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Abstract

We define and implement a (max,+) algebra of sig-
nals for the timing analysis of discrete event systems
expressed as timed event graphs. A system is defined
by the infinite, periodic time sequences of its events.
Each sequence has a finite representations called a
signal. The resulting tool can also compute supre-
mal controllers for timed discrete event systems.

1 Introduction

It has been shown that (max,+) algebra can model
discrete event systems (DES) by describing them
as sets of linear equations [1, 2, 3, 4, 5]. More-
over, (max,+) algebras can also be applied to solv-
ing supervisory control problems for real-time DES
[6, 7]. Our goal is to define and implement a practical
(max,+) algebra for analyzing the behavior and com-
puting the controllability of periodic, non-stationary,
timed DES.

DES are seen as finite sets of events which occur
infinitely often in a discrete time space. Thus, each
event is completely defined by an infinite sequence
of time occurrences. The difficulty in automating
(max,+) algebra techniques resides in defining a fi-
nite representation of infinite sequences. This paper
defines a finite representation of infinite sequences
called periodic signals. A signal is completely char-
acterized by a finite transitory sequence and a peri-
odic sequence of finite length which repeats itself in-
finitely often. Synchronizations and delays in a DES
are modeled by operations on signals which form an
algebra on the set of periodic signals. Delays can be
time-dependent, yet, they must be periodic.

Our work is related to (max,+) algebras on ra-
tional and periodic series [1, 2, 3, 4, 5]. The addi-
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tion operator of our algebra defines a pointwise max-
imization on series. Similarly, the product operator
defines a pointwise arithmetic addition (Hadamard
product) instead of a sup-convolution on the series
(Cauchy product) as in [1]. This algebra can model
non-stationary, yet periodic systems. The implemen-
tation relies on algorithms the complexity of which
is similar to the complexity of Gaubert’s algorithms

[1].

We give a brief introduction to the (max,+) al-
gebra. Further details can be found in [5, 1]. Let
e = —oo, e = 0, I be the set of integers, and
7Z = I'U{e}. Let + be the conventional addition
on Z given that,

YVa€ Z a+ec=c+a=c¢.

Define two binary operations in Z such that, for all
a,b€ 7, a®b=max(a,b), where & is commutative,
associative, idempotent, and has ¢ for identity, and
a®b=a+b, where ® is associative, distributes over
@, e is its identity element and ¢ 1s absorbing with
respect to ®. The structure (7, @, ®) forms a dioid
called the (max,+) algebra. The (max,+) algebra on
Z 1s naturally extended to matrices to form the dioid
(ZN*N @, ®@). Note that @ is not necessarily com-
mutative. A partial order 1s also defined as follows:

foralla,be Z, a <biff a® b= 0.

In [5, 6], behaviors of DES are captured by timed
event graphs (TEG), a class of timed Petri nets ([9]
offers a comprehensive review of Petri nets). In
TEGs, any place has only one input and one out-
put transition, and, upon arrival in a place, a token
may have to wait a given time before enabling the
output transition. Event sequences consist of the fir-
ing times of transitions. A TEG with N transitions
is represented by a delay matrix A in (ZV*V @, @).
Fach element A;; of A represents the minimum de-
lay to go from transitions j to i. The system is also
described as a set of equations

x; = @ Aijx; @ vi, where 1 <i <N,
1< <N

where z; is the actual firing time of transition ¢, and
v; 18 the earliest time at which transition ¢ may fire.
This system of equations can be written also as

x=Ar D,



the least solution of which is A*v [3] where

A*:@Ak.

E>0

A*, called the *-delay matrix of A, gives the maxi-
mum delay between transitions along infinite paths.

In [8], Cofer and Garg apply (max,+) algebra and
event graphs to the controllability of DES. We imple-
ment their theory and use their manufacturing pro-
cess example to illustrate our points. The TEG of

a r

Figure 1: TEG of a manufacturing process

Figure 1 represents a simple manufacturing process.
Upon arrival (transition t;), parts are first set-up
(s) in a machine queue, and then worked (w) in or-
der of arrival. Transition ¢, represents a part leav-
ing the queue, and transition t3 the completion of
a part. Each operation takes a constant amount of
time, except for the inter-arrival time (@) (because
of the work floor schedule) and the machine reset
time (r). However, both @ and r ultimately follow
periodic patterns. This system 1s described by

z(k) = Apz(k) ® Are(k—1) B v (1)

where x(k) is the vector of kth firing times for each
event, A; is the matrix of delays associated with
places containing ¢ tokens in the initial marking,

€
Ag = s € ¢ and A; = € ¢
w € £ €
and
s(z) = x+1
w(z) = x+4

{ x+5 1if kisodd
a(z) =

x+7 1if kiseven
{ z+4 ifkmodb=0

x+1 otherwise

Section 2 defines periodic signals and operations on
signals. Section 3 describes algorithms for computing
A*v. Section 4 implements Cofer and Garg’s algo-
rithms for controllability. Then, Section b presents
an overview of our C4++ tool. Finally, the last
section presents our conclusions and future work.
Proofs of correctness for the algorithms implement-
ing operators and for their properties are given in

[10].

2 Periodic signals

In this section, we define periodic signals and de-
scribe operations on those signals for the algebraic
representation of TEGs, 1.e., maximization, backshift
and delay functions.

In event sequences, natural numbers represent
times of occurrences for events of a same type. A
sequence X 1s defined as a function from the set of
natural numbers, called indices, to the union of the
set of natural numbers and {¢} such that

VE>1:(X[k]=e) = (Vj < k: X[j] = e).

A sequence X 1is periodic iff there exist &k, C', and n
such that, for all i > n, X[i + k] = X[{]+ C. E.g.,
{4,7,9,11,13, .. .} represents an event’s occurrences
at times four, seven, and every two time units from
then on. This sequence 1s infinite, but 1t consists of
an initial finite sequence {4, 7}, and an infinite peri-
odic sequence {9,11,13,...}. Sequences of this type
have finite representations called periodic signals.

Definition 1 A signal is a tuple (T; P) where

1.T = (t1,...,tp) is a finite list of transitory
steps in T U {e} such that,
Vi<k<n, (tr=¢)=Vj<k:tj=¢), and

2. P=(p1,...,pm) is a finite list of periodic steps
in I such that Zl]:jln pr > 0.

Each ¢; and p; represents the time elapsed between
consecutive occurrences of an event. E.g., the se-
quence X = {4,7,9,11,13,...} is represented by the
signal # = ((4,3);(2)). All periodic sequences can be
represented by a periodic signal and vice versa.

Notation: the function T'(x) (P(x)) maps a signal
z = (T; P) to its transitory sequence 7' (period P
respectively). Moreover, o(z) = %Z:n:l p; 1s the
slopeof z. E.g,ifx = ((4,7);(2)), then T'(x) = (4,7),
P(z) = (2), and o(x) = 2; our work is restricted to
signals with non-negative slopes. Finally, Z is the
union of {g,...} and the set of periodic signals.

Observe that = = ((2,3);(1,3,1,3)) and y =
((2);(3,1)) represent the same signal; y is called the
canonical form of z. For every signal, there exists a
canonical form that can be computed in O(m + n)
by eliminating any suffix of the transitory sequence
matching a suffix of the period and by finding the
minimal representation of the period. Also, two sig-
nals z and y can also be expanded into homogeneous
forms (i.c., [T(x)] = |T()] and |P(a)] = |P(y)]) in
O(m? + n).



2.1 Max operation

Definition 2 Given two signals x and y, and their
underlying sequences X and Y, the signal z =
z @y, ts defined by ils underlying sequence Z[i| =
max(X[¢], Y[i]), for all i > 0.

In [10, 11], we give the details of an O(m?* +n + N)
algorithm that computes the max of two signals (»
and y respectively); n = |T(2)|®|T(y)|, m = |P(z)|®
|P(y)| and N is the intersection of the lines defined
by the slopes of x and y and their initial times. Here
is the algorithm in its abbreviated form [10].

mazimize(r,y):
1 If o(z) = o(y) then T(x & y) =T(x) & 1(y),
and P(z & y) = P(x) & P(y);
2. elsif o(x) < o(y) then mazimize(y,x);
3. else compute N;
X[-1] = 0; Y[~1] = 0;
T(xdy) =T(x)sT(y)
over the first N + n indices;
Pz & y) = P(x);

It can be shown that Z is closed under max
[10]. However, the infinite application of maximiza-
tion does not necessarily result in a periodic signal.
E.g., the underlying sequence of signal z = ((); (1))
is Z=4{1,2,3,...}. For any k, let

k
zp = ((Z[1], 2]+ 2[2], .. »ZZ[Z']);(O))]*

Then, the set X = {axp, k > 1} is an infinite
set of periodic signals; but the maximization of
its elements @xEX x corresponds to the sequence

{1,3,6,10,15,21,...}, which is not periodic.
2.2 Backshift operator

In a TEG, if a token is initially present in a given
place, it immediately contributes to the enabling of
the output transition, even if the place’s delay is not
null. The behavior of tokens present in the initial
marking of a TEG is modeled by a backshift operator
() defined as follows.

Definition 3 Let © = ((t1,%2,...,1s), P) be a peri-
odic signal. Then, v(2) = ((,41,t2,. .., ), P).

The presence of k tokens in an input place is mod-
eled by the composition of £ backshift operators, also
noted v*. The main characteristics of the backshift
operator are captured in the following theorem:

Theorem 1 - Characteristics of v -

1. Z is closed under v*,¥i > 1;
2. Veye Zy(way) =) &y

2.3 Periodic delay function

The ® operation in the signal algebra is really the
composition of backshift and delay operations on sig-
nals. Delays are time dependent in the sense that the
value of a delay in a place depends on how many to-
kens have already passed through the place. There-
fore, delays can be represented by infinite sequences
whose elements define the delays applicable at differ-
ent indices. This work focuses on delays that can be
represented by periodic signals. To avoid obtaining
non-periodic sequences (like the example in Section
2.1), delays are restricted to signals of null slope. In
the rest of the paper, we refer to this type of signals
as delay signals. Moreover, delay signals defined in
TEGs cannot have any ¢ in their transitory sequence.
Thus, the delay of an input signal 1s the Hadamard
product (@) of the input and delay signals. Further
details on delays can be found in [10].

Definition 4 - Delay -

The delay 64(x) of an input signal x = (T; P) by
the delay signal d = (T'; P") (where o(d) = 0 and
T'[1] # ¢) is defined by

8q(x) =d o w,
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E.g., 84(x) where d = ((7);(—2,2)) delays the odd-
indexed events of # = ((£, 1); (3)) by five and its even-
indexed events by seven yielding z = ((¢, 6); (5, 1)).
The composition of two delay functions is commuta-
tive and associative. Moreover, the composition of
a delay function and the backshift operator is not
commutative (except when the delay is constant) as
shown in the following lemma.

Lemma 1 Let d be a delay signal and x be an input
signal. Then, y64(x) = 6(vay(vx).

Proof: It can be shown than v is left distributive
over the Hadamard product. Therefore,

vba(x) 7(d© x)
(vd © y)

= bnay(vx)

The algorithm to compute the delay of an input sig-
nal is given in [10, 11]. Its complexity is O(m? + n)
where m = |P(z)| & |P(d)| and n = |T(2)| & |T(d)|.



2.4 Manufacturing Process Example

Equation (1) can be compacted into

r=AxPv
where
ay € €
A= R and v =

and

s = ((1):;0)

w = ((4);0)

a = ((7):(=22)

r (();(4,-3,0,0,0)).

2.5 Related work

Traditionally, sequences are represented as rational
series [1, 5]. Two classes of rational series have
been used to represent periodic or pseudo-periodic
sequences.

Non-decreasing ultimately periodic series have
been shown to be equal to rational series in the
M [y, 8]] semiring where v and é span an index
and time spaces respectively. It has been shown that
rational series in M [[, §]] are periodic, i.e., for any
series s there exist two causal polynomials p and ¢
and a causal monomial » such that

s=pdqr.

This notion of periodic series corresponds to our def-
inition of periodic signals. Observe that delay signals
are not non-decreasing ultimately periodic series be-
cause we want to be able to express truly periodic
delays. Ultimately geometric series (as in Chapter 5
of [1]) are pseudo-periodic series. They form a more
general class than non-decreasing ultimately periodic
series or our class of periodic signals. They are equal
to rational series in the Ry [[X]] semiring.

3 Closure operations

In [5], A*v is the least solution of + = Az G v. As-
suming that A*v exists, the algorithms described in
this section can compute A*v where A* = €, ., A®.

In [10, 11], we present a solution based on Jor-
dan’s algorithm as defined in [12]. Even though it
works for the manufacturing process example, it does
not apply in general in a non-commutative algebra
like the (max,+) algebra of signals. Indeed, Jordan’s
algorithm can lead to nested *-delay expressions that
are simplifiable only if operators are commutative.
Hence, we cannot compute A* as a transfer function

for most complicated DES (i.e., systems with many
inter-connected feedback loops), but we can compute
A*y for any system.

The closure algorithm that computes A*v is
based on a simple idea: compute iterations of

25T = Ap(R) gy (2)

until the period of the system is reached. Assessing
when the period has been reached can be difficult.
Each iteration reveals the value of a new index in
the sequences characterizing the system. These se-
quences are buried within the transitory sequence of
each signal in (k). Therefore, these sequences need
to be extracted and converted into signals z;. Then,
the algorithm checks if

rp=Az; Do

holds. If it does, the algorithm terminates and z; is
the final result. Otherwise, a new iteration is needed.

closure (matriz A, signals v, integer P): signals x
1. x:=v;
2. x := Az P v,
3. EndTrans := extract-period-in-trans (P, x);
4. if (EndTrans > 0) then build new signals x¢;
else goto Step 3;
5. if (Avy & v = xy) then return x¢;
else goto Step 3;

The algorithm to uncover a period in a transitory
sequence is as follows. We describe the algorithm for
a single signal.

is-period-in-trans (integer P, signal d): integer y
1. curr := 0; found := true;
2. for i from 1 to P+1, do
if (T(d)[curr+i] # T(d)[curr+i+P]) then
found := false;
exit loop;
3. if not found and (curr < |T(d)| — 2P) then
curr := curr + I;
goto Step 2;
4. if not found then y = -1;
else y = curr - 1;

Given that A*v actually exists, the closure algo-
rithm computes z; = A*v. Indeed, our algorithm is
a fixed point algorithm that builds a solution based
on an initial value that is smaller than any computed
solution. Therefore, once a solution is reached, it 1s
guaranteed to be the least solution.

Using Jordan’s algorithm, we verify Cofer’s re-
sults for the manufacturing process example.

(ay)” € €

w = ys@) e ()
(wry)*ws(ay)*  (wry)w  (wry)*



which yields
s =

(

= (wry) ws[((0);(5,7))]
( ]
[

((5,5,7);(5,7,8,5,5,6,5,8,5,6))]
This corresponds to the infinite periodic sequence
3 = {b,10,17,22,29, 37,42 47,53,58,66,71,...}

This results have also been verified using the clo-
sure algorithm. Manually computing these infinite
sequences is an error-prone process. Qur implemen-
tation solves this problem, and allows the user to
focus on results.

4 Controllability

This section describes how the (max,+) algebra of
signals can test the controllability of a specification
with respect to a DES as described in [6, 7]. We first
present the concept of a specification and its con-
trollability, then, the computation of supremal con-
trollers for a set of extremal behaviors. Since infimal
controllers may not exist for some types of specifica-
tions, we refrain from discussing them.

Acceptable behaviors are specified as finite (or
infinite) sets of vectors whose the components repre-
sent lower /upper bounds on the signals generated by
the system. Thus, for example, an upper bound spec-
ification can represent timing constraints in a system.
In general, not all events in a system are control-
lable (which means that they can be delayed). Con-
trollable events are described by a matrix I, whose
non-diagonal elements and uncontrollable diagonal
elements are equal to € and controllable diagonal el-
ements are equal to e.

Let A be the transition matrix of a system, I.
the matrix defining its controllable events and v the
initial conditions. Assume that acceptable behaviors
are given by Y. Then, Cofer shows that the control-
lability of Y with respect to an upper bound y in Y
1s verified if

ALy o) <y (3)
Similarly, if y is a lower bound, then the controlla-
bility of Y is verified if

ATy dv) > y.

In the manufacturing process example, the specifica-
tion Y defined by the upper bound

((0); (7))
y=| (1))
((5); (7))

is controllable, since

A(Lydv) = | (L,

which verifies Inequation (3).

Cofer and Garg also define algorithms to compute
supremal controllers (which are the greatest superset
of behaviors that are invariant under uncontrollable
actions) for four types of specifications. If the speci-
fication is a finite set Y = {y1,...,yr} of behaviors,
the supremal controller set is given by

{t e A*(I.xa dv) €Y}

We implemented this specification and verified that

5 Implementation

We implemented the algorithms in C++ and com-
piled the tool on different workstations (SUN-
SPARC, -UltraSPARC, IBM RS6000, and PCs run-
ning linux). Using an interpreted shell (created us-
ing Lex and Yacc), the tool accepts commands from
standard input and print results on standard output.
Obviously, files can be used via the Unix re-direction
commands.

The tool allows the definition of a DES in the
form of its transition matrix. Elements of the ma-
trix are defined as expressions. Simple expressions
include £, delay functions, and the backshift func-
tion. A complex expression consists of the combina-
tion of maximization, delay, or star-delay operations
on simple expressions. For example, the following
commands describe the matrix for our manufactur-
ing process example. Note that the indices in the
matrix start at zero (because of C++).

expression a = delay ((7);(-2,2));
expression w = delay ((4);(0));
expression s = delay ((1);(0));
expression r = delay ((4);(-3,0,0,0,3));
matrix A[3];

AT0,0] = a.¥;

Af1,0] = s;

A[2,1] = w;

Al1,2] = r.¥;

display matrix 4;
yielding

a¥Y EE

s E ry

EweE



The following commands were used to compute
the closure matrix of the transition matrix for the
manufacturing process example using Jordan’s algo-
rithm. Its application to a vector describing the ini-
tial conditions of the DES computes the least solu-
tion of the equation = Az @& v. Thus, the following
commands computes the solution A*v.

matrix Astar = closure (4);
vector V = e[3];

solve X = Astar.V;

display vector X;

yielding
X[ol = ((0);(5,7))
x[1] = ((1,5,7);(5,7,8,5,5,6,5,8,5,8))
x[2] = ((5,5,7);(5,7,8,5,5,6,5,8,5,6))

The controllability of our manufacturing process
example (with respect to the upper bound specifica-
tion y given that only Event ¢5 is controllable) can
be tested using the following command.

controllable (1) upper y wrt Astar V;
yielding
false

Supremal controllers can also be computed for
four types of specifications: finite set of behaviors,
range of behaviors, single sequence behavior, and
behaviors based on matrices of defining separation
times. The following commands illustrate the com-
putation of a supremal controller for a set of two
behaviors (all events are controllable).

specification y = set yO, yi;
supremal S = y (0,1,2) wrt Astar V;

6 Conclusion

We have defined a (max,+) algebra of periodic sig-
nals that mechanizes the computation of supremal
controllers for non-stationary, yet periodic, timed
discrete event systems. Signals are finite represen-
tations of infinite event sequences that exhibit a pe-
riodic pattern. We defined algorithms to implement
basic operations such as synchronization, delay and
closure operations. Future work will explore means
of reducing complexity in the computation of the
closure matrix, extensions to non-deterministic sys-
tems, applications to real-time problems, and TEG
transformations to support the computation of trans-
fer matrix for any system.
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