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Introduction

Byzantine Agreement

Introduced by Lamport, Shostak
and Pease 1980

Model:

n processes
f byzantine faults
Synchronous system
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Introduction

Byzantine Agreement Requirements

Agreement: Two correct processes cannot decide on different values.

Validity: The value decided must be proposed by some correct
process.

Termination: All correct processes decide in finite number of steps.

P0 P1 P2 . . . Pn

Input 0 1 0 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 1 0 . . . 1

P0 P1 P2 . . . Pn

Input 1 1 1 . . . 1

Good Output 1 1 1 . . . 1

Bad Output 0 0 0 . . . 0
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Introduction

Byzantine Agreement Lower Bounds

n ≥ 3f + 1

Given by Lamport, Shostak, Pease 1980

What if we have 30 processes where 15 of them can fail?

f + 1 rounds worst case

Given by Fischer and Lynch 1982

Can we design a protocol that under certain assumptions can beat
these?
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Introduction

Weight Motivation

1 Abstract notion of trust

2 Support multiple classes of
processes

3 Beat bounds under certain
conditions
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Introduction

WBA Problem Specification

Common weight vector, w

Weight of failed processes no more than ρ

Must satisfy:

Agreement
Validity
Termination

John Bridgman (PDSL UT) WBA IPDPS 2011 6 / 27



Introduction

WBA Lower Bounds

Let αρ be the minimum number of
processes whose weight exceeds ρ
then

αρ rounds

ρ < 1/3

0
1

0

1
0

1

0.04

0.12

0.10

0.21

0.15

0.19

0.19
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Introduction

Outline

1 Introduction

2 Algorithms
Weighted-Queen Algorithm
Weighted-King Algorithm

3 Initial Weight Assignment

4 Updating Weights

5 Conclusions
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Algorithms

Weighted Byzantine Algorithm Examples

Two algorithms: Weighted
Queen and Weighted King

These have good properties

≤ f + 1 phases
Any failure combination so
long as weight < ρ
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Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

Based on Phase Queen given by Berman and Garay 1989

Phase Queen (original) Weighted Queen (ours)

Fault tolerance f < n/4 ρ < 1/4

Rounds 2(f + 1) 2αρ

αρ ≤ f + 1
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Algorithms Weighted-Queen Algorithm

The Weighted-Queen Algorithm

For αρ phases iterating over the processes starting with highest
weight to lowest do:

First round

Exchange own value, v , with everyone
Set v to the value with the highest weight
Set supp to the weight of v

Second round

Queen broadcasts its value
If supp ≤ 3/4, set v to the queen’s value

Output own value

John Bridgman (PDSL UT) WBA IPDPS 2011 11 / 27



Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Example: 7 processes with weight assignment
[0.2, 0.2, 0.12, 0.12, 0.4, 0.12, 0.12]

Standard algorithm: 1 fault only, Weighted: some 2 faults

For example, processes 0 and 4 can fail together
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

w[0]: 0.20 w[1]: 0.20
v: 1

w[2]: 0.12
v: 0

w[3]: 0.12
v: 1

w[4]: 0.04 w[5]: 0.12
v: 1

w[6]: 0.12
v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

0: 0.12
1: 0.88

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.52
1: 0.48

0: 0.12
1: 0.88
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52

0

0
1
0

0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 1, Round 2:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1 v: 0 v: 1

v: 1 v: 0
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 1:

0 1 2 3

4 5 6

v: 1
supp: 0.88

v: 0
supp: 0.52

v: 0
supp: 0.52

v: 1
supp: 0.88

v: 0
supp: 0.52
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 2:

0 1 2 3

4 5 6

1
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Example

Phase 2, Round 2:

0 1 2 3

4 5 6

v: 1 v: 1 v: 1

v: 1 v: 1
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Algorithms Weighted-Queen Algorithm

Persistence of Agreement

Lemma (Persistence of Agreement)

Assuming ρ < 1/4, if all correct processes prefer a value v at the beginning
of a round; then, they continue to do so at the end of the round.
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Algorithms Weighted-Queen Algorithm

At Least One Correct Queen

Lemma

There is at least one round among the first αρ rounds in which the queen
is correct.
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Algorithms Weighted-Queen Algorithm

Weighted-Queen Satisfies the WBA Problem

Theorem

The Weighted-Queen Algorithm solves the agreement problem for all
ρ < 1/4.
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Algorithms Weighted-King Algorithm

Weighted-King Algorithm

Three round algorithm based on
algorithm given by Berman,
Garay and Perry 1989

Phase King (orig.) Weighted King (ours)

Fault tolerance f < n/3 ρ < 1/3

Rounds 3(f + 1) 3αρ
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Initial Weight Assignment

Initial Weight Assignment

Weight assignment dramatically changes the nature of these
algorithms.

Simple examples:

[1/n, 1/n, . . . , 1/n]
[1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 1/7, 0, . . . , 0]
[1, 0, 0, . . . , 0]

A more involved example with two sets of processes:

Set A is a collection of six highly reliable processes with probability of
failure fa = 0.1.
Set B is a collection of unreliable processes with probability of failure
fb = 0.3.
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Initial Weight Assignment

Initial Weight Assignment Policies

Uniform (Same as regular Byzantine Agreement)

All weight to set A

w [i ] ∝ 1− Pr{Pi fails}
w [i ] ∝ 1

Pr{Pi fails}
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Updating Weights

Updating Weights

Can we update weights?
Some issues with updating weights:

Weight vector at each process
must be the same

Each process may see different
views of what other have sent
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Updating Weights

Weight Update Algorithm

A simple solution of agreeing on weights

Process can detect a faulty process j if:

j sends a no message or corrupted message
j is queen, queen value is different from v and supp > 3/4

After detect can reduce the weight of the process

Have to be careful, faulty process can claim good process faulty
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Updating Weights

Weight Update Algorithm

Round one

Broadcast faultySet
For each process j that is suspected by some process if the
weight of all processes that suspect is greater than ρ then add
j to faultySet

Round two

Use WBA to agree upon faultySet
Add to consensusFaulty each one agreed to be faulty

Round three

Set the weight of processes in consensusFaulty to 0 and
renormalise
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Conclusions

Weighted Versus Unweighted

Pros:

Simple
Can tolerate more than n/3 faults in certain circumstances
Always ≤ f + 1 rounds

Cons:

Even with fewer than n/3 faulty processes the algorithm may not work
in some cases
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Conclusions

Future Work

Better update methods

Approximately identical weight vectors
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