
A (MAX,+) ALGEBRA FOR NON-STATIONARY PERIODIC TIMED DISCRETE EVENTSYSTEMSGuillaume P. Brat,1 Vijay K. Garg2Department of Electrical and Computer Engineering, The University of Texas at Austin, Austin, Texas 787121 gbrat@pine.ece.utexas.edu, http://maple.ece.utexas.edu/2 garg@ece.utexas.edu, http://maple.ece.utexas.edu/Keywords(max,+) algebra, timed event graphs, periodic sig-nals, controllability, extremal controllers 3AbstractWe de�ne and implement a (max,+) algebra of sig-nals for the timing analysis of discrete event systemsexpressed as timed event graphs. A system is de�nedby the in�nite, periodic time sequences of its events.Each sequence has a �nite representations called asignal. The resulting tool can also compute supre-mal controllers for timed discrete event systems.1 IntroductionIt has been shown that (max,+) algebra can modeldiscrete event systems (DES) by describing themas sets of linear equations [1, 2, 3, 4, 5]. More-over, (max,+) algebras can also be applied to solv-ing supervisory control problems for real-time DES[6, 7]. Our goal is to de�ne and implement a practical(max,+) algebra for analyzing the behavior and com-puting the controllability of periodic, non-stationary,timed DES.DES are seen as �nite sets of events which occurin�nitely often in a discrete time space. Thus, eachevent is completely de�ned by an in�nite sequenceof time occurrences. The di�culty in automating(max,+) algebra techniques resides in de�ning a �-nite representation of in�nite sequences. This paperde�nes a �nite representation of in�nite sequencescalled periodic signals. A signal is completely char-acterized by a �nite transitory sequence and a peri-odic sequence of �nite length which repeats itself in-�nitely often. Synchronizations and delays in a DESare modeled by operations on signals which form analgebra on the set of periodic signals. Delays can betime-dependent, yet, they must be periodic.Our work is related to (max,+) algebras on ra-tional and periodic series [1, 2, 3, 4, 5]. The addi-c
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tion operator of our algebra de�nes a pointwise max-imization on series. Similarly, the product operatorde�nes a pointwise arithmetic addition (Hadamardproduct) instead of a sup-convolution on the series(Cauchy product) as in [1]. This algebra can modelnon-stationary, yet periodic systems. The implemen-tation relies on algorithms the complexity of whichis similar to the complexity of Gaubert's algorithms[1].We give a brief introduction to the (max,+) al-gebra. Further details can be found in [5, 1]. Let" = �1, e = 0, I be the set of integers, andZ = I [ f"g. Let + be the conventional additionon Z given that,8a 2 Z; a+ " = " + a = ".De�ne two binary operations in Z such that, for alla; b 2 Z, a� b = max(a; b), where � is commutative,associative, idempotent, and has " for identity, anda
 b = a+ b, where 
 is associative, distributes over�, e is its identity element and " is absorbing withrespect to 
. The structure (Z;�;
) forms a dioidcalled the (max,+) algebra. The (max,+) algebra onZ is naturally extended to matrices to form the dioid(ZN�N ;�;
). Note that 
 is not necessarily com-mutative. A partial order is also de�ned as follows:for all a; b 2 Z, a � b i� a� b = b.In [5, 6], behaviors of DES are captured by timedevent graphs (TEG), a class of timed Petri nets ([9]o�ers a comprehensive review of Petri nets). InTEGs, any place has only one input and one out-put transition, and, upon arrival in a place, a tokenmay have to wait a given time before enabling theoutput transition. Event sequences consist of the �r-ing times of transitions. A TEG with N transitionsis represented by a delay matrix A in (ZN�N ;�;
).Each element Aij of A represents the minimum de-lay to go from transitions j to i. The system is alsodescribed as a set of equationsxi = M1�j�NAijxj � vi, where 1 � i � N ,where xi is the actual �ring time of transition i, andvi is the earliest time at which transition i may �re.This system of equations can be written also asx = Ax� v,



the least solution of which is A�v [3] whereA� =Mk�0Ak.A�, called the *-delay matrix of A, gives the maxi-mum delay between transitions along in�nite paths.In [8], Cofer and Garg apply (max,+) algebra andevent graphs to the controllability of DES. We imple-ment their theory and use their manufacturing pro-cess example to illustrate our points. The TEG of
a r

s wt 1 t 2 t 3Figure 1: TEG of a manufacturing processFigure 1 represents a simple manufacturing process.Upon arrival (transition t1), parts are �rst set-up(s) in a machine queue, and then worked (w) in or-der of arrival. Transition t2 represents a part leav-ing the queue, and transition t3 the completion ofa part. Each operation takes a constant amount oftime, except for the inter-arrival time (a) (becauseof the work 
oor schedule) and the machine resettime (r). However, both a and r ultimately followperiodic patterns. This system is described byx(k) = A0x(k)� A1x(k � 1)� v (1)where x(k) is the vector of kth �ring times for eachevent, Ai is the matrix of delays associated withplaces containing i tokens in the initial marking,A0 = 0@ " " "s " "" w " 1A and A1 = 0@ a " "" " r" " " 1Aand s(x) = x+ 1w(x) = x+ 4a(x) = � x+ 5 if k is oddx+ 7 if k is evenr(x) = � x+ 4 if k mod 5 = 0x+ 1 otherwiseSection 2 de�nes periodic signals and operations onsignals. Section 3 describes algorithms for computingA�v. Section 4 implements Cofer and Garg's algo-rithms for controllability. Then, Section 5 presentsan overview of our C++ tool. Finally, the lastsection presents our conclusions and future work.Proofs of correctness for the algorithms implement-ing operators and for their properties are given in[10].

2 Periodic signalsIn this section, we de�ne periodic signals and de-scribe operations on those signals for the algebraicrepresentation of TEGs, i.e., maximization, backshiftand delay functions.In event sequences, natural numbers representtimes of occurrences for events of a same type. Asequence X is de�ned as a function from the set ofnatural numbers, called indices, to the union of theset of natural numbers and f"g such that8k � 1 : (X[k] = ")) (8j < k : X[j] = ").A sequence X is periodic i� there exist k, C, and nsuch that, for all i � n, X[i + k] = X[i] + C. E.g.,f4; 7; 9; 11;13; : : :g represents an event's occurrencesat times four, seven, and every two time units fromthen on. This sequence is in�nite, but it consists ofan initial �nite sequence f4; 7g, and an in�nite peri-odic sequence f9; 11; 13; : : :g. Sequences of this typehave �nite representations called periodic signals.De�nition 1 A signal is a tuple (T ;P ) where1. T = (t1; : : : ; tn) is a �nite list of transitorysteps in I [ f"g such that,81 � k � n, (tk = ")) (8j < k : tj = "), and2. P = (p1; : : : ; pm) is a �nite list of periodic stepsin I such that Pk=mk=1 pk � 0.Each ti and pi represents the time elapsed betweenconsecutive occurrences of an event. E.g., the se-quence X = f4; 7; 9; 11;13; : : :g is represented by thesignal x = ((4; 3); (2)). All periodic sequences can berepresented by a periodic signal and vice versa.Notation: the function T (x) (P (x)) maps a signalx = (T ;P ) to its transitory sequence T (period Prespectively). Moreover, �(x) = 1mPmi=1 pi is theslope of x. E.g, if x = ((4; 7); (2)), then T (x) = (4; 7),P (x) = (2), and �(x) = 2; our work is restricted tosignals with non-negative slopes. Finally, Z is theunion of f"; : : :g and the set of periodic signals.Observe that x = ((2; 3); (1; 3; 1; 3)) and y =((2); (3; 1)) represent the same signal; y is called thecanonical form of x. For every signal, there exists acanonical form that can be computed in O(m + n)by eliminating any su�x of the transitory sequencematching a su�x of the period and by �nding theminimal representation of the period. Also, two sig-nals x and y can also be expanded into homogeneousforms (i.e., jT (x)j = jT (y)j and jP (x)j = jP (y)j) inO(m2 + n).



2.1 Max operationDe�nition 2 Given two signals x and y, and theirunderlying sequences X and Y , the signal z =x � y, is de�ned by its underlying sequence Z[i] =max(X[i]; Y [i]), for all i > 0.In [10, 11], we give the details of an O(m2 + n+N )algorithm that computes the max of two signals (xand y respectively); n = jT (x)j�jT (y)j,m = jP (x)j�jP (y)j and N is the intersection of the lines de�nedby the slopes of x and y and their initial times. Hereis the algorithm in its abbreviated form [10].maximize(x,y):1. If �(x) = �(y) then T (x� y) = T (x)� T (y),and P (x� y) = P (x)� P (y);2. elsif �(x) < �(y) then maximize(y,x);3. else compute N ;X[�1] = 0; Y [�1] = 0;T (x� y) = T (x)� T (y)over the �rst N + n indices;P (x� y) = P (x);It can be shown that Z is closed under max[10]. However, the in�nite application of maximiza-tion does not necessarily result in a periodic signal.E.g., the underlying sequence of signal z = ((); (1))is Z = f1; 2; 3; : : :g. For any k, letxk = ((Z[1]; Z[1] + Z[2]; : : :; kXi=1 Z[i]); (0))g.Then, the set X = fxk; k � 1g is an in�niteset of periodic signals; but the maximization ofits elements Lx2X x corresponds to the sequencef1; 3; 6; 10;15;21; : : :g, which is not periodic.2.2 Backshift operatorIn a TEG, if a token is initially present in a givenplace, it immediately contributes to the enabling ofthe output transition, even if the place's delay is notnull. The behavior of tokens present in the initialmarking of a TEG is modeled by a backshift operator(
) de�ned as follows.De�nition 3 Let x = ((t1; t2; : : : ; tn); P ) be a peri-odic signal. Then, 
(x) = (("; t1; t2; : : : ; tn); P ).The presence of k tokens in an input place is mod-eled by the composition of k backshift operators, alsonoted 
k. The main characteristics of the backshiftoperator are captured in the following theorem:Theorem 1 - Characteristics of 
 -1. Z is closed under 
i; 8i � 1;2. 8x; y 2 Z; 
(x� y) = 
(x) � 
(y).

2.3 Periodic delay functionThe 
 operation in the signal algebra is really thecomposition of backshift and delay operations on sig-nals. Delays are time dependent in the sense that thevalue of a delay in a place depends on how many to-kens have already passed through the place. There-fore, delays can be represented by in�nite sequenceswhose elements de�ne the delays applicable at di�er-ent indices. This work focuses on delays that can berepresented by periodic signals. To avoid obtainingnon-periodic sequences (like the example in Section2.1), delays are restricted to signals of null slope. Inthe rest of the paper, we refer to this type of signalsas delay signals. Moreover, delay signals de�ned inTEGs cannot have any " in their transitory sequence.Thus, the delay of an input signal is the Hadamardproduct (�) of the input and delay signals. Furtherdetails on delays can be found in [10].De�nition 4 - Delay -The delay �d(x) of an input signal x = (T ;P ) bythe delay signal d = (T 0;P 0) (where �(d) = 0 andT 0[1] 6= ") is de�ned by�d(x) = d� x,i.e., T (�d(x))[k] = T [k] + T 0[k] 80 < k � nP (�d(x))[k] = P [k] + P 0[k] 80 < k � mE.g., �d(x) where d = ((7); (�2; 2)) delays the odd-indexed events of x = (("; 1); (3)) by �ve and its even-indexed events by seven yielding x = (("; 6); (5; 1)).The composition of two delay functions is commuta-tive and associative. Moreover, the composition ofa delay function and the backshift operator is notcommutative (except when the delay is constant) asshown in the following lemma.Lemma 1 Let d be a delay signal and x be an inputsignal. Then, 
�d(x) = �(
d)(
x).Proof: It can be shown than 
 is left distributiveover the Hadamard product. Therefore,
�d(x) = 
(d� x)= (
d� 
x)= �(
d)(
x)The algorithm to compute the delay of an input sig-nal is given in [10, 11]. Its complexity is O(m2 + n)where m = jP (x)j � jP (d)j and n = jT (x)j � jT (d)j.



2.4 Manufacturing Process ExampleEquation (1) can be compacted intox = Ax� vwhereA = 0@ a
 " "s " r
" w " 1A and v = 0@ eee 1Aand s = ((1); ())w = ((4); ())a = ((7); (�2; 2))r = ((); (4;�3; 0; 0; 0)).2.5 Related workTraditionally, sequences are represented as rationalseries [1, 5]. Two classes of rational series havebeen used to represent periodic or pseudo-periodicsequences.Non-decreasing ultimately periodic series havebeen shown to be equal to rational series in theMinax[[
; �]] semiring where 
 and � span an indexand time spaces respectively. It has been shown thatrational series inMinax[[
; �]] are periodic, i.e., for anyseries s there exist two causal polynomials p and qand a causal monomial r such thats = p� qr�.This notion of periodic series corresponds to our def-inition of periodic signals. Observe that delay signalsare not non-decreasing ultimately periodic series be-cause we want to be able to express truly periodicdelays. Ultimately geometric series (as in Chapter 5of [1]) are pseudo-periodic series. They form a moregeneral class than non-decreasing ultimately periodicseries or our class of periodic signals. They are equalto rational series in the Rmax[[X]] semiring.3 Closure operationsIn [5], A�v is the least solution of x = Ax � v. As-suming that A�v exists, the algorithms described inthis section can compute A�v where A� =Lk�0Ak.In [10, 11], we present a solution based on Jor-dan's algorithm as de�ned in [12]. Even though itworks for the manufacturing process example, it doesnot apply in general in a non-commutative algebralike the (max,+) algebra of signals. Indeed, Jordan'salgorithm can lead to nested *-delay expressions thatare simpli�able only if operators are commutative.Hence, we cannot compute A� as a transfer function

for most complicated DES (i.e., systems with manyinter-connected feedback loops), but we can computeA�v for any system.The closure algorithm that computes A�v isbased on a simple idea: compute iterations ofx(k+1) = Ax(k) � v (2)until the period of the system is reached. Assessingwhen the period has been reached can be di�cult.Each iteration reveals the value of a new index inthe sequences characterizing the system. These se-quences are buried within the transitory sequence ofeach signal in x(k). Therefore, these sequences needto be extracted and converted into signals xf . Then,the algorithm checks ifxf = Axf � vholds. If it does, the algorithm terminates and xf isthe �nal result. Otherwise, a new iteration is needed.closure (matrix A, signals v, integer P): signals x1. x := v;2. x := Ax� v;3. EndTrans := extract-period-in-trans (P, x);4. if (EndTrans > 0) then build new signals xf ;else goto Step 3;5. if (Axf � v = xf) then return xf ;else goto Step 3;The algorithm to uncover a period in a transitorysequence is as follows. We describe the algorithm fora single signal.is-period-in-trans (integer P, signal d): integer y1. curr := 0; found := true;2. for i from 1 to P+1, doif (T(d)[curr+i] 6= T(d)[curr+i+P]) thenfound := false;exit loop;3. if not found and (curr < jT (d)j � 2P ) thencurr := curr + 1;goto Step 2;4. if not found then y = -1;else y = curr - 1;Given that A�v actually exists, the closure algo-rithm computes xf = A�v. Indeed, our algorithm isa �xed point algorithm that builds a solution basedon an initial value that is smaller than any computedsolution. Therefore, once a solution is reached, it isguaranteed to be the least solution.Using Jordan's algorithm, we verify Cofer's re-sults for the manufacturing process example.A� = 0@ (a
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which yieldsx3 = (wr
)�ws(a
)�[0]= (wr
)�ws[((0); (5; 7))]= (wr
)�[((5); (5; 7))]= [((5; 5; 7); (5; 7; 8;5;5;6; 5; 8;5;6))]This corresponds to the in�nite periodic sequencex3 = f5; 10; 17; 22; 29; 37; 42; 47; 53; 58;66;71; : : :gThis results have also been veri�ed using the clo-sure algorithm. Manually computing these in�nitesequences is an error-prone process. Our implemen-tation solves this problem, and allows the user tofocus on results.4 ControllabilityThis section describes how the (max,+) algebra ofsignals can test the controllability of a speci�cationwith respect to a DES as described in [6, 7]. We �rstpresent the concept of a speci�cation and its con-trollability, then, the computation of supremal con-trollers for a set of extremal behaviors. Since in�malcontrollers may not exist for some types of speci�ca-tions, we refrain from discussing them.Acceptable behaviors are speci�ed as �nite (orin�nite) sets of vectors whose the components repre-sent lower/upper bounds on the signals generated bythe system. Thus, for example, an upper bound spec-i�cation can represent timing constraints in a system.In general, not all events in a system are control-lable (which means that they can be delayed). Con-trollable events are described by a matrix Ic whosenon-diagonal elements and uncontrollable diagonalelements are equal to " and controllable diagonal el-ements are equal to e.Let A be the transition matrix of a system, Icthe matrix de�ning its controllable events and v theinitial conditions. Assume that acceptable behaviorsare given by Y . Then, Cofer shows that the control-lability of Y with respect to an upper bound y in Yis veri�ed if A�(Icy � v) � y (3)Similarly, if y is a lower bound, then the controlla-bility of Y is veri�ed ifA�(Icy � v) � y.In the manufacturing process example, the speci�ca-tion Y de�ned by the upper boundy = 0@ ((0); (7))((1); (7))((5); (7)) 1Ais controllable, sinceA�(Icy � v) = 0@ ((0); (5; 7))((1; 7); (7; 7; 7;8;6))((5; 7); (7; 7; 7;8;6)) 1A

which veri�es Inequation (3).Cofer and Garg also de�ne algorithms to computesupremal controllers (which are the greatest supersetof behaviors that are invariant under uncontrollableactions) for four types of speci�cations. If the speci-�cation is a �nite set Y = fy1; : : : ; ykg of behaviors,the supremal controller set is given byfx 2 Y;A�(Icx� v) 2 Y gWe implemented this speci�cation and veri�ed that8<:0@ ((0); (7))((1); (7))((5); (7)) 1A ;0@ ((0); (8))((1); (8))((5); (8)) 1A9=;the supremal set is given by8<:0@ ((0); (8))((1); (8))((5); (8)) 1A9=; .5 ImplementationWe implemented the algorithms in C++ and com-piled the tool on di�erent workstations (SUN-SPARC, -UltraSPARC, IBM RS6000, and PCs run-ning linux). Using an interpreted shell (created us-ing Lex and Yacc), the tool accepts commands fromstandard input and print results on standard output.Obviously, �les can be used via the Unix re-directioncommands.The tool allows the de�nition of a DES in theform of its transition matrix. Elements of the ma-trix are de�ned as expressions. Simple expressionsinclude ", delay functions, and the backshift func-tion. A complex expression consists of the combina-tion of maximization, delay, or star-delay operationson simple expressions. For example, the followingcommands describe the matrix for our manufactur-ing process example. Note that the indices in thematrix start at zero (because of C++).expression a = delay ((7);(-2,2));expression w = delay ((4);(0));expression s = delay ((1);(0));expression r = delay ((4);(-3,0,0,0,3));matrix A[3];A[0,0] = a.Y;A[1,0] = s;A[2,1] = w;A[1,2] = r.Y;display matrix A;yieldingaY E Es E rYE w E



The following commands were used to computethe closure matrix of the transition matrix for themanufacturing process example using Jordan's algo-rithm. Its application to a vector describing the ini-tial conditions of the DES computes the least solu-tion of the equation x = Ax�v. Thus, the followingcommands computes the solution A�v.matrix Astar = closure (A);vector V = e[3];solve X = Astar.V;display vector X;yieldingX[0] = ((0);(5,7))X[1] = ((1,5,7);(5,7,8,5,5,6,5,8,5,6))X[2] = ((5,5,7);(5,7,8,5,5,6,5,8,5,6))The controllability of our manufacturing processexample (with respect to the upper bound speci�ca-tion y given that only Event t2 is controllable) canbe tested using the following command.controllable (1) upper y wrt Astar V;yieldingfalseSupremal controllers can also be computed forfour types of speci�cations: �nite set of behaviors,range of behaviors, single sequence behavior, andbehaviors based on matrices of de�ning separationtimes. The following commands illustrate the com-putation of a supremal controller for a set of twobehaviors (all events are controllable).specification y = set y0, y1;supremal S = y (0,1,2) wrt Astar V;6 ConclusionWe have de�ned a (max,+) algebra of periodic sig-nals that mechanizes the computation of supremalcontrollers for non-stationary, yet periodic, timeddiscrete event systems. Signals are �nite represen-tations of in�nite event sequences that exhibit a pe-riodic pattern. We de�ned algorithms to implementbasic operations such as synchronization, delay andclosure operations. Future work will explore meansof reducing complexity in the computation of theclosure matrix, extensions to non-deterministic sys-tems, applications to real-time problems, and TEGtransformations to support the computation of trans-fer matrix for any system.References[1] S. Gaubert, Th�eorie Lin�eaire des Syst�emes dansles Dio��des, Ph.D. thesis, Ecole des Mines deParis, Paris, 1992.
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