Weighted Byzantine Agreement

Vijay K. Garg John Bridgman

Parallel and Distributed Systems Lab at The University of Texas at Austin

IPDPS 2011
Byzantine Agreement

- Introduced by Lamport, Shostak and Pease 1980
- Model:
 - n processes
 - f byzantine faults
 - Synchronous system
Byzantine Agreement Requirements

- **Agreement**: Two correct processes cannot decide on different values.
Byzantine Agreement Requirements

- **Agreement**: Two correct processes cannot decide on different values.

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>...</th>
<th>P_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Good Output</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Bad Output</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>...</td>
<td>1</td>
</tr>
</tbody>
</table>
Byzantine Agreement Requirements

- **Agreement**: Two correct processes cannot decide on different values.
- **Validity**: The value decided must be proposed by some correct process.
Byzantine Agreement Requirements

- **Agreement**: Two correct processes cannot decide on different values.
- **Validity**: The value decided must be proposed by some correct process.

<table>
<thead>
<tr>
<th></th>
<th>P_0</th>
<th>P_1</th>
<th>P_2</th>
<th>...</th>
<th>P_n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Good Output</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>...</td>
<td>1</td>
</tr>
<tr>
<td>Bad Output</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>...</td>
<td>0</td>
</tr>
</tbody>
</table>
Byzantine Agreement Requirements

- **Agreement**: Two correct processes cannot decide on different values.
- **Validity**: The value decided must be proposed by some correct process.
- **Termination**: All correct processes decide in finite number of steps.
Byzantine Agreement Lower Bounds

- \(n \geq 3f + 1 \)
- Given by Lamport, Shostak, Pease 1980
Introduction

Byzantine Agreement Lower Bounds

- $n \geq 3f + 1$

- Given by Lamport, Shostak, Pease 1980

- What if we have 30 processes where 15 of them can fail?
Byzantine Agreement Lower Bounds

- $n \geq 3f + 1$
 - Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?
 - $f + 1$ rounds worst case
 - Given by Fischer and Lynch 1982
Byzantine Agreement Lower Bounds

- $n \geq 3f + 1$
 - Given by Lamport, Shostak, Pease 1980
- What if we have 30 processes where 15 of them can fail?
- $f + 1$ rounds worst case
 - Given by Fischer and Lynch 1982
- Can we design a protocol that under certain assumptions can beat these?
Abstract notion of trust
Support multiple classes of processes
Beat bounds under certain conditions
WBA Problem Specification

- Common weight vector, w
- Weight of failed processes no more than ρ
- Must satisfy:
 - Agreement
 - Validity
 - Termination
Let α_ρ be the minimum number of processes whose weight exceeds ρ then

- α_ρ rounds
- $\rho < 1/3$
Weighted Byzantine Algorithm Examples

- Two algorithms: Weighted Queen and Weighted King
- These have good properties
 - \(\leq f + 1 \) phases
 - Any failure combination so long as weight \(< \rho \)
The Weighted-Queen Algorithm

- Based on Phase Queen given by Berman and Garay 1989

<table>
<thead>
<tr>
<th></th>
<th>Phase Queen (original)</th>
<th>Weighted Queen (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault tolerance</td>
<td>$f < \frac{n}{4}$</td>
<td>$\rho < \frac{1}{4}$</td>
</tr>
<tr>
<td>Rounds</td>
<td>$2(f + 1)$</td>
<td>$2\alpha\rho$</td>
</tr>
</tbody>
</table>
Based on Phase Queen given by Berman and Garay 1989

<table>
<thead>
<tr>
<th></th>
<th>Phase Queen (original)</th>
<th>Weighted Queen (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault tolerance</td>
<td>(f < n/4)</td>
<td>(\rho < 1/4)</td>
</tr>
<tr>
<td>Rounds</td>
<td>(2(f + 1))</td>
<td>(2\alpha_\rho)</td>
</tr>
</tbody>
</table>

\[\alpha_\rho \leq f + 1\]
The Weighted-Queen Algorithm

For α_ρ phases iterating over the processes starting with highest weight to lowest do:

- **First round**
 - Exchange own value, v, with everyone
 - Set v to the value with the highest weight
 - Set $supp$ to the weight of v

- **Second round**
 - Queen broadcasts its value
 - If $supp \leq 3/4$, set v to the queen’s value

Output own value
Weighted-Queen Example

- Example: 7 processes with weight assignment
 \[0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]\n- Standard algorithm: 1 fault only, Weighted: some 2 faults
- For example, processes 0 and 4 can fail together
Weighted-Queen Example

Phase 1, Round 1:

```
0 1 2 3
4 5 6
```

- `w[0]`: 0.20, `v`: 1
- `w[1]`: 0.20, `v`: 0
- `w[2]`: 0.12, `v`: 1
- `w[3]`: 0.12, `v`: 0
- `w[4]`: 0.04, `v`: 1
- `w[5]`: 0.12, `v`: 0
- `w[6]`: 0.12, `v`: 0
Weighted-Queen Example

- **Phase 1, Round 1:**

<table>
<thead>
<tr>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.12</td>
<td>0.52</td>
<td>0.52</td>
</tr>
<tr>
<td>1</td>
<td>0.88</td>
<td>0.48</td>
<td>0.48</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.12</td>
<td>0.52</td>
</tr>
<tr>
<td>1</td>
<td>0.88</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Weighted-Queen Example

Phase 1, Round 1:

0

1
v: 1
supp: 0.88

2
v: 0
supp: 0.52

3
v: 0
supp: 0.52

4

5
v: 1
supp: 0.88

6
v: 0
supp: 0.52
Phase 1, Round 2:

0 1 2 3
4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

0
0
100
Weighted-Queen Example

- Phase 1, Round 2:
Weighted-Queen Example

Phase 2, Round 1:
Weighted-Queen Example

Phase 2, Round 1:

0

1

v: 1
supp: 0.88

2

v: 0
supp: 0.52

3

v: 0
supp: 0.52

4

5

v: 1
supp: 0.88

6

v: 0
supp: 0.52
Weighted-Queen Example

- Phase 2, Round 2:
Weighted-Queen Example

- Phase 2, Round 2:
Lemma (Persistence of Agreement)

Assuming $\rho < 1/4$, if all correct processes prefer a value v at the beginning of a round; then, they continue to do so at the end of the round.
At Least One Correct Queen

Lemma

There is at least one round among the first α_p rounds in which the queen is correct.
Weighted-Queen Satisfies the WBA Problem

Theorem

The Weighted-Queen Algorithm solves the agreement problem for all \(\rho < 1/4 \).
Weighted-King Algorithm

- Three round algorithm based on algorithm given by Berman, Garay and Perry 1989

<table>
<thead>
<tr>
<th></th>
<th>Phase King (orig.)</th>
<th>Weighted King (ours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fault tolerance</td>
<td>$f < n/3$</td>
<td>$\rho < 1/3$</td>
</tr>
<tr>
<td>Rounds</td>
<td>$3(f + 1)$</td>
<td>$3\alpha \rho$</td>
</tr>
</tbody>
</table>
Weight assignment dramatically changes the nature of these algorithms.

Simple examples:
- \([\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}]\)
- \([\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0, \ldots, 0]\)
- \([1, 0, 0, \ldots, 0]\)
Weight assignment dramatically changes the nature of these algorithms.

Simple examples:
- \[\frac{1}{n}, \frac{1}{n}, \ldots, \frac{1}{n}\]
- \[\frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, \frac{1}{7}, 0, \ldots, 0\]
- \[1, 0, 0, \ldots, 0\]

A more involved example with two sets of processes:
- Set A is a collection of six highly reliable processes with probability of failure \(f_a = 0.1\).
- Set B is a collection of unreliable processes with probability of failure \(f_b = 0.3\).
Initial Weight Assignment Policies

- Uniform (Same as regular Byzantine Agreement)
- All weight to set A
- $w[i] \propto 1 - Pr\{P_i \text{ fails}\}$
- $w[i] \propto \frac{1}{Pr\{P_i \text{ fails}\}}$
Can we update weights?
Some issues with updating weights:

- Weight vector at each process must be the same
- Each process may see different views of what other have sent
A simple solution of agreeing on weights

Process can detect a faulty process j if:
- j sends a no message or corrupted message
- j is queen, queen value is different from v and $\text{supp} > \frac{3}{4}$

After detect can reduce the weight of the process

Have to be careful, faulty process can claim good process faulty
Weight Update Algorithm

Round one
- Broadcast *faultySet*
- For each process \(j \) that is suspected by some process if the weight of all processes that suspect is greater than \(\rho \) then add \(j \) to *faultySet*

Round two
- Use WBA to agree upon *faultySet*
- Add to *consensusFaulty* each one agreed to be faulty

Round three
- Set the weight of processes in *consensusFaulty* to 0 and renormalise
Weighted Versus Unweighted

Pros:
- Simple
- Can tolerate more than $n/3$ faults in certain circumstances
- Always $\leq f + 1$ rounds

Cons:
- Even with fewer than $n/3$ faulty processes the algorithm may not work in some cases
Better update methods
Approximately identical weight vectors