, y, 3, null) for the clause (x < 5)∧(y = 3), (Threshold, x, 5, >)

for the clause (x > 5) ∧ (foo2()), and None tag for foo1().

2.4.2 Tag Signaling

Signaling mechanism is based on tags in AutoSynch. Since the equiva-

lence tag is more efficient in pruning the search space than the threshold tag,

the predicates with equivalence are checked prior to the predicates with other

tags. If no true predicate is found after checking Equivalence tags and Thresh-

old tags, our algorithm does the exhaustive search for the predicates with a

38

None tag.

Equivalence tag signaling: Observe that, an equivalence predicate be-

comes true only when its shared expression equals the specific value of its

local expression after applying closure. For distinct equivalence tags related

to the same shared expression, at most one tag can be true at a time because

the value of its local expression is deterministic and unique at any time. By

observing the value of its local expression, the appropriate tag can be iden-

tified. For example, suppose there are three Equivalence tags for predicates

x = 3, x = 6, and x = 8. We examine x and find that its value is 8. Then we

know that only the third predicate x = 8 is true. Based on this observation,

for each unique shared expression of an equivalence tag, we create a hash table,

where the value of the local expression is used as the key. By using this hash

table and evaluating the shared expression at runtime, we can find a tag that

is true in O(1) time if there is any. Then we check the predicates having the

tag.

Threshold tag signaling: Threshold tag signaling exploits monotonicity of

the predicate to reduce the complexity of evaluating predicates. For example,

suppose there are two predicates, x > 5 and x > 3. We know that if x > 3 is

false, then x > 5 cannot be true. Hence, we only need to check the predicate

with the smallest local expression value for > and ≥ operations. Similarly,

the predicate x > 3 cannot be true when x ≥ 3 is false; i.e., we only need to

39

check the predicate x ≥ 3. We use a min-heap data structure for storing the

threshold tags related to a same shared expression with op ∈ {>,≥}. If two

predicates have the same local expression value but different operations, then

the predicate with ≥ is considered to have a smaller value than the predicate

with > in the min-heap. Dually, the max-heap is used for threshold tags with

op ∈ {<,≤}.

The signaling mechanism for Threshold tag is shown if Algorithm 2.

In general, the tag in the root of a heap is checked. If the tag is false, all the

descendant nodes are also false. Otherwise, all predicates having the tag need

to be checked for finding a true predicate. To maintain the correctness, if no

predicate is true, the tag is removed from the heap temporarily. Then the tag

in the position of the new heap root is checked again until a true predicate is

found or a false tag is found. Those tags removed temporarily are reinserted

in the heap. The reason to remove the tags is that the descendants of the

tags may also be true since the tags are true. So we also need to check the

descendant tags. For example, consider the predicates P1 : (x ≥ 5) ∧ (y 6= 1)

and P2 : (x > 7). P1 has the tag Q1 : (Threshold, x, 5, ≥) and P2 has the tag

Q2 : (Threshold, x, 7, >). Q1 is the root and Q2 is its descendant. Suppose

at some time instant x = 3, then Q1 is false; thus, there is no need to check

Q2. Now, suppose x = 9 and y = 1, then Q1 is true. We check all predicates

that have tag Q1. Since P1 is false, no predicate having tag Q1 is true. Then

Q1 is removed form the heap temporarily. We find the new root Q2 is true

and P2 that has tag Q2 is also true. We signal a thread waiting for P2 and

40

then add Q1 back to the heap.

Algorithm 2 thresholdTagSignaling()

Input: A DNF predicate P and the heap of its threshold tags

1: backup.empty()

2: Tag t = heap.peek() . retrieve but not remove the root
3: while t is true do
4: for each predicate P with t do
5: if P is true then
6: signal a thread waiting on P
7: for each b ∈ backup do
8: backup.add(b)

9: return
10: backup.add(heap.poll()) . retrive and remove the root
11: t = heap.peek()

12: for each b ∈ backup do

13: heap.add(b)

Suppose there are n Threshold tags for a shared expression with dif-

ferent keys, and these tags are assigned to m predicates. The time complexity

for maintaining the heap is O(n log(n)) However, the performance is gener-

ally much better because we only need to check the predicates of the tags in

the root position in the most cases. The time complexity for finding the root

is O(1). In the worst case, we need to check all predicates; thus, the time

complexity is O(n log(n) + m). However, this situation is rare. Furthermore,

this algorithm is optimized for evaluating threshold predicates by sacrificing

performance in tag management.

41

2.5 Evaluation

We present the experimental setup and its results to evaluate the per-

formance of AutoSynch in this section. We compare the performance of differ-

ent signaling mechanisms in three sets of classical conditional synchronization

problems. The first set of problems relies on only shared predicates for syn-

chronization. Next, we explore the performance for problems using complex

predicates. Finally, we evaluate the problems in which signalAll calls are

required in the explicit-signal mechanism.

2.5.1 Experimental environment

All of the experiments were conducted on a machine with 16 Intel(R)

Xeon(R) X5560 Quad Core CPUs (2.80 GHz) and 64 GBs memory running

Linux 2.6.18.

We conducted two types of experiments. The first is a saturation test

[BH05], in which only monitor accessing functions performed. That is, no

extra work is performed in the monitor or out of the monitor. The other set of

experiments simulate different workloads of the monitors [BBF+95]. For each

monitor operation, there is a fixed time to perform other operations out of the

monitor. For every experiment, we ran the program 25 times, and removed

the best and the worst results. Then we compared the average runtime for

different signaling mechanisms.

We do not report memory usage due to space limitations. Although

some additional data structures are created in our framework, the additional

42

memory consumption is insignificant. The reason is that, whenever a predicate

has no waiting thread, it is put in an inactive list for reuse. If the size of

the inactive list exceeds a predefined threshold, e.g. 2n (n is the number of

threads), then we remove the oldest predicate and the conditional variable

from the list and the table. Moreover, the size of active predicates is always

less than n.

2.5.2 Signaling mechanisms

Four implementations using different signaling mechanisms have been

compared.

Explicit-signal Using the original Java explicit-signal mechanism.

Baseline Using the automatic-signal mechanism relying on only one condition

variable. It calls signalAll to wake every waiting thread. Then each

thread that wakes up re-evaluates its own predicate after re-acquiring

the monitor.

AutoSynch-T Using the approach described in this chapter but excluding

predicate tagging.

AutoSynch Using the approach described in this chapter.

2.5.3 Test problems

Seven conditional synchronization problems are implemented for eval-

uating our approach.

43

2.5.3.1 Shared predicate synchronization problems

Bounded-buffer [Dij65,Dij71] This is the traditional bounded-buffer prob-

lem. Every producer waits if the buffer is full, while every consumer waits

if the buffer is empty.

H2O problem [And99] This is the simulation of water generation. Every H

atom waits if there is no O atom or another H atom. Every O atom

waits if the number of H atoms is less than 2. The code snippets are

shown in Fig. A.1.

2.5.3.2 Complex predicate synchronization problems

Round-Robin Access Pattern Every test thread accesses the monitor in

round-robin order. The code snippets are shown in Fig. A.2.

Readers/Writers [CHP71] We use the approach given in [BH05], where

a ticket is used to maintain the accessing order of readers and writers.

Every reader and writer gets a ticket number indicating its arrival or-

der. Readers and writers wait on the monitor for their turn. The code

snippets are shown in Fig. A.3.

Dining philosophers [Dij71] This problem requires coordination among philoso-

phers sitting around a table and is described in [Dij71].

44

2.5.3.3 Synchronization problems requiring signalAll in explicit

Parameterized bounded-buffer [Dij65,Dij71] The parameterized bounded-

buffer problem shown in Fig. 2.3.

2.5.4 Experimental results

Fig. 2.4 and 2.5 plot the results for the bounded-buffer and the H2O

problem. The y-axis shows the runtime in seconds. The x-axis represents the

number of simulating threads. Note that, in the H2O problem, only one thread

simulates an O atom. The x-axis represents the number of threads simulating

H atoms. As expected, the baseline is much slower than other three signal-

ing mechanisms, which have similar performance in the both problems. This

phenomenon can be explained as follows. There is only a constant number of

shared predicates in waituntil statements for automatic-signal mechanisms.

For example, in the bounded-buffer problem, there are two waituntil state-

ments with global predicates, count > 0 (not empty condition) and count

< buff.length (not full condition). Therefore, the complexity for signaling a

thread in AutoSynch and AutoSynch-T is also constant. Hence, both AutoSynch

and AutoSynch-T are as efficient as the explicit-signal mechanism. These ex-

periments illustrate that the automatic-signal mechanisms are as efficient as

the explicit-signal mechanisms for synchronization problems relying on only

shared predicates.

Fig. 2.6, 2.7 2.8 present the experimental results for the round-robin

access pattern, the readers/writers problem, and the dining philosophers prob-

45

 5

 10

 15

 20

 25

 30

 2 4 8 16 32 64 128 256

ru
n

ti
m

e(
se

co
n

d
s)

producers/consumers

explicit
baseline

AutoSynch-T
AutoSynch

Figure 2.4: The results of bounded-buffer problem

 0

 50

 100

 150

 200

 250

 300

 2 4 8 16 32 64 128 256

ru
n

ti
m

e
(s

e
c
o

n
d

s)

H-Atom

explicit
baseline

AutoSynch-T
AutoSynch

Figure 2.5: The results of H2O problem

lem. The result of the baseline is not plotted in these figures since its perfor-

mance is extremely inefficient in comparison with other mechanisms. In this

set of experiments, the explicit-signal mechanism has an advantage since it

can explicitly signal the next thread to enter the monitor. For example, in

the round-robin access pattern, an array of condition variables is used for

associating the id of each thread and its condition variable. Each thread

waits on its condition variable until its turn. When a thread leaves the mon-

itor, it signals the condition variable of the next thread. As can be seen, the

46

performance of explicit-signal mechanism is steady as the number of threads

increases in the round-robin access pattern and the reader/writers problem.

In AutoSynch-T, its runtime increases significantly as the number of threads

increase. For AutoSynch, the performance is between 1.2 to 2.6 times slower

than the explicit-signal mechanism for the round-robin access pattern. How-

ever, the performance of AutoSynch does not decrease as the number of threads

increases. Note that, in the readers/writers problem, the AutoSynch-T is more

efficient than AutoSynch when the number of threads is small. The reason

is that AutoSynch sacrifices performance for maintaining predicate tags. The

benefit of predicate tagging increases as the number of threads increases. An-

other interesting point is that the performance of the explicit signal mechanism

does not outperform implicit signal mechanisms much in the dining philoso-

phers problem. The reason is that a philosopher only competes with two other

philosophers sitting near him even when the number of philosophers increases.

 0

 5

 10

 15

 20

 25

 2 4 8 16 32 64 128 256

ru
n

ti
m

e
(s

e
c
o

n
d

s)

threads

explicit
AutoSynch-T

AutoSynch

Figure 2.6: The results of round-robin access pattern

Table 2.1 presents the CPU usage (profiled by YourKit [you]) for the

47

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

2/10 4/20 8/40 16/80 32/160 64/320

R
u

n
ti

m
e
 (

se
c
o

n
d

s)

writers

explicit
AutoSynch-T

AutoSynch

Figure 2.7: The results of readers/writers problem

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 2 4 8 16 32 64 128 256

ru
n

ti
m

e(
se

co
n

d
s)

philosophers

explicit
AytoSynch-T

AutoSynch

Figure 2.8: The results of dining philosophers problem

round-robin access pattern with 128 threads. The relay signal is the process of

deciding which thread should be signaled in both AutoSynch and AutoSynch-T.

Tag Mger is the computation for maintaining predicate tags in AutoSynch. As

can be seen, the predicate tagging significantly improves the process for finding

a predicate that is true. The CPU time of relaySingal process is reduced 95%

with a slightly increased cost in tag management.

In Fig. 2.9, we compare the results of the parameterized bounded-buffer

in which signalAll calls are required in the explicit-signal mechanism. In

48

await lock relay signal
T % T % T %

explicit 21365 99.7% 28 0.15% NA NA
AutoSynch-T 410377 98.5% 3140 0.7% 2108 0.5%
AutoSynch 96754 98.8% 812 0.8% 112 0.1%

Tag Mger others total
T % T % T

explicit NA NA 28 0.15% 21433
AutoSynch-T NA NA 1033 0.2% 416658
AutoSynch 124 0.1% 148 0.02% 97950

Table 2.1: The CPU usage for the round robin access pattern

this experiment, there is one producer, which randomly puts 1 to 128 items

every time. The y-axis indicates the number of consumers. Every consumer

randomly takes 1 to 128 items every time. As can be seen, the performance of

the explicit-signal mechanism decreases as the number of consumers increases.

AutoSynch outperforms the explicit-signal mechanism by 26.9 times when the

number of threads is 256. This can be explained by Fig. 2.10 that depicts

the number of contexts switches. The number of context switches increases

in the explicit-signal mechanism in which the number of context switches is

around 2.7 million when the number of threads is 256. However, the numbers

of context switches are stable in AutoSynch even when the number of threads

increase. It has around 5440 context switches when the number of threads is

256. This experiment demonstrates that the number of context switches can

be dramatically reduced and the performance can be increased in AutoSynch

for the problems requiring signalAll calls in the explicit-signal mechanism.

49

 0

 2

 4

 6

 8

 10

 12

 14

 16

 2 4 8 16 32 64 128 256

ru
n

ti
m

e
(s

e
c
o

n
d

s)

consumers

explicit
AutoSynch

Figure 2.9: The results of the parameterized bounded-buffer problem

 0

 500

 1000

 1500

 2000

 2500

 3000

 2 4 8 16 32 64 128 256

#
 c

o
n

te
x

t
sw

it
c
h

e
s

(K
 t

im
e
s)

consumers

explicit
AutoSynch

Figure 2.10: The number of context switches of the parametrized bounded-
buffer problem

Fig. 2.11 and 2.12 present the run time ratio of our approaches and the

explicit approach for the round-robin access pattern with 256 threads and the

readers/writers problem with 64 writers and 320 readers. The y-axis indicates

the runtime ratio and the x-axis shows the delay time, the amount of time in

which the threads perform operations out of the monitor between every two

monitor operations, in microseconds. As expected, the performance difference

decreases as the duration of delay time increases. AutoSynch is two times

50

slower than the explicit approach with no delay time (saturation test) for

round-robin access pattern. However, when the duration of delay time is

5000 microseconds, AutoSynch is only 7.7% slower than the explicit approach.

Note that, even AutoSynch-T performs well when the duration of delay time

increases. The similar observation can be seen for the readers/writers problem

in Fig. 2.12. The results suggest that our approach could be more useful for

practical problems that perform more monitor unrelated operations.

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 1000 2000 3000 4000 5000

ru
n

ti
m

e
ra

ti
o

delay time(microseconds)

AutoSynch
AutoSynch-T

Figure 2.11: The runtime ratio of round-robin

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 1000 2000 3000 4000 5000

ru
n

ti
m

e
ra

ti
o

delay time(microseconds)

AutoSynch
AutoSynch-T

Figure 2.12: The runtime ratio of ticket readers/writers

51

2.6 Summary

In this chapter, we have proposed AutoSynch framework that supports

automatic-signal mechanism with AutoSynch class and waituntil statement.

AutoSynch uses the closure operation to enable the complex predicate eval-

uation in every thread. It also provides relay invariance that some thread

waiting for a condition has met is always signaled to avoid signalAll calls.

AutoSynch also uses predicates tag to accelerate the process in deciding which

thread should be signaled.

52

Chapter 3

Asynchronous Monitor Method Execu-
tions

Monitor objects are used extensively for mutual exclusion and synchroniza-

tion in shared memory parallel programs. They provide ease of use, and en-

able straightforward correctness analysis. However, they inhibit parallelism by

enforcing serial executions of critical sections, and thus the performance of par-

allel programs with monitors scales poorly with number of processes. In this

chapter, we present ActiveMonitor — a framework that improves parallelism

by exploiting asynchronous execution of critical sections. We evaluate the per-

formance of Java based implementation of ActiveMonitor on micro-benchmarks

involving light and heavy critical sections, as well as on single-source-shortest-

path problem in directed graphs. Our results show that on most of these

problems, ActiveMonitor based programs outperform programs implemented

using Java’s reentrant-lock and condition variable constructs.

3.1 Concept and Design

In ActiveMonitor, we use the term worker to denote an application

thread/process. A monitor object can be instantiated as a thread/process

53

based on the availability of system resources. This thread is called a server,

and invocation of critical sections of monitor by workers are delegated to it.

Delegation [OTY99] is a technique in which critical sections of a monitor are

not executed directly by workers invoking the method, but are processed by

the server thread on behalf of workers. The workers announce their execu-

tion requests — in the form of tasks — to the server by adding the requests

(task objects) to a shared storage that is owned by the monitor. Combin-

ing [HIST10, FK12] is a version of delegation in which the role of server is

assumed by the worker that succeeds in acquiring the lock to the critical sec-

tion. This thread becomes the combiner, and in addition to its own request,

serves requests announced by other threads for a period of time before releasing

the lock and allowing some other thread to become the combiner. Throughout

this dissertation, we use the term server in both delegation and combining

contexts. A critical section is asynchronous (or non-blocking) if the worker

can return to executing its own local program from the critical section before

its completion. Otherwise the critical section is synchronous (or blocking).

ActiveMonitor provides the following constructs for writing monitor

based programs:

1. monitor: keyword that declares a class as a monitor, and frees the user

from explicit lock instantiations, and their acquisition/release to make

the critical sections thread-safe.

54

2. waituntil: a statement for conditional waits and notifications. The

statement requires a boolean predicate as an argument.

3. asynchronous: keyword used in declaration of monitor methods. Such

methods are delegated to the server (monitor thread) , and the worker

thread returns to its own local execution before completing the method.

If the worker requires the result of the computation, it receives a future

[Hal85] instance which can be evaluated — a blocking call if the result

is not yet available — to fetch the result. Fig. 3.1 shows the usage of

asynchronous as in line 4.

1 monitor class BoundedQueue {

2 Object[] items;

3 int putPtr, takePtr, count;

4 asynchronous void put(Object item) {

5 waituntil(count < items.length);

6 items [putPtr++] = item;

7 putPtr = putPtr % size;

8 ++count;

9 }

10 Object take() {

11 waituntil(count > 0);

12 Object x = items[takePtr++];

13 takePtr = takePtr % size;

14 --count;

15 return x;

16 }

17 }

Figure 3.1: Bounded-Queue with ActiveMonitor

It then replaces invocation of these methods (by application threads on

monitor object) by submission of tasks to the server of the monitor. The run-

55

time library has two sub-components: condition manager and task executer.

The condition manager is responsible for observing the state of the monitor

object for conditional waits and signaling an appropriate thread whenever its

precondition becomes true. The task executer component manages the sub-

mission and completion of monitor tasks and also handles their asynchronous

executions.

Our pre-processor uses a set of parsing rules that identify the Active-

Monitor keywords, and is an extension of the pre-processor in our previous

chapter, AutoSynch. We briefly discuss its steps. For a source class that is

declared monitor, the pre-processor ensures that each method of the class is

protected using the re-entrant lock by inserting lock acquisition and release

statements at the beginning and end of method code. It then parses the

method code for waituntil statements, and for each such statement it cre-

ates a new condition in the monitor class. For every condition, the notification

criteria is the boolean predicate provided as the argument to its corresponding

waituntil statement. Then it analyzes the method to decide whether or not

it should be delegated. If the method is declared asynchronous or does not

returns a value and updates the shared data, the pre-processor generates an

equivalent task for delegation. We discuss monitor tasks in the next section.

3.2 Monitor Tasks

In ActiveMonitor, a monitor task is defined as follows.

56

Definition 10. Monitor Task: A monitor task t consists of a boolean predicate

P and a set of statements S. At runtime, if the precondition defined by P is

true then t is ‘executable’ and statements in S can be executed to complete t.

Otherwise, t is ‘unexecutable’.

For a task t, its set of statements S can be empty. The pre-condition

P — passed as an argument to waituntil statement — can either be absent

altogether or may not appear as the first statement in the monitor method.

When a monitor method has no precondition, the pre-processor creates a task

with its precondition as tautology, indicating that the task can be executed

at any time. If a monitor method does not start with a waituntil statement

but has some such statement in between, then the precondition of the first

derived task is a tautology. Consider the put method (lines 4 − 9) of the

bounded-buffer program of Fig. 3.1. For this monitor method, the equivalent

monitor task t is defined by the code of lines 5 − 8. For t, the precondition

P is (count < items.length); and it checks if the buffer has any space to

insert the item. If this condition is false, the waituntil construct ensures

that any thread trying to complete this task has to wait until the buffer has

some space to insert the items. Lines 6−8 together form the set of statements

S. The method is explicitly declared asynchronous, so the generated task is

submitted for an asynchronous execution to the monitor thread.

57

3.2.1 Asynchronous Execution of Tasks

After an equivalent task t for a method m has been generated, all the

invocations of m by workers are executed with combining technique [HIST10,

FK12]. We use futures [Hal85] for asynchronous (non-blocking) executions of

critical sections. For each asynchronous method call the pre-processing phase

injects submission of a task to the server (monitor thread) . A future reference

is returned to the worker as a pointer to the computation. Whenever the

server finishes the execution of a task, it updates its corresponding future

reference with the result of the computation. If the worker needs the result of

the computation it evaluates the future. Evaluation of a future is a blocking

method: if the computation has not finished then the caller must wait until its

completion. Note that unlike the schemes of [OTY99,HIST10,FK12], neither

the server nor the worker threads perform busy-wait/spinning in ActiveMonitor.

Thus, we do not waste any processing cycles and yield the CPU when there

are no tasks to execute. Hence, ActiveMonitor provides a much more practical

implementation for delegated executions.

To guarantee program order, ActiveMonitor framework stipulates that

each worker can only submit one asynchronous task at a time. The task

executor sub-component of the runtime library handles this by storing a map

of ids of worker threads and their corresponding task submissions. Whenever

a worker tries to submit an asynchronous task, it first checks the map to verify

if there is some previous asynchronous task stored against its id that is not

yet finished. The worker is forced to wait — by evaluating the future — for

58

the completion of that task before being allowed to submit the new task.

3.3 Runtime Library for Asynchronous Execution of
Tasks

The runtime library of ActiveMonitor provides two key functionalities:

(a) automatic signaling of threads under conditional waiting, and (b) delega-

tion and asynchronous executions of critical sections. We extend our previous

chapter, AutoSynch [HG13] to enable functionality (a) for task based asyn-

chronous executions.

3.3.1 Execution of Monitor Tasks

ActiveMonitor runtime library executes monitor tasks using the follow-

ing rules.

Rule 1 (Mutex Invariant). If some thread t is executing a task m of monitor

M , then no other thread can execute any task m′ of M concurrently.

This rule maintains the mutual exclusion of critical sections of a moni-

tor. We require two additional rules to guarantee execution of tasks in program

order. Let proc(t) denote the worker thread that submits the task t to a mon-

itor. Let sub(t) and exe(t) respectively indicate the timestamps when t is

submitted to the monitor, and when the server thread starts executing t.

Rule 2. For a pair of tasks s and t submitted to a monitor M , if proc(s) =

proc(t), then

sub(s) < sub(t)⇒ exe(s) < exe(t).

59

This rule ensures that a server (monitor thread) executes every worker’s

tasks in the program order of worker.

Rule 3. Let m1, m2 be two successive method invocations by a worker thread

on two different monitors M1 and M2 in the user program, and let t1, t2 be

their corresponding task submissions at runtime. Then, t1 must be completed

before t2’s submission.

This rule enforces the constraint on a thread’s successive invocations of

methods on different monitor objects. Blocking method invocations in between

these two calls are acceptable.

The notions of method invocation and response used to define lineariz-

ability [HHWW90] need a different interpretation under asynchronous execu-

tions. In short, invocation now corresponds to submission of the equivalent

task to monitor thread, and response corresponds to this task’s completion.

Observe that the legal sequential history we get may not preserve the order of

invocation of operations, but only the thread order. With this interpretation,

we can easily validate the following result.

Lemma 1. Rules 1, 2 and 3 guarantee executions equivalent to lock-based

executions.

Proof. We show that for any execution in our model there exists an equivalent

lock-based execution. Since all tasks of any monitor object are executed by

a single thread due to Rule 1, mutual exclusion is preserved just as in any

60

lock-based execution. We only need to show that the order of execution of the

tasks corresponds to a schedule in which worker threads execute the tasks.

It is sufficient to show that all tasks submitted by a single worker thread

execute in the order of submissions. Let s and t be two consecutive tasks

submitted by the thread. If they are submitted for the same monitor, then

the Rule 2 preserves the order. If s is a blocking task, then by definition of

blocking task, t cannot submitted before s is completed. Hence, execution of s

precedes execution of t. If s is a non-blocking task and is on a different monitor

object from t, then due to Rule 3 we wait for s to finish before submission of

t.

3.3.2 Implementation

We now describe implementation details that make ActiveMonitor scal-

able and faster, as well as practical in terms of use with real world ap-

plications. Recall that unlike other delegation/combining implementations

[OTY99, HIST10, FK12], threads do not perform busy-wait in ActiveMonitor.

To enable conditional wait and yielding the CPU, our implementation uses

a read/write lock for executing updates on each server thread. This ensures:

(a) reads do not return stale values, and (b) servers/workers can release the

CPU and go into waiting state whenever required as per runtime conditions.

We employ a modified version of combining [HIST10,FK12] for executing crit-

ical section updates. When submitting a task to a monitor, a worker thread

61

checks if the server of the monitor is in waiting state. If so, the worker acquires

the lock — becomes the combiner — and executes a predefined number (five

in our implementation) of tasks before releasing the lock. Observe that the

actual acquisitions of the write-lock are mostly uncontended under this ap-

proach. Uncontended lock acquisitions are known to be relatively inexpensive,

and thus threads does not incur significant performance penalty in doing so.

For asynchronous tasks, we use a lightweight version of future objects that are

shared between only one worker thread and the server. Only the server can

update the state of these objects. Instead of using the default ones provided by

the Java concurrent library [Lea05], we create these objects using only a few

volatile variables. Instead of using the default wait/notify mechanism provided

by Java, we use the lower level API of park and unpark [Lea05] for threads.

Using the lower level API allows a more fine-grained control on execution of

these threads.

3.3.3 Storage of Tasks: Single Consumer Optimal Bounded Queue

Although asynchronous executions generally benefit the application

performance, a large number of asynchronous tasks in the system lead to

degraded performance due to higher number of cache misses. To prevent this,

ActiveMonitor maintains a bounded FIFO queue for each server in which the

workers enqueue their tasks. Given that ActiveMonitor instantiates only one

server thread (if any) per monitor object, this bounded-queue is a special case

of the producer-consumer problem with only one consumer and multiple pro-

62

ducers. Only the server consumes the items (tasks) from this queue, and all

the workers produce the items. For this use-case, we developed an optimized

algorithm for a thread-safe bounded FIFO queue that minimizes the synchro-

nization costs for the consumer.

Only insertions in the queue require guarded execution under a lock to

ensure correctness while multiple threads concurrently attempt to insert items.

Only a single thread performs removal of items (through the take method), and

thus we do not require a lock to protect concurrent removals. However, main-

taining the correct count of actual number of items in the queue is essential.

This is done using the atomic integer count. We adopt a ‘stealing’ strategy

in which the consumer locally caches the number of available items, using the

takeCount variable, in a look-ahead manner and reads and updates the atomic

integer count only when needed. Hence, the number of upadates to the atomic

integer count is kept low, which in turn reduces the cache-coherence traffic,

and improves the throughput and scalability.

Whenever there is no task (in its bounded-queue) for the server to

execute, it is forced to go into wait. The server performs this wait outside

the queue using a condition variable that it owns. The automatic signaling

mechanism of the runtime library ensures that it is signaled and wakes up from

the wait if a new executable task is enqueued in the queue.

The pseudocode for put and take methods of our bounded-queue is

shown in Figure 3.2.

63

1 count: atomic integer

2 capacity: integer // capacity of the bounded queue

3 putlock: mutexes for put operations

4 takeCount: integer // stores value of items that can be taken without locking

5 notFull: condition variable

6 // items are stored in a linked-list

7 void put(T e) {

8 node = new Node<T>(e)

9 putlock.lock() // lock guarded

10 while (count.get() == capacity) notFull.await()

11 enqueue(node) // linked-list add tail

12 lcount = count.getAndIncrement()

13 if (lcount + 1 < capacity) notFull.signal()

14 putlock.unlock()

15 }

16 // Called only from take

17 void signalNotFull() {

18 putlock.lock()

19 notFull.signal()

20 putlock.unlock()

21 }

22 T take() {

23 if (takeCount > 0) {

24 --takeCount

25 return dequeue() // linked-list remove head

26 }

27 takeCount = count.get()

28 if (takeCount == 0) {

29 signalNotFull()

30 return null

31 }

32 T x = dequeue() // remove head from linked-list

33 lcount = count.getAndAdd(-takeCount)

34 if (lcount == takeCount) signalNotFull()

35 --takeCount

36 return x

37 }

Figure 3.2: BoundedQueue for single consumer and multiple producers

64

3.3.4 Monitor Thread Management

If we spawn a new thread for every monitor object, the performance

of programs with relatively large number of monitors could suffer. Active-

Monitor allows the programmer to manually control this number, as well as

itself controls the number of monitor threads based on the system hardware

resources. The programmer can indicate an upper bound on the number of

monitor threads when starting the application. The ActiveMonitor runtime

library uses this limit in restricting the number of monitor threads spawned.

If this limit is reached, no other monitor threads are created, and invocations

of asynchronous methods on remaining monitors (that are not instantiated as

threads) also follow the conventional synchronous (blocking) execution.

Irrespective of the user provided upper bound on server threads, the

runtime library only instantiates a thread for a monitor if there is sufficient

hardware available. The runtime library monitors the system environment

information: CPU usage (for example from /proc/stat on Unix), and the size

of wait-queues of monitor objects, to decide whether or not monitors should

be executing as threads. If the CPU usage is high, our framework switches to

traditional locking.

3.4 Evaluation

We implement monitor based solutions to multiple concurrency prob-

lems using ActiveMonitor, ReentrantLocks from JDK7, and combining [FK12]

— that does not perform continuous busy-waits — by executing ActiveMonitor

65

in only synchronous mode. We evaluate the performance of these implemen-

tations on light and heavy critical sections. Light critical sections do not

involve much work within them, and favor traditional lock-based monitors as

the overhead of maintaining additional information for delegated executions

outweighs their benefits. On the other hand, heavy critical sections provide

increased opportunity for exploiting asynchrony and parallelism. Table 3.1

presents a summary of problems used for our evaluation.

Name Short Desc. CS Work [Type] Details

PSSSP
Parallel single-source-shortest-path using
Dijkstra’s algorithm [Dij59] using priority queue.

O(log n) [Heavy]
(a) USA road network graphs
(b) R-MAT Graphs [CZF04]

BQ
Bounded FIFO queue of plain Java
objects.

O(1) [Light]
Capacity varied from 4 to 64; number of
enqueuers is equal to the number of dequeuers.

SLL
Linked-list of integers; entries are kept
sorted in non-decreasing order.

O(n) [Heavy]
(a) Read-heavy: 90% reads, 9% insert, 1% delete
(b) Write-heavy: 0% reads, 50% insert, 50% delete
(c) Mixed: 70% reads, 20% insert, 10% delete

RR Round-robin monitor access from [HG13]. O(1) [Light]
each thread accesses monitor in a predefined
round-robin manner based on thread-id.

Table 3.1: Short description of problems evaluated. Critical section (CS) is
light/heavy if the total number of operations performed inside it are small-
/large.

All the experiments are conducted on a 40-core Intel Xeon machine that

consists of four sockets of Xeon E7-4850 10-core (20 hyper-threads), running

at 2 GHz with 32 KB L1, 256 KB L2, and 24 MB LLC, respectively. Com-

pilation and execution both are performed with Oracle Java 1.7 (64-bit VM).

Across all results, we denote the implementations with the following notation:

LK: implementation using Java’s ReentrantLock, AM: ActiveMonitor with asyn-

chronous executions, and AMS: ActiveMonitor running with only synchronous

delegations.

For PSSSP problem, a thread-safe priority queue is used as an under-

66

lying data structure. ActiveMonitor solution of this problem uses the monitor-

based implementation of an unbounded blocking priority queue from Java’s

concurrency package java.util.concurrent, and only modifies it to make the put

method asynchronous. We evaluate the time taken to compute the shortest

paths to all vertices from a randomly selected source vertex. We use five

large sized directed graphs. Two of these graphs, FLA and NY, are USA

road-network graphs of Florida, and New York obtained from [dim], and the

remaining three graphs, R16, R128, and R512 are generated using the GT-

Graph [BM06] generator suite.

For all other problems we collect the throughput of operations over a

2 second period with varying number of workers. For BQ problem, the items

in queue are randomly generated strings, with enqueue operation being asyn-

chronous and dequeue being synchronous. For SLL problem, we pre-populated

the data structure with 1000 entries to simulate steady state behavior. For all

the operations, the operand values are chosen uniformly at random between 0

and 2000. This guarantees that on average, half of the operations are success-

ful and the structure size does not grow too large. Insertions and deletions in

the list are asynchronous and searches are synchronous. For RR, all accesses to

the critical section are synchronous. BQ and RR problems require threads to

perform conditional waiting. For these two problems, we also compare the per-

formance of ActiveMonitor with that of Queue Delegation Locking [SDSC14],

denoted by QD notation, by adding conditional waiting to QD. The purpose of

this comparison is to establish that our approach of using automatic signaling

67

with asynchronous executions can out-perform QD’s approach of asynchronous

delegation under lock-unavailability. In addition, we also compute through-

put of performing OR implementations. For logical-or operations, we also tried

to evaluate the performance of a transactional memory implementation [?]

but this implementation resulted in runtime errors and could not execute the

statements.

We perform multiple warm-up runs to negate just-in-time compilation

related performance variations. In addition, all threads perform a fixed number

of warm-up operations before starting the time measurements. For all the

experiments, we collect runtimes for 7 runs, and report the mean value of 5

runs after discarding the highest and lowest values.

3.4.1 Results

Fig. 3.3 plots the throughput of the three PSSSP implementations

in edges traversed per unit time format. Given that the three synthetic R-

MAT [CZF04] generated graphs are relatively dense in comparison to the road

network graphs NY and FLA, the throughput values for all the implemen-

tations are higher for these graphs. AM outperforms both of LK and AMS.

Specifically, on R512 graph — one with the highest density — AM is much

faster than the other two. Given that the same implementation of priority

queue is used as the underlying data structure for all three implementations,

and the only difference is in terms of asynchronous inserts, these results val-

idate our claim that AM approach is much more beneficial for heavy critical

68

sections.

Fig. 3.4 plots throughput of operations for different capacities of bounded

queues for three implementation techniques. For smaller buffer sizes, in the

range of 4 to 16 AM significantly outperforms LK implementation. This result

highlights the benefits of asynchronous executions because LK is much slower

in comparison to AM, as well as AMS due to high contention on locks. For

larger capacities of 32 and 64, LK implementations perform better than AM

because the availability of sufficient storage space allows worker threads to

repeatedly acquire critical sections without being blocked out, and LK benefits

from Java’s policy of non-fairness in lock acquisitions. In contrast, AM and

AMS provide almost ‘fair’ executions for workers. However, in doing so, they

end up performing more work in cases blocking due to unavailability of space

occurs rarely.

LK AM AMS QD

0

320

640

960

1280

1600

0 20 40 60 80T
h

ro
u

gh
p

u
t

(K
ed

ge
s/

s) NY

0

340

680

1020

1360

1700

0 20 40 60 80

FLA

0

300

600

900

1200

1500

0 20 40 60 80

R16

0

1060

2120

3180

4240

5300

0 20 40 60 80

R128

0

3260

6520

9780

13040

16300

0 20 40 60 80

R512

Figure 3.3: Throughput for PSSSP using priority queue (x-axis shows the
number of threads)

Fig. 3.5 shows the operations throughput for the SLL and RR. In all

runs on these problems, (AM) clearly and significantly outperforms the read-

69

0

80

160

240

320

400

0 20 40 60 80T
h

ro
u

gh
p

u
t

(K
op

s/
s)

Capacity = 4

0

100

200

300

400

500

0 20 40 60 80

Capacity = 8

0

160

320

480

640

800

0 20 40 60 80

Capacity = 16

0

280

560

840

1120

1400

0 20 40 60 80

Capacity = 32

0

500

1000

1500

2000

2500

0 20 40 60 80

Capacity = 64

Figure 3.4: Throughput for Bounded FIFO Queue (x-axis shows the number
of threads)

0

20

40

60

0 20 40 60 80T
h

ro
u

gh
p

u
t

(K
ed

ge
s/

s) SLL Write-heavy

0

20

40

60

80

0 20 40 60 80

SLL Mixed

0

40

80

120

160

200

0 20 40 60 80

SLL Read-heavy

0

60

120

180

240

300

0 20 40 60 80

Round-Robin

Figure 3.5: Throughput for SLL, and RR (x-axis shows the number of threads)

write reentrant lock based monitor (LK), as well as delegation technique of

AMS. Note that RR problem does not involve any asynchronous operation,

and thus AM and AMS runs are exactly the same. Given that the critical

section involved in SLL problem is heavy, the performance gap highlights the

benefits of asynchronous monitors for such cases. Surprisingly, AM (as well as

AMS) is ∼ 3− 4× faster than LK on RR problem too. This is because the RR

problem setup simulates a critical section in similar to that of BQ problem

with capacity one. Hence, LK implementation spends a lot of its execution

time in waiting for lock acquisitions, whereas AM and AMS benefit from lower

contention.

70

On all the problems with conditional waits, AM significantly outper-

forms QD in terms of throughput. Hence, extending QD to incorporate con-

ditional waiting is not sufficient to match our approach. Our techniques for

efficient conditional synchronization with automatic signaling provide signifi-

cant benefits in comparison to QD.

3.5 Related Work

Our idea of having monitor objects execute as independent threads

is influenced by Hoare’s proposed communicating sequential processes (CSP)

[HH78] mechanism in which all objects are active, of long ago. However, CSP

does not have the notion of shared memory, and every object is a process. In

contrast, our focus is solely on shared memory parallel programs on multi-core

machines.

We use futures [Hal85,Lea05] to realize the idea of non-blocking/asynchronous

executions. Kogan et al. [KH14] explore a similar approach in making use of fu-

tures for non-blocking executions. However, we explore changes to the general

paradigm of monitors, whereas [KH14] only focuses on three data structures:

stacks, queues, and linked-lists, none of them requiring conditional waiting.

In addition, [KH14] uses data structure specific local elimination/combining,

and allows read/fetch operations on these data structures to be asynchronous

whereas we do not — our assumption being that in almost all the cases, a

programmer needs the result of read/fetch immediately so that she can use it

in the subsequent program logic. Hence, our approach spans a more generic

71

level of monitors, and does not rely on knowledge of internal functionality of

critical section it protects. Some theoretical results that establish the bounds

on improvements in cache locality by the use of futures have been established

in [HL14]. These results are not directly related to monitor based executions,

but lead the direction in terms of use of futures for improving the performance

of multi-threaded programs.

Existing implementations of the combining technique [OTY99, FK12,

HIST10] perform busy waits for task completions and do not yield the CPU;

additionally they also do not provide any mechanisms for conditional waits —

these issues together make them more or less impractical for use in real world

applications. Remote Core Locking (RCL) [LDT+12] addresses such issues

by allowing conditional waits, and uses a dedicated core for executing critical

section, but does not incorporate asynchronous executions. Recently, works

such as [PcRS14,CDH+13] have performed extensive experimental analysis in

identifying the performance gains/losses with asynchronous message-passing

like executions over synchronous shared memory ones. [PcRS14] provides var-

ious insights for effective implementations that perform well using hardware

message passing support on shared memory machines. This work minimizes

the remote-memory-references (RMRs) during executions, and quantifies the

performance gains for asynchronous executions, but assumes that the method

data fits in a single cache-line. In addition, it does not consider the conditional

wait based monitor implementations. Similarly, [CDH+13] studies the pros and

cons of message passing based executions on performance of shared memory

72

parallel programs. This work highlights that different approaches perform best

under different circumstances, and that the communication overhead of mes-

sage passing can often outweigh its benefits, and discusses ways in which this

balance may shift in the future. Queue Delegation Locking (QDL) [SDSC14],

uses the approach of combining to provide a locking library implementation

in C++. However, QDL does not provide a mechanism for synchronization

between threads, and waiting, based on conditions.

Transactional memory [HM93, ST95] is a well-known research effort

that proposes modified syntax for ease of writing multi-threaded programs.

However, constructs for conditional waiting under transactional memory are

limited [SR13,LM11,DS09]. Hence, writing many conditional synchronization

based multi-threaded programs is rather difficult. Also, unlike transactional

memory, our approach merely transfers the responsibility of data manipulation

to monitor threads and does not require any complicated rollback mechanism

for resolving conflicting updates on the shared data. x10 [CGS+05] program-

ming language focuses on providing features that have an overlap with both

transactional memory and our work. However, there are significant differences

in the support and usage of these constructs. The support for conditional

waiting is present syntactically, but as stated in [CGS+05] is deprecated for

runtime execution.

Lock-free algorithmic techniques using atomic hardware instructions

such as compare-and-swap have gained momentum for implementing scalable

thread-safe data structures [Har01,MM02,HSY04,FHS04,Her88,KP11,KP12,

73

TBKP12, NM14]. In addition, [HHL+06, IS14] have explored alternate imple-

mentation techniques that combine/eliminate complementary operations for

increasing parallelism in data structures. However, the difficulty involved in

designing lock-free/wait-free algorithms, and operation eliminating data struc-

tures is well known. At present, it is not clear how lock-free techniques can

be used to implement critical sections that involve many operations spanning

across multiple shared objects. The absence of any wait-notify mechanism in

lock-free techniques is another hurdle for their use in many real world pro-

grams.

3.6 Discussion

Our current implementation has the following two limitations. First, in

our current implementation, thread dependent variables and functions within

a monitor method cannot be used directly in the Runnable or Callable object

that is used in task generation by our approach. The reason is that the tasks

are executed by the monitor thread and not by the worker thread. For example,

suppose there is a monitor method that invokes Thread.currentThread(), if

we directly add this statement to the generated Runnable object (in the task),

then this method’s invocation at runtime will return the reference to the mon-

itor thread when it is executed. However, it is obvious that the intent of this

call inside the monitor method was to refer to the worker thread. Second, our

current pre-processing implementation does not support synchronous recursive

methods on monitors. The reason is that the number of the method invoca-

74

tions to be made at the runtime is non-deterministic. Therefore, we cannot

know how many tasks we need to create at pre-processing time. In addition,

since the method is blocking/synchronous, the monitor thread will get blocked

when it recurs. We plan to address these two issues in the future as Section

6.3.

3.7 Summary

We have shown that our proposed scheme of asynchronous executions

in monitors provides significant improvement over traditional lock-based mon-

itors. At present, writing parallel programs that provide high throughput and

scalability is an arduous task for most programmers. The main challenge is a

lack of simple programming language constructs that guarantee thread-safety

while exploiting parallelism of executions and availability of hardware in a

seamless and portable manner. Our proposed design of asynchronous moni-

tors is a step in the direction of providing such constructs. The current version

of our implementation consumes some additional processing resources. How-

ever, we believe that with further research efforts in this direction, and further

optimizations in our implementation, our proposed technique can lead to sig-

nificant improvements in programmability as well as performance of shared

memory parallel programs.

75

Chapter 4

Multi-Object Synchronization

Current monitor based systems have many disadvantages for multi object op-

erations. They require the programmers to manually determine the order

of locking operations, and use global locks or perform busy waiting for op-

erations that depend upon a condition that spans multiple objects. Trans-

actional memory systems eliminate the need for explicit locks, but do not

support conditional synchronization. They also require the ability to rollback

transactions. In this chapter, we propose new monitor based methods that

provide automatic signaling for global conditions that span multiple objects.

First, we introduce the multisynch construct for multi-object mutual exclu-

sion which lets the system determine the order of locking multiple objects.

Second, our system provides automatic notification for global conditions. As-

suming that the global condition is a boolean expression of local predicates,

our method allows efficient monitoring of the conditions without any need for

global locks. Third, our system solves the compositionally problem of monitor

systems without requiring global locks. We have implemented our constructs

on top of Java and have evaluated their overhead. Our results show that on

most of the multi-object problems, not only our code is simpler but also faster

76

than Java’s reentrant-lock as well as the Deuce transactional memory system.

4.1 Multi-Object Mutual Exclusion

It is the responsibility of our system to ensure mutual exclusion for mul-

tiple monitor objects of multisynch statements. Programmers use a multisynch

statement to specify which monitors should be synchronized. The parameters

of multisynch can be a sequence of an arbitrary number of monitor objects.

If an array of monitor objects is a parameter of a multisynch statement, the

system ensures mutual exclusion for all elements of the array. Note that the

order of parameters does not matter. The system decides how to acquire locks

of monitors at runtime automatically.

Assuming that all threads acquire locks only using multisynch state-

ment and that there are no nested multisynch statements, the system ensures

that there is no deadlock due to inconsistent locking order. Deadlocks occur

when two (or multiple) threads acquire locks on the same monitors but in

different order. One well-known way to prevent deadlock is to ensure that

all threads acquire locks in a consistent order in the entire system [GPB+06].

However, it is not always obvious for programmers to identify inconsistent lock

ordering. Our system minimizes the risks of deadlocks by removing the burden

of ensuring consistent lock ordering from the programmer. It acquires locks

according to the order of unique ids of all monitors.

To implement a multisynch statement, our system acquires locks only

when it is required. Whenever a thread needs to access a monitor object, the

77

system checks if it has acquired the lock for the object. If not, the thread

acquires its lock and locks of other monitors that have smaller ids and are

listed in the multisynch statement. These locks are acquired in the increasing

order of ids. The system releases all locks at the end of the multisynch

statement. Fig. 4.1 shows an example. Suppose obj1, obj2, and obj3 are

monitors, where obj1.id < obj2.id < obj3.id. In line 2, the program

wants to access obj2, our system automatically acquires locks of obj1 and obj2

because obj1 has smaller id than obj2. It acquires the lock of obj3 at line 4.

We note here that all these techniques are well known; the main contribution

of this dissertation is in mechanisms for detecting global conditions on these

objects which requires implementation of multisynch.

1 multisynch(obj1, obj2, obj3) {

2 obj2.access();

3 obj1.access();

4 obj3.access();

5 }

Figure 4.1: An example of the multisynch statement

The multisynch statement requires programmers to specify the moni-

tor objects, which is a disadvantage in comparison with transactional memory

systems, which require only atomic blocks. However, it is difficult to provide

conditional synchronization using transactional memory constructs. Our sys-

tem provides not only mutual exclusion but also conditional synchronization.

In addition, transaction may be aborted and re-executed automatically. There-

78

fore, irreversible operations cannot use transactional memory. Our system is

applicable even for such operations.

4.2 Efficient Automatic Notification of Global Condi-
tions

We first show that techniques developed for automatic signaling for

local conditions (such as in AutoSynch) cannot be simply extended for global

conditions. In AutoSynch, when a thread exits a monitor or goes into waiting

state, it checks whether there is some thread waiting on a condition that

has become true. If at least one such waiting thread exists, it signals that

thread. The predicate evaluation is crucial in deciding which thread should be

signaled. To avoid unnecessary context switches, AutoSynch computes closure

of the predicate with respect to local variables of waiting threads so that any

thread can evaluate the predicate. Since these variables do not change while

the thread is waiting, the closure of the predicate is exact. Although this

technique works on conditions based on a single monitor, it does not work for

global conditions in Java without assuming global locks.

In the Java memory model, every thread can be considered as run-

ning on a different CPU. Because CPUs hold registers that cannot be directly

accessed by other CPUs, one thread does not know about values being manip-

ulated by another thread in such a model. Hence, the evaluation of a global

predicate by the thread T holding the lock on one monitor object can be wrong

because T may not observe some concurrent updates of the predicate by other

79

threads. For example, suppose that a thread T1 is waiting for the predicate

(!Q2.isEmpty() && !Q3.isEmpty()) to become true. Then, two threads T2

and T3 concurrently execute Q2.put(x) and Q3.put(y), respectively. Before

leaving monitor Q2, T2 evaluates the global predicate as false because T2 cannot

observe that !Q3.isEmpty() has become true since the update occurs only on

the register of T3 and T2 does not acquire lock of Q3 before evaluation. There-

fore, T2 does not signal T1. Similarly, T3 does not signal T1. In this case, T1

is still waiting while the predicate (!Q2.isEmpty() && !Q3.isEmpty()) has

become true. A global predicate can be evaluated correctly only if a thread

acquires locks for all monitors related to the predicate. However, acquiring

all locks of its monitors is expensive because other threads that want to ac-

cess those monitors are forced to wait. A wrong predicate evaluation, on the

other hand, may introduce a deadlock because the system may miss signal-

ing a thread waiting on a global condition that has become true. To ensure

correctness, our system must provide the following no-missed-signal property.

Definition 11 (No-Missed-Signal Property). If threads wait on a global con-

dition that has become true, then at least one thread waiting on the condition

is signaled.

Note that, no-missed-signal property is similar to the relay invariance

in Definition 5; however, relay invariance deals with only local conditions but

not global conditions.

We do not require all threads to be signaled, just one. Whenever that

thread exits the monitor, it will wake up another thread so long as the global

80

condition stays true. We also note that since Java treats signals as hints, it is

okay from the correctness perspective for the system to send a signal even if

the global predicate is false. The thread that wakes up would reevaluate the

global condition. Hence, one naive strategy is that threads waiting on global

conditions are always signaled. However, this naive approach decreases overall

performance because it introduces redundant context switches and limits par-

allelism. The notified threads may need to go back to waiting state since their

conditions are still false. Furthermore, other threads cannot access monitors

because notified threads acquire monitors related to their predicates. Missing

signals introduces deadlocks while false signals decrease overall performance.

In this section, we discuss two approaches to efficiently detect global predicates

that avoid missed signals and reduce false signals.

4.2.1 Preliminaries

A global predicate is a global Boolean condition involving a set of moni-

tor objects. For example, the condition (!Q1.isEmpty() || !Q2.isEmpty())

|| (Q1.size() > Q2.size()) is a global condition involving two monitor ob-

jects, Q1 and Q2. We call predicate (!Q1.isEmpty()) and predicate (!Q2.isEmpty())

local because they involve only one monitor object. The condition (Q1.size()

> Q2.size()) is a complex predicate because it involves both Q1 and Q2. We

first discuss global predicates containing only local predicates. The case of

global predicates involving complex predicates is discussed in Sec. 4.2.4.

A global predicate can be represented by P : X → B, involving a set

81

of monitor objects, M = {M1, . . . ,Mn}, where X is the space spanned by the

variables ~x = (x1, . . . , xm). Note that, X = ∪ni=1Xi, where Xi indicates the set

of variables related to Mi. Each variable represents an atomic local Boolean

expression. For example, the queue Q1 and its condition Q1.isEmpty() can be

represented as M1 and a variable x ∈ X1, and the queue Q2 and its condition

Q2.isEmpty() can be expressed as M2 and a variable y ∈ X2. For any global

state of the system, G, the predicate P is evaluated based on the values of

all local predicates in G. We assume that all predicates in the waituntil

statement are read-only and free from side effects. Any evaluation of those

predicates does not update any variable or change the state G.

4.2.2 Atomic-Variable Approach

A thread cannot evaluate global predicates correctly without acquir-

ing global locks because it cannot observe all concurrent monitor objects up-

dates by different threads. To evaluate global predicates precisely, we exploit

atomic boolean variables, which have set and get methods where a set call

has a happens-before relationship with any subsequent get call on the same

variable. Generally speaking, for any global predicate P , we can derive a

predicate P̂ , in which every local boolean expression of P is represented by

an atomic boolean variable x̂. If the boolean expression is true, then we

set x̂ to be true; otherwise, we set x̂ to be false. For example, the global

predicate P = (!Q1.isEmpty() || !Q2.isEmpty()) && (!Q3.isFull() ||

!Q4.isFull()) has a corresponding P̂ = (ŵ ∨ x̂) ∧ (ŷ ∨ ẑ). Our system can

82

decide if threads waiting on P should be signaled based on the evaluation of

P̂ . Any thread T that acquires monitor Mi needs to update P̂ before releas-

ing Mi by setting the values of atomic boolean variables related to Mi. After

T updates the variables, it releases monitor Mi, evaluates P̂ , and decides

whether to signal threads waiting on P . For example, consider the global

predicate (!Q1.isEmpty() && !Q2.isEmpty()) || !Q3.isFull()). It has

a corresponding P̂ = (x̂ ∧ ŷ) ∨ ẑ, where every variable is set as false by a

thread waiting on the condition. Suppose T1 accesses Q1 and determines that

!Q1.isEmpty() is true. Before T1 releases Q1, it updates P̂ by setting x̂ as

true. P̂ is still false since ŷ is false. T1 does not signal any thread waiting

on P . Thread T2 then accesses Q2 and finds that !Q2.isEmpty() has become

true. T2 updates P̂ by setting ŷ as true and signals a thread waiting on P

since P̂ has become true.

Proposition 3 shows our atomic-variable approach maintains the no-

missed-signal property.

Proposition 3. Our atomic-variable approach provides no-missed-signal prop-

erty.

Proof. Suppose there are some threads waiting on a global predicate P that

has become true. P̂ consists of only atomic variables that establish a happens-

before relationship with any subsequent get call on those variables. Without

loss of generality, suppose thread T is the last thread that updates P̂ and makes

P̂ true. T can evaluate P̂ correctly by using get calls on atomic variables of

83

P̂ . In our approach, T signals a thread waiting on P .

4.2.3 Critical-Clause Approach

The atomic-variable approach attempts to accurately evaluate global

predicates. In this section, we discuss another approach that approximately

evaluates local predicates to decide if threads waiting on global predicates

should be signaled.

In order to efficiently detect global predicates that have become true,

threads waiting on global predicates must analyze their predicates and keep

records before they go to a waiting state. These records are used to accelerate

the process of detecting which global predicate has become true. The idea

behind the records is that a global predicate is false because some of its clauses

are false. The global predicate can become true only if those clauses become

true. We call these clauses critical. Our system observes critical clauses and

signals threads waiting on global conditions only when their critical clauses

become true. Critical clauses are defined next.

Definition 12 (Critical Clause). Given a Boolean predicate P : X → B, and

a state G such that P is false in G, we say C is a critical clause for P with

respect to G if and only if the following three properties are satisfied.

1. C is also false in G.

2. For any state H, if C is false in H, then P is also false in H. That is,

P ⇒ C.

84

3. C is a pure disjunction of local predicates.

Informally, these properties mean that notifications based on C start-

ing from state G will provide no-missed-signal property. Since C is a pure

disjunction of local predicates, it can be evaluated locally by all the involved

monitors. We call each of the local predicate in the critical clause, a local

critical clause.

As a simple example, consider the predicate P equal to !Q1.isEmpty()

&& !Q2.isFull(). Suppose P is false in some state G. This means that either

Q1.isEmpty() or Q2.isFull(). If Q1 is empty, then the critical clause C for

P is Q1.isEmpty(). The critical clause C satisfies all three conditions: (1) C

is false in G, (2) so long as C stays false, P will stay false, and (3) it is a pure

disjunction of local predicates. Therefore, instead of detecting P , the system

simply detects and signals when C becomes true.

We now describe Algorithm 3 that computes a critical clause C for a

general global predicate P that is false under the state G. The algorithm is

recursive and assumes that the global predicate can be viewed as an expression

tree with local predicates as the leaves of the tree and the or and and operators

as the internal nodes of the tree. Because the negation of a local predicate

is also local, a boolean expression can therefore be written as an expression

made of just disjunctions and conjunctions. Every boolean expression of local

predicates can be put in this form by pushing the negation operator to the

innermost level by using De Morgan’s laws.

85

In Algorithm 3, lines 1-2 take care of the base case. If P is a local

predicate, then it also acts as its critical clause. Lines 3-5 take care of the case

when P is a conjunction of P1 . . . Pm. Since P is false, one of the conjuncts, say

Pi, must be false and the algorithm returns computeCritical(Pi, G). Finally,

lines 6-7 take care of the case when P is a disjunction of P1 . . . Pm. In this case,

the algorithm returns the disjunction of each of computeCritical(Pi, G).

Algorithm 3 computeCritical(P, G)

Input: A global predicate P , the current state G such that P is false in G
Output: Returns a critical clause C
1: if P is local to a monitor Mi then
2: return P
3: if P = ∧mi=1Pi then
4: ∃Pi, such that Pi is false under G
5: return computeCritical(Pi, G)

6: if P = ∨mi=1Pi then
7: return ∨mi=1computeCritical(Pi, G)

Proposition 4. Algorithm 3 returns a critical clause for P with respect to G.

Proof. We use induction on the depth of the expression tree for P .

Base case: P is local to a monitor Mi: C equals P from the algorithm and

therefore properties 1 and 2 are trivially true. Since P is a local predicate, 3

is also true.

Induction case for conjunction: P = ∧mi=1Pi, P is false in G. Let C =

computeCritical(Pi, G) such that Pi is false in G. We show properties 1,

2, and 3 are satisfied.

86

1. Since Pi is false in G and Pi has fewer operators, from induction we get

that computeCritical(Pi, G) is also false in G.

2. Now suppose that C is false in H. Again, by induction, C is false in H

implies Pi is false in H. Therefore, P is also false in H.

3. Since Pi has fewer operators than P , computeCritical (Pi, G) is a

pure disjunction of local predicates by induction.

Induction case for disjunction: P = ∨mi=1Pi, P is false in G. Let C = ∨mi=1

computeCritical(Pi, G).

1. We show that C is false in G. Since P is false in G, all Pi are false. Since

Pi is false and Pi has fewer operators than P , computeCritical(Pi, G)

is also false for all i. Hence, their disjunction C is also false.

2. Now suppose that C is false in stateH. Since C is a disjunction, it implies

that ∀i, computeCritical(Pi, G) is false in H. From induction, we get

that ∀i, Pi is false in H. From the definition of P , we get that P is false

in H.

3. ∀i, computeCritical(Pi, G) is a pure disjunction of local predicates.

Therefore, C = ∨m
i=1 computeCritical (Pi, G) is also a pure disjunc-

tion of local predicates.

87

For example, consider the predicate P = (v ∨ w ∨ ¬x ∨ y) ∧ (x ∨ z) in

Fig. 4.2 (which is in conjunctive normal form). Then, computeCritical(P1,

G) returns one of the disjunctive clauses that is false in G. Assume that

(v ∨w∨¬x∨ y) is false. Based on line 6 in Algorithm 3, we conclude that the

clause (v∨w∨¬x∨y) is critical. Its set of local critical clauses are C1 = v∨w,

C2 = ¬x, and C3 = y.

Consider the predicate Q = (v ∧ w ∧ ¬x) ∨ (¬w ∧ x) ∨ (y ∧ z) in

Fig. 4.2 (which is in disjunctive normal form). Then computeCritical(P2,

G) returns a disjunctive clause with one literal from each of the conjunctive

clause such that the literal is false in G. For example, if we find v is false

in the first minterm, ¬w is false in the second minterm, and z is false in the

third minterm, then we derive the critical clause v ∨ ¬w ∨ z. Its set of local

predicates for the critical clauses are: D1 = v ∨ ¬w, D2 = false, D3 = false

and D4 = z.

Our system maintains the global predicates, condition variables, and

their critical-clause tables. Fig. 4.2 demonstrates an example. The symbol

• indicates a condition variable. There are two predicates P and Q in the

system, where v, w ∈ X1, x ∈ X2, y ∈ X3, and z ∈ X4.

Every monitor Mi keeps a list of all related global conditions. Any

thread T that acquires the monitor needs to check if there is any related global

condition that has become true before it releases Mi. For example, consider

the thread T that acquires monitor M1. Before releasing M1, T checks if it

needs to signal threads waiting on P1 in Fig. 4.2. T looks up the table of P1

88

(v ∨ w ∨ ¬x ∨ y)∧(x ∨ z)

(v ∨ w ∨ ¬x ∨ y)

C1 (v ∨ w)

C2 ¬x

C3 y

C4 false

(v∧w∧¬x) ∨ (¬w ∧x) ∨ (y ∧z)

(v ∨ ¬w ∨ z)

D1 (v ∨ ¬w)

D2 false

D3 false

D4 z

X1 = { v , w }, X2 = { x }, X3 = { y }, X4 = { z }

P Q

C D
● ●

Figure 4.2: The Critical-Clause Example

and evaluates C1 to decide whether threads waiting on P should be signaled.

This signaling rule is shown in Algorithm 4.

Algorithm 4 signalGlobalCondition(Mi)

Input: A monitor Mi

Output: Signal threads waiting on global conditions with true Ci

1: for each global predicate P related to Mi do
2: if table.get(Mi) is true then
3: signal a thread t waiting on P

Proposition 5. Our critical-clause approach provides no-missed-signal prop-

erty.

Proof. Suppose the thread T is the last thread to wait on a global predicate

P that has become true. Since T went to a waiting state, P must be false at

that point of time. Hence T derived C = ∨ni=1Ci a critical clause where each

Ci is local to Mi using Algorithm 3. Now, since P is true, ∨ni=1Ci must be

89

true by Def. 12. There is one Ci that is true. Hence, there must exist another

thread R after T such that R changed the state of monitor Mi and made Ci

true. R signals a thread waiting on P according to our signaling rule.

4.2.4 Global Conditions with Complex Predicates

Our approach cannot handle complex predicates because threads can-

not correctly evaluate complex predicates by acquiring a lock for only one

monitor object. For example, the predicate Q1.size() > Q2.size() cannot

be evaluated unless both monitor locks of Q1 and Q2 are acquired. However,

if we conservatively assume the complex condition to be true whenever one of

its related monitor is updated, our approaches can still satisfy the no-missed-

signal property at the risk of false signals. The threads waiting on the global

condition will be signaled after all other non-complex conditions are met. The

notified threads can correctly evaluate the complex predicate by acquiring all

locks.

4.3 Evaluation

In this section, we evaluate the performance of our prototype implemen-

tation on two sets of problems. The first set of problems relies on multisynch

statements but not on global conditions. The second set considers problems

that use global predicates.

All the experiments are conducted on a machine with four Intel Xeon

E7-4850 10-core CPUs (total 80 hyper-threads), running at 2 GHz with 32

90

KB L1, 256 KB L2, and 24 MB LLC, respectively. Compilation and execution

both are performed with Oracle Java 1.7 (64-bit VM).

For every experiment, we ran the program 17 times, and report the

mean value of 15 runs after discarding the highest and lowest values.

4.3.1 Evaluation for multisynch Statements

We compare the performance of our multisynch implementation with

fine-grained locking and software transactional memory. Each implementa-

tion is denoted as following notation: FL: implementation using fine-grained

locking with Java’s ReentrantLock, TM: implementation using DeuceSTM

transactional memory [AKZ10, KSF10], and MS: implementation using our

multisynch statement.

4.3.1.1 Examples Using multisynch Statements

Dining Philosopher This problem requires coordination among philoso-

phers sitting around a table and is described in [Dij71]. Each philosopher

alternatively eats and think. This is a saturation test so that there no extra

operation performed in thinking or eating. In the fine-grained approach, odd

philosophers pick their left-hand forks first and even philosophers pick their

right-hand forks first for eating so that there is no deadlock in the system.

For the transactional memory implementation, we use a boolean variable to

indicate a fork. A philosopher needs to atomically set the left and right fork as

true before eating and unset them after eating. In our multisynch approach,

91

every fork is a monitor object. A philosopher uses our multisynch statement

with its two forks as arguments to eat.

genome+ The genome is an application in the STAMP benchmark [MCKO08].

It takes a large number of DNA segments and matches them to rebuild the

original genome. The genome+ uses the recommended configurations and data

sets in the original paper [MCKO08].

4.3.1.2 Results

Fig. 4.3 plots throughput of operations for the dining philosopher prob-

lem for three implementation techniques. Both FL and MS are around 3 – 14×

faster than TM. This is because the test is saturation and keeps accessing crit-

ical data. The TM implementation suffers from frequent conflicts. Our MS

implementation is slightly slower than FL implementation in the most cases

and better than FL in some cases. The results indicate our approach is scalable

and comparable to the fine-grained implementation.

Fig. 4.4 plots runtime for genome+ benchmark. Our MS implemen-

tation and FL implementation outperform TM around 4 – 15×. Note that,

the runtime of TM implementation surges as the number of threads increases.

This phenomenon indicates TM implementation performs poorly under high-

contention. The performances of FL and MS are almost identical. Furthermore,

MS implementation is stable and scalable since the runtime is steady as the

number of threads increases. The results indicate that our approach can be as

92

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

20 40 60 80

T
h

ro
u

gh
p

u
t

(K
op

s/
se

c)

Threads

FL
TM
MS

Figure 4.3: Throughput for the Dining Philosopher Problem

efficient as fine-grained lock approach.

0
1
2
3
4
5
6
7
8
9

10

20 40 60 80

R
u

n
ti

m
e

(S
ec

)

Threads

FL
TM
MS

Figure 4.4: Runtime for genome+

4.3.2 Evaluation for Global Condition Problems

In this section, we study the throughputs of global condition problems

among different implementations. We denote the implementations with the fol-

93

lowing notation: GL: using coarse-grained locking with Java’s ReentrantLock,

TM: using DeuceSTM transactional memory [AKZ10, KSF10], AS: using an

automatic signaling approach in which threads waiting on a global condition

are always signaled by a thread releasing a monitor related to the condition,

AV: using our atomic-variable approach, and CC: using our critical-clause ap-

proach.

4.3.2.1 Applications and Examples

We show some global conditional synchronization problems across mul-

tiple objects. We focus on applications that involve global conditions or com-

position operations of monitors. Traditional monitor may solve these problems

by using a coarse-grained lock.

Pizza Store Problem This problem is described in Chapter 1. Consider

a pizza store with two types of threads: cooks and suppliers. The cooks loop

forever, first waiting for ingredients, and then making a pizza. The cooks may

require different ingredients to make different types of pizza. The suppliers

also loop forever, producing ingredients when they are insufficient. Fig. 1.6

demonstrates the code snippet for this problem using our constructs. A cook

thread waits till it has enough quantity of each of the resources it needs. This

is achieved by using the global predicate in waituntil statement. Each of the

ingredients, cheese, tomato and pepperoni, is a different monitor object and

the entire operation is done under multisynch to guarantee atomicity.

94

Distributed Discrete-Event Simulation Discrete event simulation [Mis86]

is helpful for studying and analyzing realistic complex systems. We show

our system can be used in distributed discrete-event simulation. Consider a

message-passing system consisting of multiple processes. A process has a set of

incoming neighbors, which send events that are ready to be performed to the

process. Each event has a time stamp and the process has to perform events

in increasing time order. For each neighbor, the process has a queue to keep

its events in increasing time order. Whenever the process wants to perform an

event, it needs to ensure that the event has the smallest time stamp among all

of queues. Fig. 4.5 shows the code snippet for above example. The variable

queues, an array of queues, indicates the event queues of neighbors. Each

queue is a monitor object. The function extractFirstEvent examines the

first event for each queue and return the event with the smallest time stamp.

Traditional monitor approaches would need to use a coarse-grained lock for

this application.

1 multisynch(queues) {

2 waituntil(!queues[0].isEmpty() && ...

3 && !queues[n - 1].isEmpty());

4 e = extractFirstEvent(queues);

5 }

Figure 4.5: The code snippet of Distributed Discrete-Event Simulation

95

4.3.2.2 Results

Fig. 4.6 demonstrates the results for the threads that atomically take

an item from a queue and put that item in another queue. There are 80

queues with 2048 buffer size. Every thread randomly selects a source queue

and a destination queue every time. As can be seen, all three automatic sig-

naling approaches outperform coarse-grained approach. The reason is that the

coarse-grained approach limits parallelism since every thread needs to acquire

the same coarse-grained lock to perform operations. Transactional memory ap-

proach is inefficient since it does not have efficient constructs for conditional

synchronization problems. Note that, the AS approach is more efficient than

AV and CC. The reason is that the buffer size is huge in this experimental setup

so that the global synchronization condition is true in the most of the cases.

Therefore, the AS approach does not introduce many false signals. Further-

more, AS does not have any overhead on predicate evaluations for signaling

threads.

Fig. 4.7 plots the results for the pizza store problem in which we have 15

ingredients and 15 different types of pizza. Each cook thread randomly makes

one type of pizza at any given time. As can be seen, both atomic-variable

and critical-clause approaches significantly outperform the coarse-grained ap-

proach in all runs. The reason is that cooks can concurrently make different

types of pizzas that have no identical ingredient; however, coarse-grained lock

approach limits parallelism since every cook needs to acquire the same coarse-

grained lock to make a pizza. Note that, the AS approach is extremely slow in

96

0

200

400

600

800

1000

1200

1400

20 40 60 80

T
h

ro
u

gh
p

u
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 4.6: Throughput for Atomic Take and Put

comparison with AV and CC. This phenomenon can be explained by Fig. 4.8

that depicts the number of false evaluations of threads waiting on global con-

ditions. The AS approach requires around 2 – 7× higher number of evaluations

than AV and CC. In the AS approach, a thread releasing a monitor related to

a global condition always unconditionally signals a cook waiting on the con-

dition. Therefore, this approach has a large number of false signals. Note

that, CC has a slightly higher number of false evaluations than AV while CC

slightly outperforms AV. This can be explained by that AV has higher overhead

to maintain and evaluate predicate than CC.

Fig. 4.9 shows throughput of distributed discrete-event simulation. In

the simulation, we consider a process thread with variant numbers of incoming

neighbors, mimicked by threads that generate tasks with increasing time order.

In this experiment, the coarse-grained approach performs better than AV and

CC for smaller number of threads (less than 32 threads). The reason is that

97

0

50

100

150

200

250

300

20 40 60 80

T
h

ro
u

gh
p

u
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 4.7: Throughput for the Pizza Store Problem

0

20

40

60

80

100

120

140

20 40 60 80

#
F

al
se

E
va

lu
at

io
n

(K
)

Threads

AS
AV
CC

Figure 4.8: False Evaluation for the Pizza Store Problem

it requires the process thread to waiting on a global condition that involves

all monitor objects, so that the process thread need to require all monitors

before executing a task, which does not provide better parallelism than a

single coarse-grained lock. For the number of threads is high (more than 32

threads), AV and CC outperforms coarse-grained lock approach. This can be

98

explained by high contention on the single coarse-grained lock.

0
50

100
150
200
250
300
350
400
450

20 40 60 80

T
h

ro
u

gh
p

u
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
TM

Figure 4.9: Throughput for the Discrete-Event Simulation

4.4 Related Work

Java and C++ use conditional variables with explicit notification for

conditional synchronization. Programmers need to explicitly use signal or

signalAll to wake a thread waiting on a condition variable. Using the wrong

notification (signal versus signalAll), or forgetting to do the notification are

frequent sources of bugs in Java parallel programs. In AutoSynch [HG13], there

is no notion of condition variables and it is the responsibility of the system to

automatically signal appropriate threads. However, AutoSynch, and indeed all

traditional monitor approaches [Hoa74,Han75], can deal only with conditions

local to a single monitor object. They cannot handle complex conditional

synchronizations that involve multiple monitor objects.

Transactional memory based systems also cannot handle global condi-

99

tional synchronization easily. The thread itself needs to recheck every time

there is an update of the variables in the transaction. The C++ transactional

memory constructs specification proposal [LW14](Section 7.11) points out that

there is still no solution to support conditional synchronization in transac-

tional memory because no monitor can be passed to the condition variable

in an atomic block. Transactional memory implementations [HMJH05,SR13]

would have to check the global predicate every time and then abort and retry

the transaction when the condition is false. Implementations such as [DS09]

use global lock based solutions for waiting and thus limit parallelism. Us-

ing transaction-friendly condition variables is proposed in [WLS14,WS16], in

which programmers need to declare additional condition variables and explic-

itly wait/signal on those variables. This approach, however, brings back all

the hazards of explicit signaling.

4.5 Summary

Writing parallel programs that provide high performance and scalability

is still a challenging task for most programmers. The main reason is that there

is no simple parallel programming paradigm that guarantees multi-object mu-

tual exclusion as well as simple conditional synchronization and composition-

ality. Our proposed design of multi-object monitors is a step in the direction

of providing such constructs. We have shown that our proposed framework of

multi-object synchronization monitors provides significant improvement over

traditional lock-based monitors. We believe that with further research efforts

100

in this direction, and further optimizations in our implementation, our pro-

posed technique can lead to significant improvements in programmability as

well as performance of shared memory parallel programs.

101

Chapter 5

Logical Compositionality

In addition to the automatic notification of global conditions, our system also

aims to solve the compositionality problem [HS08] which is best understood

with the following producer-consumer example. Consider two instances Q1

and Q2 of a blocking queue implementation, with dequeue method signature

being take(). As the queue is blocking, a call to take() will block the calling

thread if the queue is empty. Consider the problem of dequeueing from either

of these instances, and storing the returned item into a variable x. If both

queues are empty, then we should block until an item is available in either

one. Solving this problem using the traditional monitor based blocking queue

implementations is extremely difficult [HS08]. An ad hoc solution is to use

a global lock and a lock-free/wait-free implementation of take(). But this

solution does not scale because a global lock inhibits parallelism. Even with

transactional memory [HS08] the problem is not easy to solve. The thread

itself needs to recheck every time there is an update of the variables in the

transaction. If there are multiple threads waiting on that condition, then each

one of them will recheck the condition.In our framework, the code is simply

one statement: x = Q1.take() OR x = Q2.take().

102

To deal with composition, our system supports four operations: OR,

AND, selectone, and selectall. In this chapter, we first introduce guarded

monitor methods, which can be used together with our composition opera-

tions. Next, we show both synchronous and asynchronous implementations for

our logical compositionality. The results indicate that our synchronous com-

position operations are extremely efficient in comparison with asynchronous

approach, transactional memory, and global lock approach.

5.1 Guarded Monitor Methods

Our composition operators are applicable to guarded monitor methods

as defined next.

Definition 13 (Guarded Monitor Method). A member method of a monitor

object is called guarded if any waituntil statement in the method is at the

beginning of the method. The boolean predicate P for waituntil statement is

called the pre-condition of the method.

A monitor method with no waituntil statement is also considered as

a guarded method in which the pre-condition P is true.

Both OR and AND have two operands. The OR operation executes either

of the two operand while the AND operation executes the two operands in

any order. The order of operations is defined based on the evaluation of

the pre-conditions (of operand monitor methods) at runtime. If a result is

required from either of these operator calls, then programmers can assign

103

the results of the operand methods to variables, e.g., (x = Q1.take()) OR

(x = Q2.take()), Q1.put(item) AND Q2.put(item). The selectone and

selectall can be considered as the generalized constructs for OR and AND,

respectively. Both constructs have four arguments, initialization expression,

termination expression, increment expression, and the guarded function. The

first three arguments are identical to the for-loop, providing a way to iterate

over a collection of monitor objects instead of just two.

We restrict operands of our composition operators to guarded monitor

methods because allowing waituntil statements in the middle makes it im-

possible to guarantee atomicity without rollbacks. Since our implementation

is lock based, a method call cannot be rolled back (as in transactional memory

implementations). If a middle waituntil statement is false in a method call,

our system cannot abort it and rollback. However, this restriction does not

limit the applicability of our system. If a monitor method has a waituntil(P)

in the middle, we can split the method into two guarded monitor methods such

that the second method begins with the waituntil statement. Furthermore,

our global condition synchronization allows waituntil in the middle. This

restriction is only for composition operators.

5.2 Synchronous Execution of Compositional Operations

For synchronous implementation, there are two phases for each com-

position operation, the speculative phase and the synchronized phase. In the

speculative phase, our system tries to iterate over a set of operands and check

104

if they can be executed until the composition operation is completed or no

operand is executable. If the operation is not completed, we go to the syn-

chronized phase. In this phase, we need to acquire the locks of all operands.

Those locks are acquired according to their ids just as in the multisynch

statement. The details of our implementations are shown next. Note that, OR

and selectone have the same implementation while AND and selectall have

the same implementation.

We use two helper methods as shown in Algorithm 5 and 6, where the

set of operands (guarded monitor methods) is denoted as O. The nonblocking

method executeOneOperand iteratively checks and executes if there is some

executable operand. The createExecutablePredicate method generates the

disjunction of the set of pre-conditions of operands. If the generated global

predicate is true, then one of the operands has become executable.

Algorithm 5 executeOneOperand(O)

Input: A set of operands O
Output: Execute an executable operand and return it or return null
1: ret := null
2: for each operand o ∈ O do
3: if o.tryLock() then
4: if o.pre condition is true then
5: execute o
6: ret := o
7: o.unLock()

8: return ret

Algorithm 7 shows the implementation for selectone and OR opera-

tors. Our system invokes the executeOneOperand method in the speculative

105

Algorithm 6 createExecutablePredicate(O)

Input: A set of operands O
Output: Return P indicating some operand is executable
1: P := false
2: for each operand o ∈ O do
3: P := P ∨ o.pre condition

4: return P

phase. If there is an executable operand, our system executes it and returns.

Otherwise, it goes to the synchronization phase. We derive a global predicate

P by invoking the createExecutablePredicate method. Then we acquire

all locks of operands and wait on the global predicate. Once the predicate

becomes true, we can find an executable operand and execute it.

Algorithm 7 orComposition(O)

Input: A set of operands O . Speculative Phase
1: if executeOneOperand(O) 6= null then

2: return . Synchronized Phase

3: P := createExecutablePredicate(O)
4: lockOperands(O)
5: waituntil(P)
6: executeOneOperand(O)
7: unlockOperands(O)

The implementations for our AND and selectall are shown in Algo-

rithm 8. It is similar to the implementation of OR and selectone.

106

Algorithm 8 andComposition(O)

Input: A set of operands O
1: repeat . Speculative Phase
2: o :=executeOneOperand(O)
3: O := O − o
4: until O = ∅ or o = null
5: if O = ∅ then return . Synchronized Phase

6: repeat
7: P := createExecutablePredicate(O)
8: lockOperands(O)
9: waituntil(P)

10: for each o ∈ O such that o.pre condition is true do
11: execute o
12: o.unlock()
13: O := O − o
14: unlockOperands(O)
15: until O = ∅

5.3 Asynchronous Execution of Compositional Opera-
tions

We extend ActiveMonitor as described in Chapter 3 to provide asyn-

chronous compositional operations. Guarded monitor methods can be con-

verted to equivalent monitor tasks as defined in Defn. 10. Monitor tasks are

compositional in nature. Suppose a monitor method declares n in the form

of waituntil (Pi) Si, where 1 ≤ i ≤ n, to enforce that the set of state-

ments Si must be executed iff predicate Pi is true. To execute this method,

ActiveMonitor generates n tasks such that each task ti has a precondition Pi

and a corresponding set of statements Si. More importantly, with monitors

allowed to be ‘active’ as threads, ActiveMonitor enables compositionality of

107

blocking operations across different monitor objects. The following section

demonstrates our implementation in details.

5.3.1 Implementing Composition Operators in ActiveMonitor

For both of these operators, ActiveMonitor stipulates that the operands

— monitor method calls — must be on different monitor objects. This is

needed to guarantee program order under conditional synchronization across

monitors. The pre-processor raises a parsing error if this constraint is not met.

If the constraint is met, the pre-processor generates the equivalent task for

each operand conjunct/disjunct clause, and stores them as a collection within

a container object that is directly mapped to the operator. Note that if there

are multiple statements with same operator usage (selectone and selectall

statments), all of them are treated as independent, and a container object

is generated for each of them. The operand calls are then replaced by the

submission of tasks to the corresponding monitors.

The runtime library delegates the tasks to their respective target servers

(monitor threads) for execution. It also observes all the preconditions of these

tasks and ensures that they are executed whenever these conditions are met.

For AND (selectall) operator, the worker that called the operator is forced to

wait for the completion of all the tasks. This is achieved by forcing the worker

to evaluate the future reference returned by each task submission. Once all

the futures have been evaluated, the result of the operator is stored in the des-

ignated storage if needed. For example, consider the statement: Q1.put(a)

108

AND Q2.put(b); where Q1 and Q2 are two bounded-queues. Then the frame-

work generates two tasks t1 and t2, and submits them to the server threads

of Q1 and Q2. It then registers the returned future references with the worker

thread that called the statement, and forces it to evaluate both the futures

such that the worker remains blocked until both a and b are enqueued in Q1

and Q2 respectively.

For statements with OR (selectone) operator, the container object

that holds the tasks — that are equivalent to the constituent disjunct clauses

of OR— also maintains an atomic flag called taken. This flag is initially set

to false. To execute the composition statement, the runtime first parks the

calling worker thread, and submits the tasks stored in the container object

to their respective server (monitor). Recall that the relay invariance of our

automatic signaling ensures that whenever the pre-condition of some task of

the OR is met, its server thread is signaled. To guarantee that only one clause

(equivalent task) of the OR statement is executed, the server thread performs a

compare-and-swap (CAS) operation on the taken flag of the container object.

If and only if the server’s CAS operation succeeds, ie. the value of the flag

was false and this server set it to true, the server proceeds to execute the task

submitted to it. Since only one thread can succeed in atomically setting the

flag, we are guaranteed that only one of the tasks will be executed. Every

other server thread that executes the CAS and fails can discard its task for

the OR statement.

109

5.4 Evaluation

In this section, we study the throughputs of compositionality problems

among different implementations. We denote the implementations with the fol-

lowing notation: GL: using coarse-grained locking with Javas ReentrantLock,

TM: using DeuceSTM transactional memory [AKZ10,KSF10]. Three different

automatic signaling approaches are implemented with our synchronous com-

positionality mechanism as described in Section 5.2, where AS: using an au-

tomatic signaling approach in which threads waiting on a global condition are

always signaled by a thread releasing a monitor related to the condition, AV:

using our atomic-variable approach, CC: using our critical-clause approach.

Our asynchronous approach as described in Section 5.3 is denoted as AM.

5.4.1 Application: Multicast Channels Communication

A web server needs to handle numerous requests from clients. Suppose

the server uses a queue for each client to keep its requests. The server has

to fulfill clients’ requests as efficiently as possible but does not care about

the order of requests. Fig. 5.1 demonstrates the implementation by using

our constructs. We can use our composition construct selectone to take a

message among queues, indicating the request queues of clients. Another way

to implement it is by using concurrent queues; however, the server needs to

busy wait and check if there is any message in queues with this implementation.

If we want to avoid busy waiting, we need to use a coarse-grained lock and

conditional variables.

110

1 while (true) {

2 Message msg;

3 selectone(int i = 0; i < queues.length; ++i; msg = queues[i].take());

4 handleMessage(msg);

5 }

Figure 5.1: The Code Snippet of Multicast Channels Communication

5.4.2 Results

Fig. 5.2 demonstrates the throughput for multicast channels communi-

cation. We consider a server thread with varying number of clients, simulated

by threads that generate requests. The goal of this experiment is to evaluate

the performance of our composition operations. Our synchronous approaches,

AV, CC, and AS, significantly outperform coarse-grained lock. However, the

asynchronous implementation AM is not as efficient as synchronous implemen-

tations. AM gains benefits only when the number of threads is low. This can be

explained by the fact that the overhead of creating tasks and monitor threads

offsets the parallelism of asynchronous executions. This result highlights the

benefit of synchronous composition operations because the coarse-grained lock

approach and asynchronous approach are much slower in comparison to AV,

CC, as well as the AS approach. The reason is that our composition opera-

tions are nonblocking whenever there is some executable operand. Note that,

the software transactional memory approach performs better than the coarse-

grained lock when the number of threads is low (less than 32). However, it is

still extremely inefficient in comparison with our approaches.

111

0

200

400

600

800

1000

1200

20 40 60 80

T
h

ro
u

gh
p

u
t

(K
op

s/
se

c)

Threads

AS
AV
CC
GL
AM
TM

Figure 5.2: Throughput for Multicast Channels Communication

5.5 Summary

In this chapter, we tackle the compositionality problem of traditional

memory. Our system provides four composition operations: OR, AND, selectone,

and selectall for guarded monitor methods so that programmers can use

such methods together without additional efforts. We discuss both synchronous

and asynchronous approaches for our composition operations. The experimen-

tal results indicate that our synchronous approach not only simplifies compo-

sitionality problem but also gains performance.

112

Chapter 6

Future Work

This chapter discusses the future work for our parallel programming paradigms

and framework.

6.1 Monitors with Read/Write Lock

In our current framework, we assume that every monitor method ex-

ecution is mutually exclusive. However, multiple read-only monitor methods

should be executed simultaneously for further parallelism. We plan to provide

the key word readonly to indicate that a monitor method is read-only and

to allow parallel execution on read-only methods. To achieve this, we plan

to adopt the read/write lock. For each monitor, we create a read/write lock

for it. If a thread invokes a read-only method, the thread tries to acquire the

read lock of the monitor and then executes the operations of the method by

itself. Otherwise, if a thread invokes a monitor method updating the shared

data, then the thread needs to acquire the write lock or to create correspond-

ing monitor tasks and submits to its monitor thread as described in Chapter

3. For each monitor thread try to execute monitor tasks, the thread needs to

acquire the write lock of the monitor.

113

6.2 Asynchronous Monitor with Fairness and Priority

In Chapter 3, we focus on the performance of the monitor but not the

flexibility of programs. In this section, we discuss that providing priority and

fairness policy for monitor methods can give programmers more choices when

developing software systems.

We first define different policies and then discuss the flexibility that our

system can gain with those policies.

Definition 14 (Safe Policy). If a task T of a monitor M is executable and

there is no other executable task of M , then T is executed.

Safe policy guarantees that executable tasks are eventually executed if

there is no other executable task. The exactly execution order of tasks depends

on the runtime situation. Our asynchronous monitor discussed in Chapter 3

provides this safe policy.

The formal definition of our fairness policy is as follows.

Definition 15 (Fairness Policy). The order must satisfy safe policy. In addi-

tion, for all task t of a monitor M , t is executed if there is no other task s of

M , such that s is executable and sub(s) < sub(t).

Fairness policy guarantees that the executed task is the earliest sub-

mitted executable task, so that it avoids starvation and prevents accessing out

of date information.

114

For a task t of a priority method call, we use priority(t) to denote the

priority of task t. Our system guarantees that higher priority executable task

is always been executed earlier than others. The following defines our priority

policy.

Definition 16 (Priority Policy). The order must satisfy safe policy. In addi-

tion, for all task t of a monitor M , t is executed if there is no other task s of

M , such that s is executable and priority(s) > priority(t).

Now we show a motivating example that programmers can gain benefit

from our framework with these three policies in Fig. 6.1, a readers/writers mon-

itor example. In the example, the monitor can be fairness, writer preference,

and reader preference without modifying the code but by choosing different

policies as described in Proposition 6 and 7. Thus, programmers are able

to gain more flexibility when design their programs with these three policies.

Furthermore, programmers can even implement only one program for different

purposes by choosing different policies. We proposed that programmers can

use annotations to choose polices. First, programmers does not need to add

any annotation for safe policy because safe policy is the default policy in our

system. For fairness policy, programmers add @FairnessPolicy annotation

to the monitor class. For example, programmers can add @FairnessPolicy in

front of line 1 in Fig. 6.1 to implement a fairness readers/writers monitor. Fi-

nally, programmer can use @Priority annotation with a number to indicates

the priorities of methods. For example, to implement a writer preference read-

ers/writers monitor, programmers can add @Priority(2) annotation to both

115

1 public monitor class ReadersWritersMonitor {

2 Thread waitingWriter;

3 boolean isWriting;

4 int rcnt;

5 public ReadersWritersMonitor() {

6 waitingWriter = null;

7 isWriting = false;

8 rcnt = 0;

9 }

10 public void startRead() {

11 waituntil(waitingWriter != null && !isWriting);

12 rcnt++;

13 }

14 public nonblocking void endRead() {

15 rcnt--;

16 }

17 public void startWrite() {

18 waituntil(waitingWriter != null);

19 waitingWriter = Thread.currentThread();

20 waituntil(rcnt == 0 && isWriting == false &&

21 waitingWriter == Thread.currentThread());

22 waitingWriter = null;

23 isWriting = true;

24 }

25 public nonblocking void endWrite() {

26 isWriting = false;

27 }

28 }

Figure 6.1: The examples of readers/writers monitor with priority annotation

startWrite() and endWrite(); and add @Priority(1) to both startRead()

and endRead() to indicate that writers have high priority.

Proposition 6. The readers/writers shown in Fig. 6.1 is fairness using the

fairness policy.

Proposition 7. The readers/writers shown in Fig. 6.1 is reader preference

116

when using the priority policy that all startRead() calls have higher priority

than the startWrite() calls; it is writer preference when using the priority

policy that all startWrite() calls have higher priority than startRead() calls.

Safe policy maximizes throughput while fairness policy deals with star-

vation and staleness/freshness issues. Furthermore, priority policy provides

programmers more choices. In our system, programmers should be able to de-

cide a priority for every monitor method call by specifying the policy through

annotations for monitor classes and method calls.

Chapter 3 describes only the implementation of safe policy. To imple-

ment fairness and priority policy, we may rely on the concurrent first-in-first-

out (FIFO) queue and the concurrent priority queue to store submitted tasks.

Then the monitor thread takes tasks from the queue for executing.

6.3 Enhancing Support of Asynchronous Monitor

Our approach of creating an independent thread for a monitor object

and coupling this with asynchronous executions of monitor methods is aimed

at improving the performance of multi-threaded programs by increasing paral-

lelism. Understandably, the benefits provided by this approach can be tangible

only if the lifespan of such monitor objects is long enough that the improved

cache locality and parallelism introduced by our approach overcomes the ad-

ditional resource and time costs involved in creation of threads and overheads

associated with delegation based critical section executions. Hence, our ap-

117

proach is not beneficial for applications that use short-lived monitor objects.

We highlight three categories of current limitations of our prototype imple-

mentation. We plan to overcome these limitations in our future work.

6.3.1 Exception Handling

For an asynchronous method invocation, after submitting its corre-

sponding task to the executor, the invoker does not need to wait for the com-

pletion of the task. The task is executed in parallel by a monitor thread.

Thus, if an exception occurs during its execution, the thread that submitted

it must be notified of this exception. Our framework must have an exception

handler that keeps a log of every exception and provides different mechanisms

for programmers to handle exceptions in the asynchronous method. The users

may choose to ignore the exceptions or they can specify a maximum number

of times a task may be considered for automatic re-tries. Furthermore, our

system should also provides a hook so that the programmer can write their

custom exception handler.

6.3.2 Thread Dependent Variables/Functions

In our current implementation, thread dependent variables and func-

tions within a monitor method cannot be used directly in the Runnable or

Callable object that is used in task generation by our approach. The rea-

son is that the tasks are executed by the monitor thread and not by the

worker thread. For example, suppose there is a monitor method that invokes

118

Thread.currentThread(), if we directly add this statement to the generated

Runnable object (in the task), then this method’s invocation at runtime will

return the reference to the monitor thread when it is executed. However, it

is obvious that the intent of this call inside the monitor method was to refer

to the worker thread. To handle this situation, currently, we require the pro-

grammer to perform reference copy and storage and storage in thread-local

variables. For read operations of thread dependent variables and functions,

the worker thread would need to evaluate them outside the monitor, and store

the result with final variables. These final variables can be accessed by the

runnable and callable objects. An additional constraint/limitation applies for

the case of write operation on thread dependent variables. For write opera-

tions, if the monitor method is non-blocking then the results can be stored

as intermediate data. The worker thread then writes these results back to its

local variable after the task is executed.

6.3.3 Blocking recursive method

Our current pre-processor does not support blocking recursive method

on monitors. This is because the number of the method invocations to be

made at the runtime is non-deterministic. Thus, we cannot know how many

tasks we need to create at pre-processing time. In addition, since the method

is blocking, the monitor thread will get blocked when it recurs.

119

Appendix

A.1 The H2O Problem

1 public monitor class H2OBarrier {

2 int numAvailableO = 0;

3 int numAvailableH = 0;

4 int numWaitingO = 0;

5 int numWaitingH = 0;

6 public void OReady() {

7 ++numWaitingO;

8 waituntil((numAvailableO > 0) || (numWaitingH >= 2));

9 if (numAvailableO == 0) {

10 numWaitingH -= 2;

11 numAvailableH += 2;

12 numWaitingO -= 1;

13 } else {

14 numAvailableO -= 1;

15 }

16 }

17 public void HReady() {

18 ++numWaitingH;

19 waituntil((numAvailableH > 0) || (numWaitingO >= 1 && numWaitingH >= 2));

20 if (numAvailableH == 0) {

21 numWaitingH -= 2;

22 numAvailableH += 1;

23 numWaitingO -= 1;

24 numAvailableO += 1;

25 } else {

26 numAvailableH -= 1;

27 }

28 }

29 }

Figure A.1: The H2O our framework

120

A.2 Round-Robin Access Pattern

1 public monitor class RoundRobinMonitor {

2 private int numProc;

3 private int currId;

4

5 public RoundRobinMonitor(int numProc) {

6 this.numProc = numProc;

7 currId = 0;

8 }

9

10 public void access(int myId) {

11 waituntil(currId == myId);

12 ++currId;

13 currId %= numProc;

14 }

15 }

Figure A.2: The round robin access pattern using our framework

121

A.3 Ticket Readers/Writers Monitor Example

1 public monitor class ReadersWritersMonitor {

2 int rcnt;

3 int tickets, serving;

4 public ReadersWritersMonitor() {

5 rcnt = 0;

6 tickets = serving = 0;

7 }

8 public void startRead() {

9 int ticket = tickets;

10 tickets++;

11 await(ticket == serving);

12 rcnt++;

13 serving++;

14 return;

15 }

16 public void endRead() {

17 rcnt--;

18 }

19 public void startWrite() {

20 int ticket = tickets;

21 tickets++;

22 await(ticket == serving && rcnt == 0);

23 }

24 public void endWrite() {

25 serving++;

26 }

27 }

Figure A.3: The ticket readers/writers monitor using our framework

122

A.4 Sleeping Barber Problem

1 public monitor class BarberShopMonitor {

2 public void cutHair() {

3 waituntil(numFreeSeat < maxSeat);

4 ++numFreeSeat;

5 ++numAvailableBarber;

6 }

7 public boolean waitToCut() {

8 if (numFreeSeat == 0) {

9 return false;

10 }

11 --numFreeSeat;

12 waituntil(numAvailableBarber > 0);

13 --numAvailableBarber;

14 return true;

15 }

16 }

Figure A.4: The sleeping barber problem using our framework

123

Bibliography

[AKZ10] Yehuda Afek, Guy Korland, and Arie Zilberstein. Lowering STM

Overhead with Static Analysis. LCPC, pages 31–45, 2010.

[And99] Greg R Andrews. Foundations of Parallel and Distributed Pro-

gramming. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1st edition, 1999.

[BBF+95] Peter A. Buhr, Peter A. Buhr, Michel Fortier, Michel Fortier,

Michael H Coffin, and Michael H Coffin. Monitor classification.

ACM Computing Surveys, 27(1):63–107, March 1995.

[BH05] Peter A. Buhr and Ashif S. Harji. Implicit-Signal Monitors.

ACM Transactions on Programming Languages and Systems, 27(6):1270–

1343, November 2005.

[BM06] David A Bader and Kamesh Madduri. Gtgraph: A synthetic

graph generator suite. Atlanta, GA, February, 2006.

[But97] David R Butenhof. Programming with POSIX Threads. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1997.

[CDH+13] Irina Calciu, Dave Dice, Tim Harris, Maurice Herlihy, Alex Ko-

gan, Virendra Marathe, and Mark Moir. Message Passing or

124

Shared Memory: Evaluating the Delegation Abstraction for Mul-

ticores. In Roberto Baldoni, Nicolas Nisse, and Maarten van

Steen, editors, Principles of Distributed Systems: 17th Interna-

tional Conference, OPODIS 2013, Nice, France, December 16-18,

2013. Proceedings, pages 83–97. Springer International Publish-

ing, Cham, 2013.

[CGS+05] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christo-

pher Donawa, Allan Kielstra, Kemal Ebcioglu, Christoph von

Praun, and Vivek Sarkar. X10: An Object-oriented Approach to

Non-uniform Cluster Computing. SIGPLAN Not., 40(10):519–

538, 2005.

[CHP71] P J Courtois, F Heymans, and D L Parnas. Concurrent control

with “readers” and “writers”. Communications of the ACM,

14(10):667–668, 1971.

[CZF04] Deepayan Chakrabarti, Yiping Zhan, and Christos Faloutsos. R-

MAT: A Recursive Model for Graph Mining. In SIAM Inter-

national Conference on Data Mining, pages 442–446, February

2004.

[Dij59] E W Dijkstra. A Note on Two Problems in Connexion with

Graphs. Numer. Math., 1(1):269–271, 1959.

[Dij65] Edsger Wybe Dijkstra. Cooperating Sequential Processes, Tech-

nical Report EWD-123. Technical report, 1965.

125

[Dij68] Edsger W Dijkstra. The structure of the “THE”-multiprogramming

system. Communications of the ACM, 11(5):341–346, May 1968.

[Dij71] Edsger Wybe Dijkstra. Hierarchical ordering of sequential pro-

cesses. Acta Informatica, 1(2):115–138, 1971.

[dim] 9th DIMACS Implementation Challenge - Shortest Paths. Tech-

nical report.

[DS09] Polina Dudnik and Michael M Swift. Condition Variables and

Transactional Memory: Problem or Opportunity? In The 4th

ACM SIGPLAN Workshop on Transactional Computing, pages

1–10, February 2009.

[FHS04] Faith Fich, Danny Hendler, and Nir Shavit. On the Inherent

Weakness of Conditional Synchronization Primitives. In Pro-

ceedings of the Twenty-third Annual ACM Symposium on Princi-

ples of Distributed Computing, pages 80–87, New York, NY, USA,

2004. ACM.

[FK12] Panagiota Fatourou and Nikolaos D Kallimanis. Revisiting the

Combining Synchronization Technique. In Proceedings of the

17th ACM SIGPLAN Symposium on Principles and Practice of

Parallel Programming, pages 257–266, New York, NY, USA, 2012.

ACM.

126

[GJS+14] James Gosling, Bill Joy, Guy L Steele, Gilad Bracha, and Alex

Buckley. The Java Language Specification, Java SE 8 Edition.

Addison-Wesley Professional, 1st edition, 2014.

[GPB+06] Brian Goetz, Tim Peierls, Joshua Bloch, Joseph Bowbeer, David

Holmes, and Doug Lea. Java concurrency in practice. Addison-

Wesley Professional, 2006.

[Hal85] Robert H Halstead, Jr. MULTILISP: A Language for Concurrent

Symbolic Computation. ACM Transactions on Programming

Languages and Systems, 7(4):501–538, 1985.

[Han75] Per Brinch Hansen. The Programming Language Concurrent

Pascal. IEEE Trans. Softw. Eng., 1(1):199–207, 1975.

[Har01] Timothy L Harris. A Pragmatic Implementation of Non-blocking

Linked-Lists. In Proceedings of the 15th International Confer-

ence on Distributed Computing, pages 300–314, London, UK, UK,

2001. Springer-Verlag.

[Her88] Maurice P Herlihy. Impossibility and Universality Results for

Wait-free Synchronization. In Proceedings of the Seventh Annual

ACM Symposium on Principles of Distributed Computing, pages

276–290, New York, NY, USA, 1988. ACM.

[HG13] Wei-Lun Hung and Vijay K Garg. AutoSynch: an automatic-

signal monitor based on predicate tagging. In PLDI ’13: Pro-

127

ceedings of the 2013 ACM SIGPLAN conference on Programming

language design and implementation, pages 253–262, 2013.

[HH78] C A R Hoare and C A R Hoare. Communicating sequential

processes. Communications of the ACM, 21(8), August 1978.

[HHL+06] Steve Heller, Maurice Herlihy, Victor Luchangco, Mark Moir,

William N Scherer, and Nir Shavit. A Lazy Concurrent List-

based Set Algorithm. In Proceedings of the 9th International

Conference on Principles of Distributed Systems, pages 3–16, Berlin,

Heidelberg, 2006. Springer-Verlag.

[HHWW90] Maurice P Herlihy, Maurice P Herlihy, Jeannette M Wing, and

Jeannette M Wing. Linearizability: A Correctness Condition

for Concurrent Objects. ACM Transactions on Programming

Languages and Systems, 12(3):463–492, 1990.

[HIST10] Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat

Combining and the Synchronization-parallelism Tradeoff. In

Proceedings of the Twenty-second Annual ACM Symposium on

Parallelism in Algorithms and Architectures, pages 355–364, New

York, NY, USA, 2010. ACM.

[HL14] Maurice Herlihy and Zhiyu Liu. Well-structured Futures and

Cache Locality. In Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

pages 155–166, New York, NY, USA, 2014. ACM.

128

[HLR10] Tim Harris, James R Larus, and Ravi Rajwar. Transactional

Memory. Morgan & Claypool, 2010.

[HM93] Maurice Herlihy and J Eliot B Moss. Transactional Memory:

Architectural Support for Lock-Free Data Structures. ISCA,

pages 289–300, 1993.

[HMJH05] Tim Harris, Simon Marlow, Simon L Peyton Jones, and Maurice

Herlihy. Composable memory transactions. PPOPP, pages 48–

60, 2005.

[Hoa74] C A R Hoare. Monitors: An Operating System Structuring

Concept. Communications of the ACM, 17(10):549–557, 1974.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2008.

[HSY04] Danny Hendler, Nir Shavit, and Lena Yerushalmi. A Scalable

Lock-free Stack Algorithm. In Proceedings of the Sixteenth An-

nual ACM Symposium on Parallelism in Algorithms and Archi-

tectures, pages 206–215, New York, NY, USA, 2004. ACM.

[HWG03] Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. C# Lan-

guage Specification. Addison-Wesley Longman Publishing Co.,

Inc., Boston, MA, USA, 2003.

129

[IS14] Joseph Izraelevitz and Michael L Scott. Brief Announcement: A

Generic Construction for Nonblocking Dual Containers. In Pro-

ceedings of the 2014 ACM Symposium on Principles of Distributed

Computing, pages 53–55, New York, NY, USA, 2014. ACM.

[Kes77] J L W Kessels. An Alternative to Event Queues for Synchroniza-

tion in Monitors. Communications of the ACM, 20(7):500–503,

1977.

[KH14] Alex Kogan and Maurice Herlihy. The Future(s) of Shared Data

Structures. In Proceedings of the 2014 ACM Symposium on Prin-

ciples of Distributed Computing, pages 30–39, New York, NY,

USA, 2014. ACM.

[KP11] Alex Kogan and Erez Petrank. Wait-free Queues with Multi-

ple Enqueuers and Dequeuers. In Proceedings of the 16th ACM

Symposium on Principles and Practice of Parallel Programming,

pages 223–234, New York, NY, USA, 2011. ACM.

[KP12] Alex Kogan and Erez Petrank. A Methodology for Creating

Fast Wait-free Data Structures. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 141–150, New York, NY, USA, 2012. ACM.

[KSF10] G Korland, N Shavit, and P Felber. Noninvasive concurrency

with Java STM. In MultiProg 2010: Third Workshop on Pro-

grammability Issues for Multi-Core Computers, 2010.

130

[LDT+12] Jean-Pierre Lozi, Florian David, Ga e l Thomas, Julia Lawall,

and Gilles Muller. Remote Core Locking: Migrating Critical-

section Execution to Improve the Performance of Multithreaded

Applications. In Proceedings of the 2012 USENIX Conference

on Annual Technical Conference, pages 6–6, Berkeley, CA, USA,

2012. USENIX Association.

[Lea05] Doug Lea. The Java.Util.Concurrent Synchronizer Framework.

Sci. Comput. Program., 58(3):293–309, 2005.

[LM11] V Luchangco and V J Marathe. Revisiting Condition Variables

and Transactions. In The 6th ACM SIGPLAN Workshop on

Transactional Computing, 2011.

[LW14] Victor Luchangco and Michael Wong. Transactional Memory

Support for C++, February 2014.

[MCKO08] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle

Olukotun. STAMP: Stanford Transactional Applications for

Multi-Processing. IISWC, pages 35–46, 2008.

[Mis86] Jayadev Misra. Distributed Discrete-event Simulation. ACM

Computing Surveys, 18(1):39–65, 1986.

[MM02] Maged M Michael and Maged M Michael. High Performance

Dynamic Lock-free Hash Tables and List-based Sets. In Pro-

ceedings of the Fourteenth Annual ACM Symposium on Parallel

131

Algorithms and Architectures, pages 73–82, New York, NY, USA,

2002. ACM.

[NM14] Aravind Natarajan and Neeraj Mittal. Fast Concurrent Lock-free

Binary Search Trees. In Proceedings of the 19th ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming,

pages 317–328, New York, NY, USA, 2014. ACM.

[OTY99] Yoshihiro Oyama, Kenjiro Taura, and Akinori Yonezawa. Ex-

ecuting Parallel Programs with Synchronization Bottlenecks Ef-

ficiently. In Proceedings of International Workshop on Parallel

and Distributed Computing for Symbolic and Irregular Applica-

tions (PDSIA’99). World Scientific, 1999.

[PcRS14] Darko Petrovi c, Thomas Ropars, and André Schiper. Leveraging

Hardware Message Passing for Efficient Thread Synchronization.

In Proceedings of the 19th ACM SIGPLAN Symposium on Prin-

ciples and Practice of Parallel Programming, pages 143–154, New

York, NY, USA, 2014. ACM.

[SDSC14] Fernando Silva, Inês Dutra, and Vı́tor Santos Costa, editors.

Delegation Locking Libraries for Improved Performance of Multi-

threaded Programs, Cham, 2014. Springer International Publish-

ing.

[SR13] Alexandre Skyrme and Noemi Rodriguez. From Locks to Trans-

actional Memory: Lessons Learned from Porting a Real-world

132

Application. In The 8th ACM SIGPLAN Workshop on Transac-

tional Computing, pages 1–9, March 2013.

[SSAT+06] Bratin Saha, Bratin Saha, Ali-Reza Adl-Tabatabai, Ali-Reza Adl-

Tabatabai, Richard L Hudson, Richard L Hudson, Chi Cao Minh,

Chi Cao Minh, Benjamin Hertzberg, and Benjamin Hertzberg.

McRT-STM: a high performance software transactional memory

system for a multi-core runtime. In PPoPP ’06: Proceedings of

the eleventh ACM SIGPLAN symposium on Principles and prac-

tice of parallel programming. ACM Request Permissions, March

2006.

[ST95] Nir Shavit and Dan Touitou. Software transactional memory.

In PODC ’95: Proceedings of the fourteenth annual ACM sym-

posium on Principles of distributed computing. ACM Request

Permissions, August 1995.

[Str00] Bjarne Stroustrup. The C++ Programming Language. Addison-

Wesley Longman Publishing Co., Inc., February 2000.

[TBKP12] Shahar Timnat, Anastasia Braginsky, Alex Kogan, and Erez Pe-

trank. Wait-free Linked-lists. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 309–310, New York, NY, USA, 2012. ACM.

[WLS14] Chao Wang, Yujie Liu, and Michael F Spear. Transaction-

friendly condition variables. SPAA, pages 198–207, 2014.

133

[WS16] Chao Wang and Michael Spear. Practical Condition Synchro-

nization for Transactional Memory. In Proceedings of the Eleventh

European Conference on Computer Systems, pages 32:1–32:16,

New York, NY, USA, 2016. ACM.

[you] Yourkit Java Profiler.

134

	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Motivation
	Automatic-Signal Monitors
	Asynchronous Monitor Method Executions
	Multi-Object Synchronization
	Logical Compositionality
	Our Framework and Actual Usage
	Overview

	Chapter 2. Automatic-Signal Monitors
	Background: Monitors
	Predicate Evaluation
	Relay Invariance
	Predicate Tag
	Predicate Tagging
	Tag Signaling

	Evaluation
	Experimental environment
	Signaling mechanisms
	Test problems
	Experimental results

	Summary

	Chapter 3. Asynchronous Monitor Method Executions
	Concept and Design
	Monitor Tasks
	Asynchronous Execution of Tasks

	Runtime Library for Asynchronous Execution of Tasks
	Execution of Monitor Tasks
	Implementation
	Storage of Tasks: Single Consumer Optimal Bounded Queue
	Monitor Thread Management

	Evaluation
	Results

	Related Work
	Discussion
	Summary

	Chapter 4. Multi-Object Synchronization
	Multi-Object Mutual Exclusion
	Efficient Automatic Notification of Global Conditions
	Preliminaries
	Atomic-Variable Approach
	Critical-Clause Approach
	Global Conditions with Complex Predicates

	Evaluation
	Evaluation for multisynch Statements
	Evaluation for Global Condition Problems

	Related Work
	Summary

	Chapter 5. Logical Compositionality
	Guarded Monitor Methods
	Synchronous Execution of Compositional Operations
	Asynchronous Execution of Compositional Operations
	Implementing Composition Operators in ActiveMonitor

	Evaluation
	Application: Multicast Channels Communication
	Results

	Summary

	Chapter 6. Future Work
	Monitors with Read/Write Lock
	Asynchronous Monitor with Fairness and Priority
	Enhancing Support of Asynchronous Monitor
	Exception Handling
	Thread Dependent Variables/Functions
	Blocking recursive method
	Appendix
	The H2O Problem
	Round-Robin Access Pattern
	Ticket Readers/Writers Monitor Example
	Sleeping Barber Problem

	Bibliography

