
Weighted Byzantine Agreement

Vijay K. Garg John Bridgman

Parallel and Distributed Systems Lab at The University of Texas at Austin

IPDPS 2011



Introduction

Byzantine Agreement

Introduced by Lamport, Shostak
and Pease 1980

Model:

n processes
f byzantine faults
Synchronous system

John Bridgman (PDSL UT) WBA IPDPS 2011 2 / 27



Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0

John Bridgman (PDSL UT) WBA IPDPS 2011 3 / 27



Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0

John Bridgman (PDSL UT) WBA IPDPS 2011 3 / 27



Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0

John Bridgman (PDSL UT) WBA IPDPS 2011 3 / 27



Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0

John Bridgman (PDSL UT) WBA IPDPS 2011 3 / 27



Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0

John Bridgman (PDSL UT) WBA IPDPS 2011 3 / 27



Introduction

Byzantine Agreement Lower Bounds

n ≥ 3f + 1

Given by Lamport, Shostak, Pease 1980

What if we have 30 processes where 15 of them can fail?

f + 1 rounds worst case

Given by Fischer and Lynch 1982

Can we design a protocol that under certain assumptions can beat
these?

John Bridgman (PDSL UT) WBA IPDPS 2011 4 / 27



Introduction

Byzantine Agreement Lower Bounds

n ≥ 3f + 1

Given by Lamport, Shostak, Pease 1980

What if we have 30 processes where 15 of them can fail?

f + 1 rounds worst case

Given by Fischer and Lynch 1982

Can we design a protocol that under certain assumptions can beat
these?

John Bridgman (PDSL UT) WBA IPDPS 2011 4 / 27



Introduction

Byzantine Agreement Lower Bounds

n ≥ 3f + 1

Given by Lamport, Shostak, Pease 1980

What if we have 30 processes where 15 of them can fail?

f + 1 rounds worst case

Given by Fischer and Lynch 1982

Can we design a protocol that under certain assumptions can beat
these?

John Bridgman (PDSL UT) WBA IPDPS 2011 4 / 27



Introduction

Byzantine Agreement Lower Bounds

n ≥ 3f + 1

Given by Lamport, Shostak, Pease 1980

What if we have 30 processes where 15 of them can fail?

f + 1 rounds worst case

Given by Fischer and Lynch 1982

Can we design a protocol that under certain assumptions can beat
these?

John Bridgman (PDSL UT) WBA IPDPS 2011 4 / 27



Introduction

Weight Motivation

1 Abstract notion of trust

2 Support multiple classes of
processes

3 Beat bounds under certain
conditions

John Bridgman (PDSL UT) WBA IPDPS 2011 5 / 27



Introduction

WBA Problem Specification

Common weight vector, w

Weight of failed processes no more than ρ

Must satisfy:

Agreement
Validity
Termination

John Bridgman (PDSL UT) WBA IPDPS 2011 6 / 27



Introduction

WBA Lower Bounds

Let αρ be the minimum number of
processes whose weight exceeds ρ
then

αρ rounds

ρ < 1/3

0
1

0

1
0

1

0.04

0.12

0.10

0.21

0.15

0.19

0.19

John Bridgman (PDSL UT) WBA IPDPS 2011 7 / 27



Introduction

Outline

1 Introduction

2 Algorithms
Weighted-Queen Algorithm
Weighted-King Algorithm

3 Initial Weight Assignment

4 Updating Weights

5 Conclusions

John Bridgman (PDSL UT) WBA IPDPS 2011 8 / 27



Algorithms

Weighted Byzantine Algorithm Examples

Two algorithms: Weighted
Queen and Weighted King

These have good properties

≤ f + 1 phases
Any failure combination so
long as weight < ρ

John Bridgman (PDSL UT) WBA IPDPS 2011 9 / 27



Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

Based on Phase Queen given by Berman and Garay 1989

Phase Queen (original) Weighted Queen (ours)

Fault tolerance f < n/4 ρ < 1/4

Rounds 2(f + 1) 2αρ

αρ ≤ f + 1

John Bridgman (PDSL UT) WBA IPDPS 2011 10 / 27



Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

Based on Phase Queen given by Berman and Garay 1989

Phase Queen (original) Weighted Queen (ours)

Fault tolerance f < n/4 ρ < 1/4

Rounds 2(f + 1) 2αρ

αρ ≤ f + 1

John Bridgman (PDSL UT) WBA IPDPS 2011 10 / 27



Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

For αρ phases iterating over the processes starting with highest
weight to lowest do:

First round

Exchange own value, v , with everyone
Set v to the value with the highest weight
Set supp to the weight of v

Second round

Queen broadcasts its value
If supp ≤ 3/4, set v to the queen’s value

Output own value

John Bridgman (PDSL UT) WBA IPDPS 2011 11 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Example: 7 processes with weight assignment
[0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]

Standard algorithm: 1 fault only, Weighted: some 2 faults

For example, processes 0 and 4 can fail together

John Bridgman (PDSL UT) WBA IPDPS 2011 12 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

w[0]: 0.20 w[1]: 0.20
v: 1

w[2]: 0.12
v: 0

w[3]: 0.12
v: 1

w[4]: 0.04 w[5]: 0.12
v: 1

w[6]: 0.12
v: 0

John Bridgman (PDSL UT) WBA IPDPS 2011 13 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

0: 0.12
1: 0.88

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.12
1: 0.88

John Bridgman (PDSL UT) WBA IPDPS 2011 13 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

John Bridgman (PDSL UT) WBA IPDPS 2011 13 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

0

0
1
0

0

John Bridgman (PDSL UT) WBA IPDPS 2011 14 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0

John Bridgman (PDSL UT) WBA IPDPS 2011 14 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0

John Bridgman (PDSL UT) WBA IPDPS 2011 15 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

John Bridgman (PDSL UT) WBA IPDPS 2011 15 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 2:

0 1 2 3

4 5 6

1

John Bridgman (PDSL UT) WBA IPDPS 2011 16 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 2:

0 1 2 3

4 5 6

v: 1 v: 1 v: 1

v: 1 v: 1

John Bridgman (PDSL UT) WBA IPDPS 2011 16 / 27



Algorithms Weighted-Queen Algorithm

Persistence of Agreement

Lemma (Persistence of Agreement)

Assuming ρ < 1/4, if all correct processes prefer a value v at the beginning
of a round; then, they continue to do so at the end of the round.

John Bridgman (PDSL UT) WBA IPDPS 2011 17 / 27



Algorithms Weighted-Queen Algorithm

At Least One Correct Queen

Lemma

There is at least one round among the first αρ rounds in which the queen
is correct.

John Bridgman (PDSL UT) WBA IPDPS 2011 18 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Satisfies the WBA Problem

Theorem

The Weighted-Queen Algorithm solves the agreement problem for all
ρ < 1/4.

John Bridgman (PDSL UT) WBA IPDPS 2011 19 / 27



Algorithms Weighted-King Algorithm

Weighted-King Algorithm

Three round algorithm based on
algorithm given by Berman,
Garay and Perry 1989

Phase King (orig.) Weighted King (ours)

Fault tolerance f < n/3 ρ < 1/3

Rounds 3(f + 1) 3αρ

John Bridgman (PDSL UT) WBA IPDPS 2011 20 / 27



Initial Weight Assignment

Initial Weight Assignment

Weight assignment dramatically changes the nature of these
algorithms.

Simple examples:

[1/n, 1/n, . . . , 1/n]
[1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, . . . , 0]
[1, 0, 0, . . . , 0]

A more involved example with two sets of processes:

Set A is a collection of six highly reliable processes with probability of
failure fa = 0.1.
Set B is a collection of unreliable processes with probability of failure
fb = 0.3.

John Bridgman (PDSL UT) WBA IPDPS 2011 21 / 27



Initial Weight Assignment

Initial Weight Assignment

Weight assignment dramatically changes the nature of these
algorithms.

Simple examples:

[1/n, 1/n, . . . , 1/n]
[1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, . . . , 0]
[1, 0, 0, . . . , 0]

A more involved example with two sets of processes:

Set A is a collection of six highly reliable processes with probability of
failure fa = 0.1.
Set B is a collection of unreliable processes with probability of failure
fb = 0.3.

John Bridgman (PDSL UT) WBA IPDPS 2011 21 / 27



Initial Weight Assignment

Initial Weight Assignment Policies

Uniform (Same as regular Byzantine Agreement)

All weight to set A

w [i ] ∝ 1− Pr{Pi fails}
w [i ] ∝ 1

Pr{Pi fails}

John Bridgman (PDSL UT) WBA IPDPS 2011 22 / 27



Updating Weights

Updating Weights

Can we update weights?
Some issues with updating weights:

Weight vector at each process
must be the same

Each process may see different
views of what other have sent

John Bridgman (PDSL UT) WBA IPDPS 2011 23 / 27



Updating Weights

Weight Update Algorithm

A simple solution of agreeing on weights

Process can detect a faulty process j if:

j sends a no message or corrupted message
j is queen, queen value is different from v and supp > 3/4

After detect can reduce the weight of the process

Have to be careful, faulty process can claim good process faulty

John Bridgman (PDSL UT) WBA IPDPS 2011 24 / 27



Updating Weights

Weight Update Algorithm

Round one

Broadcast faultySet
For each process j that is suspected by some process if the
weight of all processes that suspect is greater than ρ then add
j to faultySet

Round two

Use WBA to agree upon faultySet
Add to consensusFaulty each one agreed to be faulty

Round three

Set the weight of processes in consensusFaulty to 0 and
renormalise

John Bridgman (PDSL UT) WBA IPDPS 2011 25 / 27



Conclusions

Weighted Versus Unweighted

Pros:

Simple
Can tolerate more than n/3 faults in certain circumstances
Always ≤ f + 1 rounds

Cons:

Even with fewer than n/3 faulty processes the algorithm may not work
in some cases

John Bridgman (PDSL UT) WBA IPDPS 2011 26 / 27



Conclusions

Future Work

Better update methods

Approximately identical weight vectors

John Bridgman (PDSL UT) WBA IPDPS 2011 27 / 27


	Introduction
	Algorithms
	Weighted-Queen Algorithm
	Weighted-King Algorithm

	Initial Weight Assignment
	Updating Weights
	Conclusions

