
Copyright

by

Yen-Jung Chang

2016

The Dissertation Committee for Yen-Jung Chang
certifies that this is the approved version of the following dissertation:

Predicate Detection for Parallel Computations

Committee:

Vijay K. Garg, Supervisor

Craig M. Chase

Christine Julien

Sarfraz Khurshid

Keshav Pingali

Lingming Zhang

Predicate Detection for Parallel Computations

by

Yen-Jung Chang, B.S., M.S.

DISSERTATION

Presented to the Faculty of the Graduate School of

The University of Texas at Austin

in Partial Fulfillment

of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

THE UNIVERSITY OF TEXAS AT AUSTIN

May 2016

In loving memory of my beautiful grandma, Wu-Hao Chang (1933-2014).

Acknowledgments

I would like to express my deep appreciation and gratitude to my ad-

visor, Dr. Vijay Garg, for the patient guidance and mentorship he provided

to me. His guidance has made this a thoughtful and rewarding journey. I

would like to thank Dr. Sarfraze Khurshid for the friendly words of encour-

agement during my difficult times. I would also like to thank my dissertation

committee of Drs. Craig Chase, Christine Julien, Keshav Pingali, and Ling-

ming Zhang for the support over the past two years. I would like to thank my

fellow students Wei-Lun Hung, Himanshu Chauhan, John Bridgman, Bharath

Balasubramanian, Yuqun Zhang, James Zheng, Rui Qiu, and Lisa Hua for

their advices and friendship. I am very thankful to Yen-Yu Chang, a great

roommate who takes care of me and cooks delicious meals for me. I would like

to thank to Jim Wall for the friendship and all the fun he brings to me during

my long journey in finishing this doctoral program. I am deeply thankful to

my parents, Jung-Feng Chang and Su-Luwan Lee, for their unconditional love.

Without them, this dissertation would never have been written. The last word

of acknowledgment I have saved for my dear girlfriend Nai-Yu Chen, who has

been with me all these years and has made them the best years of my life.

Yen-Jung Chang

The University of Texas at Austin

May 2016

v

Predicate Detection for Parallel Computations

Yen-Jung Chang, Ph.D.

The University of Texas at Austin, 2016

Supervisor: Vijay K. Garg

One of the fundamental problems in runtime verification of parallel

program is to check if a predicate could become true in any global state of the

system. The problem is challenging because of the nondeterministic process or

thread scheduling of the system. Predicate detection alleviates this problem

by analyzing the computation of the program and predicting whether the

predicate could become true by exercising an alternative process schedule.

The technique was first introduced by Cooper et al. and Garg et al. for

distributed debugging. Later, jPredictor applies this technique for concurrent

debugging.

We improve the technique of predicate detection in three ways. The

first part of this dissertation presents the first online-and-parallel predicate de-

tector for general-purpose predicate detection, named ParaMount. ParaMount

partitions the set of consistent global states and each subset can be enumerated

vi

in parallel using existing sequential enumeration algorithms. Our experimen-

tal results show that ParaMount speeds up the existing sequential algorithms

by a factor of 6 with 8 threads. Moreover, Paramount can run along with the

execution of users’ program and hence it is applicable even to non-terminating

programs.

The second part develops a fast enumeration algorithm, named Quick-

Lex, for consistent global states. In comparison with the original lexical al-

gorithm (Lex), QuickLex uses an additional O(n2) space to reduce the time

complexity from O(n2) to O(n·∆(P)), where n is the number of processes

or threads in the computation and ∆(P) is the maximal number of incoming

edges of any event.

The third part introduces Loset — a new model for parallel compu-

tations with locking constraints. We show that the reachability problem in

a loset is NP-complete. To tackle the NP-completeness, we present several

useful properties. Specifically, if the final global state is reachable, then all

lock-free feasible global states are reachable. In addition, we show that the

reachability of a global state G can be determined using a sub-computation

instead of the entire computation. Moreover, we introduce the strong feasibil-

ity of a global state, which is an upper approximation of reachability that can

be calculated efficiently. Our experiments show that the property accurately

models the reachability for all 11 benchmarks.

vii

Table of Contents

Acknowledgments v

Abstract vi

List of Tables xii

List of Figures xiii

Chapter 1. Introduction 1

1.1 Predicate Detection for Debugging 2

1.2 Online-and-Parallel Predicate Detection 7

1.3 A Fast Enumeration Algorithm for Consistent Global States . 9

1.4 Predicate Detection for Computations with Locking Constraint 13

1.5 Summary . 18

1.6 Overview . 20

Chapter 2. The Computation of Poset Model 21

2.1 Poset Model . 21

2.2 Causality and the Happened-Before Relation 22

2.3 Global States . 25

2.4 Consistent Global States . 26

viii

Chapter 3. Online-and-Parallel Enumeration of Consistent Global
States 28

3.1 Partitioning the Set of Consistent Global States 30

3.2 Bounded Enumeration Algorithm 34

3.3 Correctness of ParaMount . 37

3.4 Work and Space Complexity of ParaMount 38

3.5 Implementation of Online Predicate Detector 39

3.5.1 Construction of Poset P 39

3.5.2 Online Consistent Global States Enumeration 41

3.5.3 Predicate Evaluation . 43

3.5.4 Other Implementation Details 45

3.6 Evaluation . 47

3.6.1 Experimental Results of ParaMount 47

3.6.2 Experimental Results of Online Predicate Detection . . 51

3.7 Other Predicate Examples . 57

Chapter 4. A Fast Enumeration Algorithm for Consistent Global
States 59

4.1 Overview of QuickLex . 63

4.2 Part 1: Procedure propagate and Enabled Events 66

4.3 Part 2: Procedure reset and Maximum Dependency Events . 71

4.3.1 Calculating Maximum Dependency Event in Amortized
Constant Time . 75

4.4 Correctness and Worst Case Time Complexity of QuickLex . . 77

ix

4.5 Evaluation . 80

4.5.1 Improvements to the Related Enumeration Algorithms . 80

4.5.2 Experimental Results 82

4.6 Applications of QuickLex . 87

4.6.1 Predicate Detection in Concurrent Systems 87

4.6.2 Other Applications of QuickLex 89

Chapter 5. A Model for Computations with Locking Constraints 90

5.1 Loset Model of a Computation 91

5.1.1 Global States . 94

5.1.2 Reachable Global States and Runs 96

5.2 Valid Losets . 98

Chapter 6. Reachability of Global States in a Loset 101

6.1 Lock-Free Feasible Global States 102

6.2 Strongly Feasible Global States 109

6.2.1 Locking Order . 109

6.2.2 Normalization of Loset 111

6.2.3 Strong Feasibility of Global States 116

6.3 Reachability of Strongly Feasible Global States 118

6.3.1 Strong Feasibility Does Not Imply Reachability 118

6.3.2 Strong Feasibility Equals to Reachability in Losets with
Two Threads . 121

6.3.3 Enumeration of Reachable Global States Using Strong
Feasibility . 124

x

6.3.3.1 Enumerating the Reachable Global States in a
Loset Using QuickLex 125

6.3.3.2 Experimental Results 130

6.4 Viable Global States . 132

6.5 Relationship Among Various Classes of Global States 135

Chapter 7. Conclusions 137

Chapter 8. Future Work 140

8.1 Future Work of ParaMount . 140

8.2 Future Work of QuickLex . 141

8.3 Future Work of Loset . 142

Bibliography 143

Vita 152

xi

List of Tables

1.1 Time and space complexity of existing general-purpose enumer-
ation algorithms. 10

3.1 The benchmarks for evaluating ParaMount. 47

3.2 The running time (seconds) of BFS algorithm and ParaMount. 48

3.3 The running time (seconds) of the lexical algorithm and ParaMount. 49

3.4 The information of the benchmarks for data race detection. . . 53

3.5 The result of data race detection. 54

3.6 Comparisons of the predicate detectors. 56

4.1 Time and space complexity of the related enumeration algorithms. 63

4.2 The information of benchmarks and runtimes (sec.) of the com-
pared algorithms. 79

4.3 The performance of ParaMount with different enumeration al-
gorithms. 87

6.1 The information of benchmarks and runtimes (sec.) of each
enumeration approach. 130

xii

List of Figures

1.1 A parallel program in which threads use messages to synchronize
with each other. 2

1.2 The captured logical order between events, which form a poset.
G1 to G8 are consistent global states of the program. 3

1.3 The relationship among the consistent global states of the com-
putation. 4

1.4 A predicate that looks for if there exists a pair of maximal events
that are conflict in the global state G. 5

1.5 A program which has two threads that might open the file f at
the same time. 13

1.6 The global state G contains the events {a1, a2, a3, b1, b2}
and the predicate Φ is true only in G. (a) In this poset, G
is reachable and thus Φ can be correctly detected. (b) In this
poset, G is unreachable and thus Φ cannot be detected. . . . 13

1.7 A program which has three threads but the file f can only be
opened by one thread at a time. 15

1.8 (a) The global state G, where Φ is true, is indeed unreachable
because of the implicit order (the dashed arrow) between the
two critical sections. (b) The local view that contains only two
of the threads, where G is mistakenly considered reachable. . 15

2.1 A poset P of events corresponding to an execution of the pro-
gram. The global states G and G′′ are consistent global states
and G′ is not. 23

2.2 The vector clocks of the events. 24

2.3 A distributive lattice formed by the set of consistent global
states of the poset shown in Figure 2.1. 26

3.1 A poset of events. The consistent global states of the poset are
shown by the dashed lines. 30

3.2 The relationship among the consistent global states of the poset
in Figure 3.1. The grayed out global states are inconsistent. . 30

xiii

3.3 The boundary global states of the events in the poset. Assume
that the total order among the events is e→p g →p f →p h. . 32

3.4 Assume that the total order among the events is e →p g →p

f →p h, then we get (a) the interval I(e), (b) the interval I(g),
(c) the interval I(f), and (d) the interval I(h) of global states.
The global state [0, 0] is a special case and always belongs to
the interval of the first event in the total order→p, which is the
event e. 34

3.5 The framework of our online-and-parallel predicate detector. . 39

3.6 (a) One possible observed execution path when event e is in-
serted into P. Suppose the insertion order is e→p g →p f →p h.
(b) Another possible observed path, in where the insertion order
is e→p g →p h→p f . 42

3.7 (a) The original process ordered events. (b) Only the first write
or read event of a variable in a sequence of process ordered
events is captured. Moreover, the events are merged into an
event collection, ec. 45

3.8 Speedup rate of B-Para with respect to the sequential BFS al-
gorithm. 50

3.9 Speedup rate of L-Para with respect to the sequential lexical
algorithm. 51

3.10 Memory usage of the lexical algorithm and L-Para. 52

4.1 A poset P of events corresponding to an execution of the program. 60

4.2 A lattice formed by the set of consistent global states of the
poset shown in Figure 4.1. 60

4.3 (a) A number consists of multiple digits. The digits at the left
are high order digit and those at the right are low order digits.
(b) A global state that is represented by an array of indexes.
The array can be considered as a number and each index as a
digit of that number. The processes whose indexes are located
at the left are high priority processes and the processes whose
indexes at the right are low priority processes. 63

4.4 The symbol Xl(i) denotes the function max1≤j≤iG[j].vc[l]. The
upside-down stack5 on the right is the actual stackl that is used
by QuickLex. 72

4.5 The setup of the experiment. 82

4.6 Normalized runtime of each algorithm w.r.t. the runtime of
Tree algorithm. 84

xiv

4.7 (a) The best case for QuickLex. (b) The worst case for Quick-
Lex. 85

4.8 Memory usage of Tree, Lex, and QuickLex algorithm. 86

5.1 (a) and (b) Two posets that are captured from different execu-
tions of the same program. (c) The loset that is equivalent to
the two posets in (a) and (b). (d) A loset that is equivalent to
C2m

m posets. (e) A loset that is equivalent to m! posets. . . . 93

5.2 The global state G is feasible but not reachable. 95

5.3 (a) A loset whose final global state is unreachable. (b)(c) The
→ relations in (a) is partitioned into two groups. 99

6.1 The set of lock-free feasible global states and the set of strongly
feasible global states are a lower and an upper approximation
of reachability, respectively, in a valid loset. 101

6.2 All possible cases of I(l) 7→ J(l) across different threads and
the locking order I(l).rel→ J(l).acq. 110

6.3 An initial loset L, which contains only the HB relation. 111

6.4 A normalized loset L′, where the locking orders (the solid ar-
rows) are added to the original loset L. 112

6.5 All possible cases of the removed feasible global state G during
the normalization of a loset L, i.e., G is feasible in L but not
feasible in L′. The dashed arrows only appear in L′. 115

6.6 The feasible global state G is unreachable because the dynamic
locking order completes a cycle in the relation →. 117

6.7 A computation whose final global state is reachable. In ad-
dition, G is strongly feasible but unreachable. The dynamic
locking orders are drawn in dashed arrows. 119

6.8 (a) Case 1: H = G − G[1] is inconsistent. (b) Case 2: H is
incompatible. (c) Case 3: H induces a cycle in the → relation
and either (f � acq) or (acq � f) holds. (d) Case 3: The cycle
in (c) implies G[1]→ G[2]. 122

6.9 G is a reachable global state of the normal loset; V is a viable
global state; F follows R reaching G from φ; and U follows S
reaching V from φ. 133

6.10 G and V is a reachable and viable global state of the normal
loset, respectively. 135

6.11 The relationship among various classes of global states in a valid
loset. 135

xv

6.12 The decision flow for determining the reachability of a global
state in a loset L. 136

xvi

Chapter 1

Introduction

One of the fundamental problems in debugging or runtime verification of a

parallel program is to determine whether an user specified condition (predicate)

could become true in any reachable global state of the program. This problem

is challenging because each run of the program may reach a different set of

global states due to nondeterministic thread scheduling even for the same user

input.

A common approach for detecting the possibility of the predicate in the

system is to execute the program repeatedly and incorporate a thread scheduler

to ensure that each run of the program explores some previously unexplored

global states [MQ07, VHB+03, LC06]. Since a global state could be reached

repeatedly in different runs, this approach usually incorporates partial order

reduction to reduce the number of repeated explorations [MQ07, VHB+03].

Nonetheless, re-executing the program could be time-consuming.

The technique of predicate detection alleviates the problem by analyzing

a given computation (execution trace) of the program and predicting whether

the predicate could become true in any of the global states that can be reached

with a different thread schedule. The technique is predictive because it does

1

Thread t1

a1: read(x)
a2: sendMsg(t2, m)

a3: write(x)

Thread t2

b1: revMsg(t1, &m)

b2: write(x)

Figure 1.1: A parallel program in which threads use messages to synchronize
with each other.

not actually re-execute the program in order to explore different global states

due to the thread scheduling. Instead, it generates inferred reachable global

states from the given computation. Then, it checks if the predicate can become

true in any of the inferred global states. The technique is first introduced by

Cooper et al. [CM91] and Garg et al. [GW91] for distributed debugging. Later,

jPredictor [CSR08] applies this technique for concurrent programs.

1.1 Predicate Detection for Debugging

As an example of predicate detection, consider the condition Φ: (x is

written by two threads at the same time) which corresponds to a bug in the

parallel program shown in Figure 1.1. We would like to know if it is possible to

reach a global state of the program such that Φ is true. As mentioned before,

one of the popular debugging methods is to run the program and collect a total

order of events. Suppose that the total order recorded is a1, a2, a3, b1, b2. In

this total order, Φ does not become true. However, the predicate is indeed

possible if the sequence of events starts with the prefix a1, a2, b1. Hence, the

only way possibility of Φ would be detected is via multiple executions and

2

t1

t2

a1

b2

a3a2

b1
G1 G2 G3 G5 G6 G8 G4 G7

Figure 1.2: The captured logical order between events, which form a poset.
G1 to G8 are consistent global states of the program.

hope that one of the executions runs a total order that makes the predicate

true.

To alleviate the problem, the technique of predicate detection models

the computation as a partially ordered set (poset) of events, in which the events

are ordered by Lamport’s happened-before (HB) relation [Lam78] (denoted

by →). In the poset model, a global state G is consistent iff ∀e, f : (f ∈

G) ∧ (e → f) ⇒ (e ∈ G), where e and f are events of the computation.

For each consistent global state, there exists at least one sequence of events

to reach the global state from the initial global state [CM91]. Therefore, the

possibility of Φ in the parallel program is predictively detected by checking if

Φ could become true in any of the consistent global states of the poset.

Figure 1.2 shows the computation that is captured from the execution

of the program in Figure 1.1. Each event of the computation corresponds to

an operation of the program. The HB relation between events a2 and b1 is

established by the message passing between the two threads. The horizontal

lines are the consistent global states of the computation; in the graphical

representation, a global state contains the events on its left, e.g., the global

3

G1 G2 G3

G4

G5

G6

G7
G8

Figure 1.3: The relationship among the consistent global states of the compu-
tation.

state G4 contains the events a1, a2, and a3.

To reach the global state G4, the events are executed in this sequence:

a1, a2, a3. Some global states may be reached by multiple sequences of events.

For instance, G6 can be reached by the two sequences: 1) a1, a2, a3, b1, and

2) a1, a2, b1, a3. The relationship among the consistent global states of the

computation is shown in Figure 1.3. We can see that if the event sequences

1) and 2) reach global states G4 and G5, respectively, then they can reach G6

by executing events b1 and a3, respectively. So, we say that the global state

G6 is reachable from both G4 and G5.

When a program executes an event, the program reaches the next

global state. Thus, the observed execution of the program can be repre-

sented by a sequence of global states. Assume that G1, G2, G3, G4, G6, G8

is the observed execution. Then the objective of predicate detection is to

generate the global states G5 and G7 and hence the two inferred executions,

G1, G2, G3, G5, G6, G8 and G1, G2, G3, G5, G7, G8, can be predictively veri-

fied without re-executing the program.

A predicate is defined to determine if the user specified condition could

become true in a global state. We use the condition of data races to explain

4

1. predicate(GlobalState G) {

2. for (int i = 1; i <= n; ++i) {

3. for (int j = i; j <= n; ++j) {

4. if (G[i] and G[j] are concurrent and

conflicting events)

5. // a bad condition is found.

6. }

7. }

8. }

Figure 1.4: A predicate that looks for if there exists a pair of maximal events
that are conflict in the global state G.

how a predicate is defined. A race condition occurs when conflicting operations

(e.g., a pair of read-write or write-write operations) are concurrently executed

on the same memory address by different threads. If two events of different

threads have no causal dependency in a global state, they can be executed

concurrently. For instance, the two maximal events, a3 and b2, in the global

state G8 in Figure 1.2 do not have causal dependency. Hence, they can be

executed concurrently. Figure 1.4 shows a predicate for detecting data races.

The nested for loop at lines 2 and 3 gets all pairs of maximal events of the

global state G; the symbols G[i] and G[j] at line 4 are the maximal events of

thread ti and tj, respectively. In Figure 1.2, since the events a3 and b2 are

the write operations to the same memory address (i.e., variable x), a potential

race condition is detected in the global state G8.

In summary, predicate detection allows us to predictively detect Φ in

the system if it could become true in any of the consistent global states of

5

the given poset. The technique contains three major steps. First, the compu-

tation is captured from the execution of the program and modeled as poset

of events. Second, an enumeration algorithm takes as input the computation

and generates all consistent global states of that computation. Third, the

consistent global states are checked if any one of them satisfies the condition

of the predicate. Since the technique can be applied in both concurrent and

distributed systems, the term computations refers to both concurrent and dis-

tributed computations from now on. In addition, the terms thread and process

are interchangeable; unless specified otherwise.

This dissertation improves the technique of predicate detection in three

ways. The first part of this dissertation presents an online-and-parallel predi-

cate detector, named ParaMount [CG15a], for concurrent systems. The second

part gives a fast enumeration algorithm, named QuickLex [CG15b], for consis-

tent global states. The first and second parts mainly focus on the technique of

predicate detection using the conventional poset model, in which the real-time

order between critical sections are also represented by Lamport’s happened-

before relation. The third part of this dissertation presents a new model, called

Loset (Locking Poset), for computations with locking constraints. In a loset,

synchronization due to locks are not modeled using the happened-before rela-

tion; instead, the sets of events that are executed under one or more locks are

modeled separately.

6

1.2 Online-and-Parallel Predicate Detection

One common approach for the debugging of concurrent program is to

re-execute the program multiple times and check if any one of the executions

induces a bug. For instance, CHESS [MQ07], Java PathFinder [VHB+03],

and RichTest [LC06] execute the program repeatedly and incorporate a sched-

uler to ensure that each run of the program explores some new global states.

CHESS and Java PathFinder schedule concurrent events into a totally ordered

sequence and enable the corresponding threads to execute the events one at

a time. The scheduler of RichTest directly changes the partial order among

concurrent events. The approach retains the concurrency of events and hence

they can be executed concurrently during the testing of the program.

Some debugging tools combine the technique of scheduler and the tech-

nique of predicate detection. These tools have two phases: prediction and

replay. In the prediction phase, inferred reachable global states are gener-

ated from the computation and are checked to determine if the predicate

holds [LTQZ06,HZ11]. In the replay phase, the program is re-executed incor-

porating a scheduler in order to determine whether the inferred global states,

where the predicate holds, can actually be reached [PLZ09,SFM10,YNPP12].

However, their method assumes that the condition to be detected involves

only two threads (e.g., data races, atomicity violations, etc.) and uses heuris-

tic strategies to enumerate the set of inferred reachable global states.

jPredictor [CSR08] is the first general-purpose predicate detector for

concurrent debugging; it ensures that every consistent global state is enumer-

7

ated at least once. However, jPredictor enumerates the set of consistent global

states in an offline and sequential fashion.

Contribution

In the first part of this dissertation, we present the first online-and-

parallel algorithm, named ParaMount [CG15a], for consistent global states

enumeration and predicate detection. ParaMount partitions the set of con-

sistent global states of the given poset into multiple subsets. It ensures that

every consistent global state belongs to exactly one subset. For each subset of

consistent global states, ParaMount can use existing sequential enumeration

algorithms as its subroutine without increasing the asymptotic work complex-

ity. In this dissertation, we use the BFS algorithm [CM91] or the lexical

algorithm [Gan10,Gar03,CG15b] for the subroutine.

From the experimental results, ParaMount is 6 to 11 times faster than

the original sequential algorithms when using 8 threads. The reason that

ParaMount sometimes shows superlinear speedup is that partitioning the set

of consistent global states transforms the original problem into multiple sub-

problems that are much easier to solve. Moreover, partitioning also reduces the

memory space consumed by intermediate data which eliminates the running

time wasted by Java garbage collector.

ParaMount is also an online enumeration algorithm, which can incre-

mentally enumerate the consistent global states during the construction of the

poset. Because of this property, ParaMount can run along with the execu-

8

tion of parallel programs and is applicable even to non-terminating programs

such as web-server applications. Note that the online and parallel property of

ParaMount can be applied together. Thus, it is possible to use ParaMount to

perform an online-and-parallel predicate detection.

We evaluate the online property of ParaMount by conducting an online-

and-parallel predicate detection of data races in concurrent programs. We

compare our predicate detector with another general-purpose predicate de-

tector, RV runtime [MR10] (the successor of jPredictor), and an online data

race detector, FastTrack [FF09], using several benchmarks, e.g., sor, tsp, and

hedc [CSR08,FF09,vPG01]. On average, our detector is 10 to 50 times faster

than RV runtime. On the benchmark raytracer, RV runtime runs out of mem-

ory whereas our detector uses only 25% of the system memory. The perfor-

mance of our detector is also comparable to that of FastTrack for most bench-

marks even though the enumeration algorithm of ParaMount is not designed

specifically for detecting data races.

1.3 A Fast Enumeration Algorithm for Consistent Global
States

For certain classes of predicates, the computation time of enumeration

algorithm can be reduced to polynomial time because only a partial set of

global states needs to be enumerated [GW94, HMRS96, TG97, CG98, OG07,

SG02,LTQZ06,HZ11,FF09,PLZ09,SFM10]. In this dissertation, we focus on

the techniques that do not have any assumption on the nature of the predicate,

9

Table 1.1: Time and space complexity of existing general-purpose enumeration
algorithms.

Algorithms Time per CGS Space

Cooper–Marzullo [CM91] O(n3) exp. in n
Alagar–Venkatesan [AV01] O(n3) O(|E|)
Steiner [Ste86] O(|E|) not available
Squire [Squ95] O(log|E|) not available
Pruesse–Ruskey [PR93] O(|E|) exp. in n
Jegou and Habib et al. [JMN95,HMNS01] O(∆(P)) O(|E|)
Lexical [Gan10,Gar03] O(n2) O(n)

QuickLex [CG15b] O(n·∆(P)) O(n2)

n: the number of processes in the computation P.
E: the set of events in P.
∆(P): the maximal in-degree of any event in P.

i.e., the detection is general-purpose. If no assumption is made regarding the

predicate, then enumerating every consistent global state is necessary, which

requires exponential time because the number of consistent global states, i(P),

grows exponentially in the number of processes in the computation P .

The time complexity of a general-purpose enumeration algorithm can

be calculated by multiplying i(P) by the time complexity per consistent global

state, which is the time to advance from one consistent global state to the

other. For simplicity, we use the time complexity per consistent global state

to represent the time complexity of a general-purpose enumeration algorithm.

Cooper and Marzullo [CM91] gave the first general-purpose enumera-

tion algorithm based on a breadth first strategy (BFS) that requires O(n3)

time and exponential space in n, where n is the number of processes in the

computation P . Alagar and Venkatesan [AV01] presented the notion of global

10

interval which reduces the space complexity to O(|E|), where |E| is the num-

ber of events in P . Steiner [Ste86] gave an algorithm that uses O(|E|) time,

and Squire [Squ95] further improved the computation time to O(log|E|).

Pruesse and Ruskey [PR93] gave an algorithm that enumerates consis-

tent global states in a combinatorial Gray code manner. The algorithm uses

O(|E|) time and can be reduced to O(∆(P)), where ∆(P) is the maximal in-

degree of any event; however, the space grows exponentially in n. Later, Jegou

et al. [JMN95] and Habib et al. [HMNS01] improved the space complexity to

O(|E|).

Ganter [Gan10] presented an algorithm, which enumerates consistent

global states in the lexical order, and Garg [Gar03] gave an implementation

using vector clocks [Fid88,Mat88]. The lexical algorithm requires O(n2) time,

but the algorithm requires only O(n) space besides the input, i.e., the compu-

tation. The O(n) space is only used for storing the vector clock that represents

the current global state. Table 1.1 summarizes the time and space complexity

of those general-purpose enumeration algorithms. Note that the space com-

plexity of an enumeration algorithm only considers the memory space that

stores the intermediate information during the enumeration.

Constributions

In the second part of this dissertation, we present QuickLex — a

fast algorithm for enumerating the set of consistent global states of a given

poset in the lexical order. In comparison with the existing lexical algorithm

11

(Lex) [Gan10, Gar03], QuickLex reduces the time complexity from O(n2) to

O(n·∆(P)). The time complexity can be reduced to O(n) for the com-

monly used computations [CSR08, LC06, FF09, HMNS01, JMN95], in which

most events send and receive at most one message.

We evaluate QuickLex using multiple benchmarks including four com-

putations that are captured from the executions of benchmark programs. In

our experiments, QuickLex is 7 times faster than the Lex algorithm [Gan10,

Gar03] and 4–5 times faster than the Tree algorithm [HMNS01, JMN95]. We

note here that QuickLex is faster than the Tree algorithm even though the

asymptotic worst case time complexity for the Tree algorithm is lower. There

are two reasons for this. First, the time complexity of QuickLex is calculated

as the worst case, which is not a common computation in practice. Second,

the Tree algorithm needs to store its temporary spanning tree in a linked-list,

which induces large performance overhead during the enumeration; QuickLex

only uses arrays.

As far as space complexity is concerned, QuickLex uses almost the same

amount of memory as Lex, which shows that the extra space for dynamic

programming in QuickLex is quite small. The Tree algorithm uses 2–10 times

more memory than QuickLex.

12

Thread t1

a1: acquireLock(l)

a2: f.openFile()

a3: releaseLock(l)

a4: f.closeFile()

Thread t2

b1: acquireLock(l)

b2: f.openFile()

b3: f.closeFile()

b4: releaseLock(l)

Figure 1.5: A program which has two threads that might open the file f at
the same time.

t1
a1 a2 a3 a4

t2
b1 b2 b3 b4

G

(a)

t1
a1 a2 a3 a4

t2
b1 b2 b3 b4

G

(b)

Figure 1.6: The global state G contains the events {a1, a2, a3, b1, b2} and
the predicate Φ is true only in G. (a) In this poset, G is reachable and thus
Φ can be correctly detected. (b) In this poset, G is unreachable and thus Φ
cannot be detected.

1.4 Predicate Detection for Computations with Locking
Constraint

Since the poset model does not consider the constraints due to locks,

one common modification to the model is to capture the real-time order of lock

synchronizations as the causality of the program [FF09,LC06,CG15a,CSR08],

i.e., the release of a lock happened before the subsequent acquisition of that

lock. However, a lock of the program specifies the sets of events that cannot

be concurrently executed instead of the causality between events. Hence, the

mutual exclusion provided by locks has a different nature than the HB relation.

13

For the program in Figure 1.5, a possible computation modeled as a

poset is Figure 1.6(a), which corresponds to the execution where the thread

t1 obtains the lock l before t2. Assume that we are interested in detecting

the condition Φ: file f is opened by two threads at the same time, which

corresponds to a bug in the program. As it can be seen, the predicate Φ can

be detected in the global state G in Figure 1.6(a). However, we still have not

solved the problem of predicate detection for all thread schedules. Suppose

that the thread t2 obtains the lock before t1 during the execution. Then, we

put a happened-before order between b4 and a1 as shown in Figure 1.6(b). In

this poset, it is not possible to reach the global state G, which is inconsistent,

where Φ is true. Consequently, a poset based predicate detection algorithm

will miss the global state reached under a different locking schedule.

An alternative approach for modeling the synchronizations due to locks

is incorporating the notion of lockset [SBN+97], which provides the information

for identifying the events that cannot be concurrently executed instead of

the happened-before relation. However, most of the existing models that use

this notion only consider the conditions that involve only two threads (e.g.,

data races and atomicity violations) [KIG05, KW10, SFM10, OC03]. If the

computation contains more than two threads, the detection is performed on a

local view that consists of only two threads at a time.

Assume that we have a program (see Figure 1.7) which has three

threads. Because of the conditional wait of c2 on a2, the system would ensure

that the thread t1 obtains the lock before t3 and hence we get the computa-

14

Thread t1

a1: acquireLock(l)

a2: l.notify()

a3: f.openFile()

a4: f.closeFile()

a5: releaseLock(l)

Thread t2

b1: recMsg(t3,&m)
b2: f.openFile()

Thread t3

c1: acquireLock(l)

c2: l.waitUntilNotified()

c3: sendMsg(t2,m)
c4: releaseLock(l)

Figure 1.7: A program which has three threads but the file f can only be
opened by one thread at a time.

t1
a1 a2 a3 a4

t2
b1

b2

G

t3 c1 c2 c3 c4

a5

(a)

t1
a1 a2 a3 a4

t2 b1 b2

G

a5

(b)

Figure 1.8: (a) The global state G, where Φ is true, is indeed unreachable
because of the implicit order (the dashed arrow) between the two critical sec-
tions. (b) The local view that contains only two of the threads, where G is
mistakenly considered reachable.

tion as shown in Figure 1.8(a). Because of the conditional wait and the lock,

the order a5 → c1 is always implicitly induced during the execution of the

program. Hence, the global state G, where Φ is true, is indeed unreachable.

However, if we try to detect the condition Φ in a local view that contains

only two of the threads (see Figure 1.8(b)), then the global state G could be

mistakenly considered reachable and result in a false-positive.

15

Contributions

In this dissertation, we argue that the synchronization due to locks is

fundamentally different from the potential causality. We present an alterna-

tive model that makes a distinction between the happened-before relation and

the synchronization of locks. Our model, named Loset (Locking Poset), is a

generalization of the poset model. It allows us to detect possibility of violation

of invariants which would not be possible to detect using an arbitrary one of

the posets of parallel computation. Just as a poset is equivalent to possibly

an exponential number of total orders, a loset is equivalent to possibly an

exponential number of posets. Therefore, detecting a predicate on a loset is

equivalent to detecting if that predicate became true in any of the posets.

Given a loset L and a global state G, the reachability problem asks

if G is a reachable global state of L. Note that this problem is trivial for a

poset: G is reachable iff G is a consistent global state [CM91]. However, we

show that the reachability problem for a loset is NP-complete. Our proof uses

NP-completeness of the predicate control problem shown in [Tar00].

Since reachability is NP-complete, in this dissertation we introduce

strongly feasible global states that contain all reachable global states such that

checking whether a global state is strongly feasible for a loset can be done ef-

ficiently. We show that for computations with two threads, the set of strongly

feasible global states is identical to the set of reachable global states. We

also give examples of computations in which a strongly feasible state is not

reachable. However, for many practical applications, strongly feasible global

16

states provide exact approximation of reachability. We have implemented a

predicate detector based on strongly feasible instead of reachability for de-

bugging concurrent computations. The experimental results show that the

strongly feasible property accurately models the reachable global states for all

11 benchmark programs with more than two threads.

We also introduce a subset of reachable global states called lock-free

feasible global states such that we can efficiently check whether a global state

is lock-free feasible in polynomial time. We also show that the set of lock-free

feasible global states forms a finite distributive lattice under the usual less

than relation of global states. Furthermore, we show that the reachability

of a global state G can be determined using only a subset of events which

is located between the greatest lock-free global state that precedes G and G.

Thus, lock-free feasible states act as “reset” points for reachability and can

be used to drastically reduce the time for checking reachability, by checking

reachability in a subcomputation rather than the entire computation.

We note here that reachability of a global state in a parallel computa-

tion has also been solved using SAT/SMT solver [WKGG09,WLGG10,HZ11].

These solvers take exponential amount of time in the worst case. Our focus

in this dissertation is on techniques that take polynomial time. Moreover,

our techniques are orthogonal to techniques using SAT/SMT solvers. Given

a trace of a computation, instead of calculating the reachability of a global

state G from the initial global state, we only need to compute if G is reachable

from its greatest preceding lock-free consistent global state. Moreover, we only

17

need to calculate the reachability with a SAT/SMT solver only if G is strongly

feasible.

1.5 Summary

• ParaMount: We present the first online-and-parallel predicate detector

for detecting general-purpose predicates in concurrent systems. We de-

velop a parallel enumeration algorithm, named ParaMount, which parti-

tions the set of consistent global states into multiple subsets. ParaMount

guarantees that every global state is enumerated exactly once; therefore,

it is applicable for detecting general-purpose predicate. Moreover, the

online property of ParaMount allows it to be run along with the execu-

tion of parallel programs and hence is applicable even to non-terminating

programs. From the experimental results, ParaMount speedups the ex-

isting sequential algorithms up to 11 times with 8 threads. We also

build a simple online-and-parallel predicate detector using ParaMount

to detect data races in concurrent programs. We compare the detection

results from ParaMount with those from another general-purpose pred-

icate detector, RV runtime [MR10], and an online data race detector,

FastTrack [FF09] on several benchmarks. Even though ParaMount is

not specifically designed for detecting data races, the experiments show

that it is still useful even for data races for most benchmarks.

• QuickLex: We develop a fast algorithm, named QuickLex, for enumer-

ating the set of consistent global states of the given poset. In com-

18

parison with the original lexical algorithm, QuickLex has a preprocess-

ing procedure and incorporates dynamic programming to reduce the

time complexity from O(n2) to O(n·∆(P)). We also implement and

compare QuickLex with several existing enumeration algorithms, i.e.,

BFS [CM91, Gar03], Lex [Gan10, Gar03], and Tree [JMN95, HMNS01].

In our experiments, the performance of these existing algorithms are en-

hanced with different techniques. From the experimental results, Quick-

Lex is 7 times faster than Lex and 4–5 times faster than Tree. The

experiments also show that QuickLex can achieve amortized constant

time for a certain type of computations. QuickLex uses almost the same

amount of memory as Lex while Tree requires 2–10 times more memory

than QuickLex.

• Loset Model: We propose a new model called Loset (Locking Poset)

for modeling parallel computations with locking constraints. We first

show that determining the reachability of a global state in a loset is NP-

complete. To cope with the NP-completeness, several useful properties of

the loset model are given. Specifically, if a loset is valid, then all lock-free

feasible global states are reachable. In addition, the set of reachable lock-

free feasible global states forms a distributive lattice. We also show that

lock-free feasible states act as “reset” points for reachability and can be

used to drastically reduce the time for checking reachability. Moreover,

we present a method to calculate the strong feasibility of a global state,

which is an upper approximation of reachability, in polynomial time.

19

The calculation is based on the inferred causality due to the locking

constraints and hence a reachable global state must be strongly feasible.

Finally, we have implemented a predicate detector based on strongly fea-

sible instead of reachability for debugging concurrent computations. Our

experimental results show that the strongly feasible property accurately

models the reachable global states for all 11 benchmark programs with

more than two threads.

1.6 Overview

The reminder of this dissertation is organized as follows. Chapter 2

gives the definition of the conventional poset model, which is based on Lam-

port’s happened-before relation, and introduces the problem of consistent

global states enumeration. Next, we have the three main chapters of this dis-

sertation: Chapter 3 investigates the parallelism of predicate detection prob-

lem. Chapter 4 presents QuickLex – a fast enumeration algorithm. Chapter 5

presents the new model, called Loset, for considering the locking constraint in

parallel computations. Moreover, Chapter 6 studies the reachability of global

states in the loset model. Finally, Chapter 7 concludes the dissertation and

Chapter 8 discusses future directions.

20

Chapter 2

The Computation of Poset Model

In this chapter, we give the definition of poset model, mechanism to track the

relation, and the notion of consistent global states.

2.1 Poset Model

The computation (the execution trace) of a parallel program is com-

monly modeled as a partially ordered set (poset) of events [Lam78]. The

advantage of using the poset model is that the results of predicate detection

do not have false positives [FF09], i.e., if the detector finds a consistent global

state that satisfies the predicate, then there exists a sequence of events to

reach the global state. Hence, it has been widely used for the debugging of

parallel programs [FF09,LC06,CSR08,GW94,CG98,TG97,OG07]. Note that

the model assumes that process and thread scheduling is the only source of

nondeterminism in the program.

A poset P = (E,→) contains a set E of events together with Lamport’s

happened-before (HB) relation [Lam78] (denoted by →). Each event in the

This chapter is previously published in [CG15b].

21

set E of events corresponds to an operation of the program, e.g., a read or

a write operation, the acquisition of a lock, the receiving of a message, etc.)

Moreover, the events in E are partitioned into n sequences E1, E2, · · · , En of

events such that the events belong to the same sequence, say Ei, are totally

ordered, i.e., for all distinct e, f ∈ Ei : (e → f) ∨ (f → e). The sequence Ei

represents the process pi in the computation.

2.2 Causality and the Happened-Before Relation

Give a set E of events, the happened-before relation → is the smallest

binary relation such that:

1. Process Order: If e occurs before f on the same process, then e→ f .

2. Events Synchronization: If e sends a message and f receives the

message, then e→ f .

3. Transitivity: If e→ g and g → f , then e→ f .

For convenience, we define the process order relation (denoted ≺) such that

e ≺ f means e → f in some Ei. In concurrent systems, the happened-before

relation is also established by the following rules [LC06,FF09]:

4. Lock Atomicity: If event e corresponds to a thread releasing a lock and

f corresponds to subsequent acquisition of that lock (including implicit

locks and monitors), then e→ f .

22

e5 e6 e7

e2 e3 e4

e1p1

p3

p2

G''G'G

Figure 2.1: A poset P of events corresponding to an execution of the program.
The global states G and G′′ are consistent global states and G′ is not.

5. Fork-Join: If the parent thread forks a new thread on event e and the

child thread is created on event f , the e→ f . Similarly, if a child thread

terminates on event e and the parent thread joins the child thread on

event f , then e→ f .

6. Wait-Notification: If a thread waits on a monitor on the event e and

a thread sends the notifications of that monitor on f , then e → f . In

addition, if a thread receives the notification on the event f and the

notification is sent from the e, then e→ f .

If events e and f have no happened-before relation, then they are concurrent

(denoted by e ‖ f).

Figure 2.1 shows a graphical representation of a poset. The computa-

tion contains three processes p1, p2, and p3. The horizontal arrows represent

the total order of the events that occur on the same process and the arrows

23

e5 e6 e7

e2 e3 e4

e1p1

p3

p2

[1, 1, 0]

[0, 1, 0]

[0, 2, 0]

[0, 3, 0]

[0, 0, 1] [0, 2, 2] [0, 2, 3]

Figure 2.2: The vector clocks of the events.

Algorithm 1 Calculate vector clock for event e
Input: Event e occurs on process pi.
Output: The vector clock for event e.
1: function calVectorClock(e)
2: e.vc = d.vc . d is the direct predecessor of e.
3: e.vc[i] = d.vc[i] + 1
4: for any event (f → e) ∧ (f 6→ d)) do
5: for j from 1 to n do
6: e.vc[j] = max(e.vc[j], f.vc[j])
7: end for
8: end for
9: end function

across different processes represent the direct happened-before relation be-

tween events on different processes.

During the execution of the program, the happened-before relation be-

tween events is captured using vector clocks [Fid88, Mat88]. A vector clock,

vc, is an array of integers. For an event e, which occurs on process pi, the

integer e.vc[i] is the index of e among the events that occur on pi. For j 6= i,

e.vc[j] is the largest index of event f among the events that occur on process

24

pj such that f → e. Figure 2.2 shows the vector clocks of the computation in

Figure 2.1. The vector clock of the event e7 is [0, 2, 3], which means the index

of the current event e7 is 3. Moreover, the event e3, which has index 2 in p2,

happened before the event e7.

Algorithm 1 shows the procedure for calculating the vector clock e.vc of

any event e, which occurs on process pi, during the execution of the program.

For instance, the vector clock of event e6 in Figure 2.2 is set to [0, 0, 2] because

of its predecessor e5. Then, its vector clock is set to [0, 2, 2] because e3→ e6.

2.3 Global States

A global state G is a subset of E such that

∀e, f ∈ E : (f ∈ G) ∧ (e ≺ f)⇒ (e ∈ G).

In Figure 2.1, {e1, e2, e3} is a global state, but {e1, e3} is not a global state

because it contains e3 but not e2 even though e2 ≺ e3. In the graphical

representation of computation, a global state is drawn as a curved vertical

line and contains all the events on its left. For instance, the global state G in

Figure 2.1 contains the events: e1, e2, and e5.

In this dissertation, a global state can equivalently be identified by the

maximal events of each process, called frontier. These maximal events are

simply represented by an array of integers, in which the i-th integer indicates

the index of the maximal event among the events that occur on process pi.

If the index is zero then no event on the corresponding process is included in

25

e5

e5 e6 e7

e5 e6 e7

e7 e7

e4 e4 e4 e4

G13 G14

G15 G16 G17 G18

G19 G20 G21 G22
e1 e1 e1 e1

e1e1e1e1

e1 e1

G1

G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

1 e5

e5

e5 e6 e7

e5 e6 e7

e2 e2

e3 e3

e4 e4 e4 e4

G2

Figure 2.3: A distributive lattice formed by the set of consistent global states
of the poset shown in Figure 2.1.

the global state. For instance, G′′ in Figure 2.1 is represented by [1, 2, 2]. The

symbol G[i] denotes the maximal event of process pi in G, e.g., G′′[2] refers to

event e3.

2.4 Consistent Global States

A consistent global state G is a subset of E, such that if G includes

any event f , then it also includes all events that happened before f [CL85].

26

Formally, G ⊆ E is a consistent global state if

∀e, f ∈ E : (f ∈ G) ∧ (e→ f)⇒ (e ∈ G).

In Figure 2.1, the global states G and G′′ are consistent and G′ is not, because

e3→ e6 but e3 6∈ G′.

Given a computation, let ≤ be a relation on global states which is

defined as follows:

G ≤ H
def≡ ∀i : 1 ≤ i ≤ n : G[i] ≤ H[i].

It is well known that the set of consistent global states of the computation

forms a lattice [DP90]. Specifically, let M be the meet of G and H (i.e.,

M = G u H) and J be the join of G and H (i.e., J = G t H). If G and H

are consistent global states, then M and J are also consistent global states.

Moreover, the lattice of consistent global states is distributive, i.e., G u (F t

H) = (G u F) t (G uH) and G t (F uH) = (G t F) u (G tH) hold.

Figure 2.3 shows the lattice that is formed by the consistent global

states of the computation in Figure 2.1. Each node of the lattice corresponds

to a consistent global state and the edge label denotes the event that takes

the system from one consistent global state to the other. The objective of a

general-purpose enumeration algorithm is to enumerate every consistent global

state in the lattice at least once.

27

Chapter 3

Online-and-Parallel Enumeration of Con-
sistent Global States

In this chapter, we describe our online-and-parallel predicate detector for de-

tecting general-purpose predicates in concurrent systems.

jPredictor [CSR08] is the first general-purpose predicate detector for

concurrent debugging. It does not have assumptions on the property of the

predicate and ensures that every consistent global state is enumerated at least

once. In jPredictor, the consistent global states of the given poset are enumer-

ated in an offline fashion using the BFS algorithm [CM91]. There are two rea-

sons that jPredicator performs offline detections. First, jPredictor constructs

the computation in a backward fashion. Second, the BFS algorithm [CM91]

cannot enumerate the set of consistent global states incrementally. Conse-

quently, jPredictor has to wait until the program terminates.

In fact, most of the existing enumeration algorithms [CM91, AV01,

Ste86, Squ95, PR93, HMNS01, Gan10, Gar03], whose details are discussed in

section 1.3, are single threaded and can only be used in an offline predicate

This chapter is previously published in [CG15a].

28

detection for terminating programs. Although Jegou et al. [JMN95] had stud-

ied the algorithm for online enumeration, their algorithm cannot enumerate

the set of consistent global states in parallel. The reason is that their al-

gorithm incrementally builds the subset of consistent global states using the

information from previously built subsets.

We have developed the first online-and-parallel algorithm, named Para

-Mount [CG15a]. ParaMount divides the set of consistent global states of a

poset into multiple intervals (subsets) and provides the following two proper-

ties: 1) every consistent global state is contained in one of the intervals and

2) all intervals are disjoint. For each interval, ParaMount can use existing

sequential enumeration algorithms as its subroutine without increasing the

asymptotic work complexity.

In our experiments, we use the breadth-first-strategy (BFS) [CM91]

algorithm or the lexical enumeration algorithm [Gan10,Gar03] for the subrou-

tine. From the experimental results, ParaMount can speed up these sequential

algorithms from 6 to 11 times with 8 threads. The reason for the speed up of

more than 8 is that partitioning the set of global states helps the sequential

algorithm (i.e., BFS) reduce the memory space (which is consumed by inter-

mediate data) and hence the running time that is wasted by Java garbage

collector.

29

t1

t2

e f

g h

Figure 3.1: A poset of events. The consistent global states of the poset are
shown by the dashed lines.

[0,0]

[1,0] [0,1]

[2,0] [1,1]

[2,1] [1,2]

[2,2]

[0,2]

Figure 3.2: The relationship among the consistent global states of the poset
in Figure 3.1. The grayed out global states are inconsistent.

3.1 Partitioning the Set of Consistent Global States

In the rest of this chapter, we use the computation in Figure 3.1 to

show how ParaMount works. In Figure 3.1, all consistent global states of the

poset are shown by the dashed lines. In addition, the relationship among those

consistent global states is illustrated in Figure 3.2, in which the grayed out

global states are inconsistent. The objective of ParaMount is to enumerate the

set of consistent global states in parallel. The symbol G(e) denotes a global

state containing the event e in its frontier. Given a set of global states such that

30

Algorithm 2 ParaMountWorker(P)

Input: A poset of events P .
1: while true do
2: Event e ← P .getNextEventInTotalOrder→p()
3: if e is null then break;
4: Gmin(e) = e.vc. Get least global state from e’s vector clock.
5: Gbnd(e)← P .getBoundaryGlobalState()
6: BoundedEnumeration(P,Gmin(e), Gbnd(e), e) . Enumerate
∀G : Gmin(e) ≤ G ≤ Gbnd(e) using Algorithm 3.

7: end while

each of them contains e in its frontier, let Gmin(e) denote the least global state,

and Gmax(e) denote the greatest global state. In Figure 3.1, Gmin(e) = [1, 0]

and Gmax(e) = [1, 2].

Algorithm 2 shows the worker procedure of ParaMount; each worker

is executed by a thread during the enumeration. Before starting the workers,

ParaMount determines a total order →p among the events in the poset. Since

the poset of events forms a directed acyclic graph (DAG), the order→p can be

calculated using any topological sort algorithm for DAG [CSRL01]. Because

of the topological sort, this property holds:

Property 1. For all events e and f , e→ f ⇒ e→p f .

In addition, two concurrent events e and f can be sorted in either

e →p f or f →p e. In other words, the total order →p among the events is

equivalent to the execution order of the events when the program is run on

one single thread. For the poset in Figure 3.1, the four possible total orders

among the events are:

31

t1

t2

e f

g h

Gbnd(f)

Gbnd(h)

Gbnd(e)

Gbnd(g)

Figure 3.3: The boundary global states of the events in the poset. Assume
that the total order among the events is e→p g →p f →p h.

1. e→p g →p f →p h,

2. e→p g →p h→p f ,

3. g →p e→p h→p f ,

4. g →p e→p f →p h.

Any one of the total orders can be used by ParaMount to partition the set of

global states, which is performed from lines 2 to 5 at Algorithm 2.

The boundary of an interval of global states is defined by two global

states Gmin and Gbnd, which are determined with respect to the events in the

poset. Specifically, ParaMount computes Gmin(e) and Gbnd(e) for each event

e. Then, any global state G such that Gmin(e) ≤ G ≤ Gbnd(e) is contained in

that interval. Here, Gbnd(e) is defined as follows:

Definition 1. Gbnd(e) = {f ∈ E | (f = e) ∨ (f →p e)}.

The examples of Gbnd are shown in Figure 3.3, in which we assume

that the total order among the events is e →p g →p f →p h. For event

32

f , Gbnd(f) includes all events that are totally ordered before f . Hence, we

get Gbnd(f) = [2, 1]. For the same total order, we also get Gbnd(e) = [1, 0],

Gbnd(g) = [1, 1], and Gbnd(h) = [2, 2]. We next show that Gbnd(e) is consistent:

Theorem 1. Gbnd(e) is a consistent global state for all event e.

Proof. To show that Gbnd(e) is consistent, we show that for any event f ∈

Gbnd(e) if there exists any event g such that g → f , then g ∈ Gbnd(e).

From Property 1, g → f implies g →p f . Since f ∈ Gbnd(e), we get

(f = e) ∨ (f →p e) from Definition 1. If (f = e), we get g →p e. And if

(f →p e), we get g →p e because of the transitivity of →p. In both cases,

g ∈ Gbnd(e).

An enumeration interval I(e) of global states corresponding to any event

e is formally defined as follows:

Definition 2. I(e) = {G | Gmin(e) ≤ G ≤ Gbnd(e)}

Figure 3.4 shows the intervals of global states that are calculated for the events

in the poset. In Figure 3.4(a), the global state [0, 0] is a special case and is

always enumerated by the first event in the total order →p, i.e., the event e.

At line 2 of Algorithm 2, ParaMount gets the next event in the total

order →p. If there are no more events, then all intervals are processed. At

line 4, Gmin(e) is simply obtained from the vector clock e.vc. At line 5, Gbnd(e)

is calculated according to the total order among the events in the computation.

33

t1

t2

e f

g h
(a)

t1

t2

e f

g h

(b)

t1

t2

e f

g h
(c)

t1

t2

e f

g h
(d)

Figure 3.4: Assume that the total order among the events is e→p g →p f →p

h, then we get (a) the interval I(e), (b) the interval I(g), (c) the interval I(f),
and (d) the interval I(h) of global states. The global state [0, 0] is a special
case and always belongs to the interval of the first event in the total order→p,
which is the event e.

At line 6 of Algorithm 2, ParaMount enumerates the interval of global state

for the corresponding event.

3.2 Bounded Enumeration Algorithm

ParaMount can use existing sequential algorithm as its subroutine to

enumerate the intervals of global states. However, the sequential algorithm

needs to be modified (or bounded) to provide the two properties. First, it

takes as input the boundary of an interval of global states and enumerates

only the global states in the interval. Second, it enumerates each global state

34

in the given interval exactly once.

We use the lexical enumeration algorithm in [Gan10, Gar03] as an ex-

ample to show the modification for the subroutine. Algorithm 3 shows the

bounded lexical algorithm. The first modification is located at line 1: the

least global state Gmin(e) of event e is used as the initial global state. The

second modification is located at lines 2, 4, and 6: the boundary global state

Gbnd(e) is used to limit the global states that are enumerated by the algorithm.

At line 3, the user specified condition is checked whether it can become true

in current global state G. Lines 5 to 14 is a simplified implementation of the

original lexical enumeration algorithm in [Gan10,Gar03].

Lemma 1. Given an event e in the poset P, Algorithm 3 enumerates every

consistent global state G in the interval I(e) exactly once.

Proof. Suppose there exists a poset Q, which has an initial global state Ginit

and a final global state Gfinal. Lines 5-15 give the least consistent global state

in lexical order as shown in [Gar03]. Specifically, the while loop at line 2

enumerates every global state G of Q such that Ginit ≤ G ≤ Gfinal. By the

definition of Gmin(e), Gmin(e) ≤ Gbnd(e). Algorithm 3 uses the property by

assigning Gmin(e) to Ginit and Gbnd(e) to Gfinal. Hence, Algorithm 3 enumer-

ates every consistent global state G of P exactly once such that Gmin(e) ≤

G ≤ Gbnd(e).

In the evaluation section, the similar modification is applied into the BFS

algorithm [CM91] for comparison.

35

Algorithm 3 BoundedEnumeration(P , Gmin(e), Gbnd(e), e)

Input: A poset P , the new event e, and the least Gmin(e) and boundary
Gbnd(e) global state of e.

1: G← Gmin(e) . G: the current global state.
2: while G ≤ Gbnd(e) do
3: predicate(P,G, e) . Check the predicate upon G.
4: if G = Gbnd(e) then break; . Reached the boundary of I(e).
5: end if

6: k ← n
7: for k ← n to 1 : G[k] ≤ Gbnd(e)[k] do . Select a new event ek to add

into G.
8: Event ek = the next event on thread tk.
9: if ek is enabled then break;

10: end if
11: end for

12: G[k]← G[k] + 1 . Add event ek into G.
13: for i← (k + 1) to n do G[i]← Gmin(e)[i] . Reset events due to lexical

order.
14: end for
15: for i← (k + 1) to n do
16: for j ← 1 to k do
17: Event ej = the current maximal event on tj.
18: G[i]← max(G[i], ei.vc[i])
19: end for
20: end for
21: end while

36

3.3 Correctness of ParaMount

Now we show that every global state is contained in one of the intervals

of global states (Lemma 2) and all intervals are disjoint (Lemma 3).

Lemma 2. In Algorithm 2, for every consistent global state G of the poset P,

there exists an event e such that G ∈ I(e).

Proof. We show that for any consistent global state G in the poset P , there

exists an event e such that Gmin(e) ≤ G ≤ Gbnd(e). Let e be the last event

(with respect to the total order →p) in G. From the definition of Gmin(e),

we get Gmin(e) ≤ G. Since e is the last event in G, for any event f in G,

either (f →p e) or (f = e). Then from the definition of Gbnd(e), we get

G ≤ Gbnd(e).

Lemma 3. In Algorithm 2, for every consistent global state G of the poset P,

there exists at most one e such that G ∈ I(e).

Proof. Suppose event e is the last event (with respect to the total order →p)

in G. We now show that there does not exist any event f 6= e such that

Gmin(f) ≤ G ≤ Gbnd(f). The proof is by contradiction.

Suppose that Gmin(f) ≤ G ≤ Gbnd(f). Since f ∈ Gmin(f), we get

f ∈ G. Because e is the last event in G, we get (f →p e), which implies (e 6=

f)∧ (e 6→p f). From the definition of Gbnd (Definition 1), we get G 6≤ Gbnd(f),

which is a contradiction.

37

Theorem 2. Algorithm 2 enumerates every consistent global state of the poset

P exactly once when it uses Algorithm 3 as a subroutine.

Proof. Follows from Lemma 1, Lemma 2, and Lemma 3.

3.4 Work and Space Complexity of ParaMount

Now we analyze the work complexity of ParaMount when using Algo-

rithm 3 as its subroutine. Suppose that the poset P consists of n threads,

|E| events, |H| pairs of happened-before relation, and i(P) global states. The

work complexity of the topological sort is O(|E|+ |H|). For each worker, the

work complexity is O(n) because it has to store Gmin and Gbnd at lines 4 and

5. Algorithm 3 takes O(n2) work for each global state because of the nested

for loop at lines 11 and 12. Due to Theorem 2, Algorithm 3 cumulatively enu-

merates exactly i(P) global states. As a result, the combination of ParaMount

and Algorithm 3 takes O(n2 · i(P)) work, which is as the same as that of the

sequential lexical algorithm. In this sense, ParaMount is work optimal.

As for space complexity, ParaMount uses O(n) space for storing Gmin

and Gbnd. Hence, the total space complexity of ParaMount is O(n · |E|). Note

that the existing general-purpose predicate detector, RV runtime [MR10], uses

the BFS algorithm [CM91], which consumes memory space exponential in the

number of threads in the poset. Thus, it could run out of memory even for a

moderately sized benchmark.

38

Concurrent
Program

Java Virtual Machine
(JVM)

Execution Path Monitoring

Bounded
Enumeration

Predicate
Evaluation

Vector Clock
Calculation

Global State

Events

Intervals
Online

ParaMount

Done?

No

Yes

Figure 3.5: The framework of our online-and-parallel predicate detector.

3.5 Implementation of Online Predicate Detector

To evaluate the online property of ParaMount, we use it to build an

online-and-parallel predicate detector. Figure 3.5 shows the framework of our

predicate detector, which is described next.

3.5.1 Construction of Poset P

In the first part, the detector captures the events, which are relevant to

the condition to be detected, and their causal dependencies from the observed

execution path of the program. When the program is loaded into JVM in

the first time, the detector uses bytecode injection technique [ASM] to inject

monitoring instructions into the program during runtime. The injected byte-

code are stored in memory, so the original Java program and Java bytecode

are unmodified.

When the program starts, the operations of the program are captured

as events. Then, the events along with their causal dependencies are converted

39

Algorithm 4 calculateVectorClock(t, l)

Input: The thread t, whose pid is i, that acquires the lock l
Output: The vector clock for the new event e of the acquisition.
1: t.vc[i]← t.vc[i] + 1
2: for k ← 1 to n do
3: t.vc[k] = max(t.vc[k], l.vc[k])
4: end for
5: l.vc← t.vc
6: e.vc← t.vc

Algorithm 5 calculateVectorClock(ti, tj)

Input: Thread ti executes an event e that happened-before f ,
which occurs on thread tj.

Output: The vector clocks for events e and f .
1: ti.vc[i]← ti.vc[i] + 1
2: tj.vc[j]← tj.vc[j] + 1
3: for k ← 1 to n do
4: tj.vc[k] = max(ti.vc[k], tj.vc[k])
5: end for
6: e.vc← ti.vc
7: f.vc← tj.vc

into the poset P which is defined in Chapter 2. During bytecode injection,

every thread and lock object is automatically attached with a vector clock.

When a lock-atomicity event is inserted into P , the vector clocks of thread

and lock are updated using Algorithm 4. For example, let event e correspond

to the operation of a thread t acquiring a lock l, then the two vector clocks, t.vc

and l.vc are updated using Algorithm 4. The returned vector clock is copied to

the event’s vector clock e.vc. If the new events are related to fork-join or wait-

notification operations, the vector clock of the involved threads and events are

40

Algorithm 6 OnlineParaMountWorker(P , e)

Input: The new event e to be inserted into the poset P .
1: atomic {
2: Insert e into the data structure of P .
3: Gmin(e) = e.vc
4: Gbnd(e)← P .snapshotOfMaximalEventsOfThreads()
5: }
6: BoundedEnumeration(P , Gmin(e), Gbnd(e), e) . Enumerate the interval
I(e) of global states using Algorithm 3.

updated using Algorithm 5. If the inserted event is a process-ordered event,

the vector clock of the thread is simply incremented and copied to the event.

3.5.2 Online Consistent Global States Enumeration

In the second part, the online detector uses ParaMount to enumerate

global states along with the execution of the concurrent program. When an

event e is captured, a callback function is triggered to insert e into P and to

enumerate I(e). Since multiple events may occur concurrently, the intervals

of global states are enumerated in parallel. By default, the bounded lexical

algorithm is used as the subroutine of ParaMount.

Algorithm 6 shows the worker of ParaMount which is modified for the

online predicate detection. In comparison with Algorithm 2, there are two

differences. First, the worker in Algorithm 6 is instantiated for each interval

of global states. Second, the poset P is not a complete poset because of the

online detection. Hence, the events in P cannot be topologically sorted at this

41

t1

t2

e f

g h

Gbnd(f)

(a)

t1

t2

e f

g h

Gbnd(f)

(b)

Figure 3.6: (a) One possible observed execution path when event e is inserted
into P. Suppose the insertion order is e→p g →p f →p h. (b) Another possible
observed path, in where the insertion order is e→p g →p h→p f .

point. Therefore, we use the order of insertion into the data structure of P

at line 2 as the total order →p. Specifically, the atomic block from line 1 to

5 ensures that the events are inserted sequentially. Furthermore, the injected

callback function ensures that a thread cannot execute the next event until it

has successfully inserted the current event into P . Thus, Property 1 is achieved

by the insertion order of the events.

At line 3, Gmin(e) is obtained from the vector clock of e, which is

calculated using Algorithm 4. At line 4, Gbnd(e) is determined by taking a

snapshot of the maximal events of threads. Figure 3.6 shows an example of

computing Gbnd(f). In Figure 3.6(a), if the insertion order is e→p g →p f →p

h, then the detector will not see h when taking the snapshot for event f . Hence,

our detector gets Gbnd(f) = [2, 1]. Figure 3.6(b) shows another example. If

events e, g, and h are inserted before event f , then it gets Gbnd(f) = [2, 2]. It

is easy to see that the snapshot of maximal events satisfies the definition of

42

Gbnd in Definition 1.

Since ParaMount allows multiple intervals of global states to be enu-

merated in parallel, we need to show that the combination of Algorithm 3 and

Algorithm 6 can be executed concurrently.

Theorem 3. Algorithm 3 and Algorithm 6 can be executed concurrently with-

out violating correctness.

Proof. The freedom from deadlock is obvious since the atomic block of Algo-

rithm 6 can be implemented using one mutex with no wait inside the atomic

block.

We now show that the execution of Algorithm 6 does not affect the

concurrent executions of Algorithm 3. Suppose that Algorithm 3 is enumerat-

ing the global states corresponding to event e and Algorithm 6 is concurrently

inserting event f . Since Algorithm 3 stops at Gbnd(e), it does not require the

information on f . Moreover, the only modification of the poset P happens in

the atomic block of Algorithm 6. Hence, there is no interference between the

two algorithms.

3.5.3 Predicate Evaluation

We use the predicate for detecting data races as an example, because

the condition is easy to understand and requires little knowledge about the

concurrent programs. A data race occurs when a pair of conflicting operations

43

Algorithm 7 predicate(P , G, e)
Input: A global state G and the new event e.
Output: the global state that contains data races.
1: if e.op = W then . e is a write event.
2: for i← 1 to n : e′ ← G[i] do
3: if (e′.op = W ∨R) ∧ sameMemoryAddress(e, e′) then
4: // a data race detected.
5: end if
6: end for
7: else if e.op = R then . e is a read event.
8: for i← 1 to n : e′ ← G[i] do
9: if (e′.op = W) ∧ sameMemoryAddress(e, e′) then

10: // a data race detected.
11: end if
12: end for
13: end if

(e.g., read-write or write-write operations) is executed concurrently by different

threads on the same memory address.

Algorithm 7 detects data races when the current event e is a write or a

read event (line 1 and line 5). Assume that e is a write event. Then the for-loop

at line 2 gets the maximal event e′ of other threads. From the construction

rules in Part I, two process-ordered events of different threads would not have

direct HB relation. Therefore, any two process-ordered events in the frontier

of global state can be executed concurrently. Subsequently, if events e and e′

at line 3 are conflicting operations on the same memory address, then a data

race has detected.

44

t1
v1.w v1.r

v2.r v2.r
v1.r v1.r
v2.w

lock.acquire()

lock.release()

fork()

(a)

t1
ec

v1.w
v2.r

v1.r
v2.w

ec
lock.acquire()

lock.release()

fork()

(b)

Figure 3.7: (a) The original process ordered events. (b) Only the first write
or read event of a variable in a sequence of process ordered events is captured.
Moreover, the events are merged into an event collection, ec.

3.5.4 Other Implementation Details

Our detector captures only the process-ordered events that are relevant

to the predicate, which are the read and write operations of variables. More-

over, multiple consecutive process-ordered events, which are executed by the

same thread, are merged into one event collection. Two process-ordered events

are considered consecutive if there is no fork-join or lock atomicity event be-

tween them. The event collection only stores the first write operation of each

variable. If there is no write operation for that variable, then its first read

45

Algorithm 8 predicateOnEventCollection(P , G, e)
Input: A global state G and the new event e.
Output: the global state that contains data races.
1: if e.op = W then . e is a write event.
2: for i← 1 to n : ec← G[i] do
3: for all e′ ∈ ec do
4: if (e′.op = W ∨R) ∧ sameMemoryAddress(e, e′) then
5: // a data race detected.
6: end if
7: end for
8: end for
9: else if e.op = R then . e is a read event.

10: for i← 1 to n : ec← G[i] do
11: for all e′ ∈ ec do
12: if (e′.op = W) ∧ sameMemoryAddress(e, e′) then
13: // a data race detected.
14: end if
15: end for
16: end for
17: end if

operation is stored. In addition, the events in the same event collection share

the same vector clock.

Figure 3.7 shows an example. At the left side of Figure 3.7(a), thread

t1 performs a write and then a read operation on variable v1. In addition, it

performs two read operations on variable v2. Then, our detector only inserts

the first write event for v1 and the first read event for v2 into P , as shown

at the left side of Figure 3.7(b). The events in the event collection ec will

share the same vector clock and ec is used as an event instance during the

enumeration of global states. Algorithm 8 shows the modified predicate for

46

Table 3.1: The benchmarks for evaluating ParaMount.

Benchmark n #events #CGS

d-300 10 300 42million
d-500 10 500 237million
d-10K 10 10,000 4,962million
bank 8 96 815million
tsp 8 10,528 13million
hedc 12 216 4,486million

elevator 12 38,528 27,643million

the implementation. The loops at lines 2 and 7 retrieve the event collection

on each thread, then the inner loops at lines 4 and 9 check whether the event

collection contain any event that conflicts with the current event.

3.6 Evaluation

3.6.1 Experimental Results of ParaMount

Table 3.1 shows the benchmarks that are used in the experiment. The

benchmarks with the prefix “d-” are randomly generated posets for model-

ing distributed computations. The benchmarks bank, tsp, hedc, and elevator

are the posets that are generated from real-world concurrent programs. The

benchmark banking is a toy program for demonstrating typical error patterns

in concurrent programs [FNU03]; tsp is a parallel solver for the traveling sales-

man problem; hedc is a crawler for searching Internet archives; and elevator is

a discrete event simulator for an elevator system. The benchmark programs

tsp, hedc, and elevator are also used in [CSR08,FF09,vPG01]. Every program

is run once and its execution trace is converted to a poset of events using

47

Table 3.2: The running time (seconds) of BFS algorithm and ParaMount.

Benchmark BFS BPara(1) BPara(2) BPara(4) BPara(8)

d-300 47.0 35.9 19.4 10.6 6.9
d-500 380.8 195.4 100.5 54.5 33.6
d-10K 8,599.1 4,089.0 2,190.5 1,150.4 757.7
bank o.o.m. 635.3 521.4 372.4 302.5
tsp 8.6 7.1 3.7 1.9 1.1
hedc o.o.m. 10,850.7 10,182.2 8,032.5 4,646.9

elevator o.o.m. 28,655.3 13,903.2 6,985.4 3,696.2

o.o.m.: Out of memeory.

the rules that had been discussed in the implementation section. Then the

enumeration algorithm takes as input the poset and outputs the set of global

states of that poset. The column ”n” shows the number of threads or processes

in the poset.

Now we evaluate the performance of ParaMount, whose subroutine uses

bounded BFS algorithm (which is modified from the BFS algorithm [CM91]

and denoted by B-Para) or bounded lexical algorithm (which is modified from

the lexical algorithm in [Gan10, Gar03] and denoted by L-Para). Note that

the BFS algorithm in [CM91] may enumerate the same global state multiple

times. In this experiment, we have enhanced it with the technique mentioned

in [Gar03], so the BFS algorithm and the subroutine of B-Para enumerates

every global state exactly once.

Table 3.2 and Table 3.3 show the running times of the compared al-

gorithms. The number of threads that are used by B-Para and L-Para are

shown in the parentheses. All the experiments are conducted on a Linux ma-

48

Table 3.3: The running time (seconds) of the lexical algorithm and ParaMount.

Benchmark Lexical LPara(1) LPara(2) LPara(4) LPara(8)

d-300 3.4 3.5 1.5 0.8 0.5
d-500 17.8 15.3 7.6 3.9 2.1
d-10K 406.8 327.3 163.4 105.0 43.1
bank 50.8 40.3 20.5 11.0 5.8
tsp 1.6 1.5 0.8 0.4 2.3
hedc 487.4 406.5 203.3 110.8 72.1

elevator 4,233.8 3,491.6 1,742.7 870.2 435.7

chine with an Intel Core i7 1.6 GHz CPU and the heap size of Java virtual

machine is limited to 2GB. The running time is wall-clock time measured in

seconds.

From Table 3.1, BFS algorithm has the worst performance because

of its expensive time complexity. Moreover, it failed to finish almost half of

the benchmarks because it ran out of the available memory (o.o.m.). The

reason is that BFS algorithm has to store intermediate global states for future

enumerations and the number of the intermediate global states might grow

exponentially in the number of threads in the worst case. In B-Para, the

benchmarks bank, hedc, and elevator are able to finish because the set of global

states are partitioned into multiple small subsets; each of which induces much

fewer number of intermediate global states and hence the consumed memory

can be less than 2GB.

Partitioning the set of global states helps the performance of the origi-

nal enumeration algorithm. Figure 3.8 show the speedup rate of B-Para with

49

1 2 4 8
1

2.5

5

7.5

10

12

Number of Threads

S
p

ee
d
u
p

R
at

e

d-300
d-500
d-10k
tsp

Figure 3.8: Speedup rate of B-Para with respect to the sequential BFS algo-
rithm.

respect to the running time of BFS algorithm. The speedup rate on bench-

marks bank, hedc, and elevator are not shown because BFS algorithm cannot

finish the enumeration. When B-Para uses one single thread, its performance

can be even faster than the original BFS algorithm. The reason is that BFS

algorithm continuously triggers Java garbage collector to release the memory,

which is used for storing the intermediate global states. In B-Para, the number

of intermediate global states is reduced and hence the running time spent by

Java garbage collector is significantly reduced. Moreover, B-Para can be up

to 11 times faster than BFS algorithm when using 8 threads.

Figure 3.9 show the speedup rate of L-Para with respect to the se-

quential lexical algorithm. We show 4 of the benchmarks because the other

benchmarks have the similar trend. For lexical algorithm, partitioning the set

of global states still helps the performance for most benchmarks. When us-

ing one single thread, L-Para can reduce 20% of the running time in average.

50

1 2 4 8
1

2.5

5

7.5

10

Number of Threads

S
p

ee
d
u
p

ra
te

d-300
d-10k
hedc

elevator

Figure 3.9: Speedup rate of L-Para with respect to the sequential lexical al-
gorithm.

When using 8 threads, L-Para can be 6 to 10 times faster than the original

lexical algorithm. The reason that ParaMount sometimes shows superlinear

speedup is that partitioning the set of consistent global states transforms the

original problem into multiple sub-problems that are much easier to solve.

Figure 3.10 shows the memory usage of lexical algorithm and L-Para.

Since lexical algorithm is stateless, the memory is mainly used to store the

poset, which is the input itself. Although ParaMount requires additional space

to store Gmin(e) and Gbnd(e) for each event e, the consumed memory is quite

small. For most of the benchmarks, the memory usage of ParaMount is iden-

tical to that of the original enumeration algorithm.

3.6.2 Experimental Results of Online Predicate Detection

To evaluate the online property of ParaMount, we use it to implement

an online-and-parallel predicate detector and then use the detector to detect

51

d-300
d-500

d-10k
bank tsp hedc

elevator
0

50

100

Benchmark

M
em

or
y

(M
B

) Lexical

L-Para w/ 8 threads

Figure 3.10: Memory usage of the lexical algorithm and L-Para.

data races in concurrent programs. In this experiment, the bounded lexical

algorithm is used as the subroutine of ParaMount.

Table 3.4 shows the benchmarks that are used in the experiment. “LoC”

shows the lines of code. “Thread” shows the number of threads that are used

to drive each benchmark and ParaMount; after a thread executes an event, the

thread is immediately used to enumerate the interval of global states. Thus,

no additional threads are spawn for ParaMount. “#Var” shows the number

of variables of the benchmark.

Besides the concurrent benchmarks that are used in previous exper-

iment, we also use the following benchmarks. Benchmarks set (faulty) and

set (correct) are incorrect and correct implementations of the concurrent set

[HS08]; arraylist1 is a non-thread-safe container and arraylist2 is a thread-safe

container from Java library; sor is a scientific computation application; and

raytracer is a benchmark for measuring the performance of a 3D raytracer.

52

Table 3.4: The information of the benchmarks for data race detection.

Benchmark LoC Thread # Var

banking 139 4 7
set (faulty) 223 4 10
set (correct) 260 4 10
arraylist1 1,474 4 6
arraylist2 1,377 4 16
sor 255 4 20
elevator 547 4 23
tsp 702 4 36
raytracer 1,885 4 77
hedc 25,027 8 345

The benchmarks sor and raytracer are also used in [CSR08,FF09,vPG01].

We compare our online-and-parallel predicate detector (denoted as Para-

Mount) with another general predicate detector, RV runtime [MR10], and an

online race detector, FastTrack [FF09]. We chose RV runtime because it is

the successor of jPredictor [CSR08] and it uses the notion of predicate de-

tection. The enumeration algorithm that is used in RV runtime is the BFS

algorithm [CM91]. We chose FastTrack because it is the fastest online race

detector that uses the technique of vector clocks, even though its algorithm

detects only data races. The input of each detector is a concurrent program

and the output is a list of variables with data races.

The experimental results are shown in Table 3.5, in which the column

“Base” shows the original execution time of the benchmarks. Each running

time of ParaMount, RV runtime, and FastTrack includes the time to inject

bytecode for monitoring, to execute the benchmark program, and to perform

53

Table 3.5: The result of data race detection.

Benchmark
Running Time (ms) # Detection

Base
Para-
Mount

RV
runtime

Fast-
Track

Para-
Mount

RV
runtime

Fast-
Track

banking 3 72 32,000 40 1 1 1
set (faulty) 61 152 37,000 428 1 3 1
set (correct) 94 110 39,000 468 0 3 1
arraylist1 3 7 exception 29 3 4a 3
arraylist2 4 5 exception 4 0 – 0
sor 19 81 41,000 179 0 0 0
elevator 16,000 16,000 83,000 16,000 0 0 0
tsp 7 114 exception 146 1 – 1
raytracer 32 1240 o.o.m. 998 1 0b 1
hedc 241 940 exception 1,140 4 – 4

aAcquired before the exception is thrown.
bThe field with data races is not shown in the candidate list of RV runtime.

predicate detection. In RV runtime, bytecode injection and predicate detection

are performed in offline; and in both ParaMount and FastTrack, they are per-

formed in online. The running time is wall-time measure in milliseconds. The

benchmark elevator contains several sleep() function calls, which dominate

the overall running time, so its running time is almost the same on different

detectors; except the one on RV runtime. The numbers of the variables that

have data races are also shown in the table.

On average, RV runtime takes 15 seconds to inject the monitor instru-

ments into the benchmark programs. Without considering the running time

of bytecode injection, RV runtime still requires 15 seconds or more to finish

predicate detection for most of the benchmarks while our predicate detector is

able to finish within one second. In the benchmark raytracer, RV runtime ran

54

out of the available memory because its BFS enumeration algorithm requires

exponential memory space. Furthermore, RV runtime reported a false alarm

on the benchmark – arraylist1. The reported variable is located in the test

driver and its data race is benign; however, both our predicate detector and

FastTrack can correctly rule out the variable. In set (faulty) and set (correct),

RV runtime reported several benign races. Moreover, it failed to detect the

data race in raytracer. Currently, the results of RV runtime are not completely

collected because the tool throws exceptions on some benchmarks.

When compared with FastTrack, the experiments show that ParaMount

is as fast as FastTrack for most benchmarks even though its enumeration

strategy is not specifically designed for detecting data races. In set (faulty) and

set (correct), the concurrent set uses a single linked list to store the data; the

linked list is synchronized using a fine-grained hand-over-hand lock-mechanism

[HS08]. Whenever a new data is added to the set, a node object of the linked

list is created. In set (faulty), the variable next of a node has data races

because the variable will be illegally accessed when a thread is adding a new

entry and another thread is removing an existing entry.

In set (correct), the access of the variable next is always protected by a

lock. However, the variable next is initialized without the protection of locks;

consequently, FastTrack reports the variable even if it is well protected in

subsequent accesses. In our implementation, we do not consider initialization

events to ever cause the data race since no other thread can have reference to

uninstantiated object or variable. In this manner we avoid reporting benign

55

Table 3.6: Comparisons of the predicate detectors.

Detector Type
Poset

Construction
Global States
Enumeration

Predicate
Assumption

ParaMount Online 1-pass Parallel No assumption

RV runtime Offline
2-passes

optimization
Sequential No assumption

FastTrack Online 1-pass No enumeration
involved

Data races

races due to initialization. The source code and the proof of the correctness

of the benchmark set (correct) are available in [HS08].

Table 3.6 lists the properties of the detectors that are used in this

experiment. RV runtime is an offline predicate detector and hence it can

construct the poset of events in 2-passes. It first logs the event on the observed

execution path and then uses a pre-processor to optimize the poset of events

with respect to the property of the predicate. The construction method [FF09,

LC06] used by FastTrack and ParaMount is 1-pass and hence is difficult to

optimize; however, it can be used in an online fashion.

For enumeration of global states, RV runtime uses the BFS algorithm

[CM91] to perform offline enumeration. The enumeration algorithm is general-

purpose, which makes no assumptions on the nature of the predicate and guar-

antees that every global state is enumerated at least once. Unfortunately, the

algorithm may enumerate the same global state multiple times. ParaMount

is also general-purpose but it ensures that every global state is enumerated

exactly once. FastTrack does not have any algorithm for global states enumer-

56

Algorithm 9 predicate2(P , G, ei)
Input: A poset P , a global state G, and the new event ei.
1: count← 0
2: if ei is an event of transfer then
3: for i 6= j : j ← 1 to n do
4: if G[j] is an event of transfer then
5: count← count+ 1
6: end if
7: end for
8: if count > capacity then
9: // the system may be overwhelmed.

10: end if
11: end if

ation, because its detection method is particularly designed for data races.

3.7 Other Predicate Examples

Algorithm 7 detects the condition of the form (e1 = a∧ e2 = b), where

e1 and e2 are events on two threads, and a and b are the conditions for the two

events. Now we show a predicate of the form (e1 + ...+ en = a) in Algorithm

9. In the benchmark banking, the function transfer is invoked to transfer an

amount of money between accounts. Suppose that the computational capacity

of the user’s system cannot handle more than a number, say capacity, of trans-

fers at the same time. Therefore, a programmer has developed an algorithm

using Java monitors or locks. To check if the algorithm works correctly, the

programmer can insert an event before each invocation of transfer and sum

up the number of invocations. Algorithm 9 defines the predicate for detecting

57

Algorithm 10 predicate3(P , G, ei)
1: count← 1
2: if ei is an elevator event then
3: for i 6= j : j ← 1 to n do
4: if G[j] is an elevator event ∧ G[j].f loor = ei.f loor∧G[j].dir = ei.dir

then
5: count← count+ 1
6: end if
7: end for
8: if count > 2 then
9: // the predicate is detected.

10: end if
11: end if

the condition.

As another example condition in the benchmark elevator, which simu-

lates the elevator system of a building and each elevator is a thread. Suppose

that a programmer has developed an algorithm to synchronize the elevators

so that no more than three elevators, which are heading the same direction,

stop at the same floor concurrently. To detect the predicate, the program

can declare two more variables dir and floor in the event to log an elevator’s

direction and floor. When the elevator stops at any floor, the event is inserted

into P . Algorithm 10 defines the predicate, in which the if condition at line 4

checks for the condition.

58

Chapter 4

A Fast Enumeration Algorithm for Con-
sistent Global States

In this chapter, we present QuickLex – a fast enumeration algorithm for consis-

tent global state – and compare it with the BFS algorithm [CM91], the Tree al-

gorithm [JMN95,HMNS01], and the original lexical algorithm [Gan10,Gar03].

The example computation and its corresponding lattice of consistent global

states that are used in this chapter are shown in Figure 4.1 and Figure 4.2,

respectively.

The first general-purpose enumeration algorithm for predicate detection

is introduced by Cooper and Marzullo [CM91]. The algorithm uses a breadth

first strategy (BFS) to enumeration consistent global states and requires O(n3)

time and exponential space in n, where n is the number of processes in the

computation P . The BFS algorithm enumerates the lattice of consistent global

states one level at a time; the consistent global states at the same level of

lattice consists the same number of events. When the algorithm enumerates

the consistent global states in one level, it needs to store the consistent global

This chapter is previously published in [CG15b].

59

e5 e6 e7

e2 e3 e4

e1p1

p3

p2

ML

Figure 4.1: A poset P of events corresponding to an execution of the program.

e5

e5 e6 e7

e5 e6 e7

e7 e7

e4 e4 e4 e4

G13 G14

G15 G16 G17 G18

G19 G20 G21 G22
e1 e1 e1 e1

e1e1e1e1

e1 e1

G1

G3 G4

G5 G6 G7 G8

G9 G10 G11 G12

1 e5

e5

e5 e6 e7

e5 e6 e7

e2 e2

e3 e3

e4 e4 e4 e4

G2

Figure 4.2: A lattice formed by the set of consistent global states of the poset
shown in Figure 4.1.

60

states in the next level in a queue for future enumeration. In the worst case,

the number of consistent global states at one level can be exponential in n.

Jegou et al. [JMN95] and Habib et al. [HMNS01] propose the Tree algo-

rithm, which improves the space complexity of the first algorithm that enumer-

ates consistent global states in a combinatorial Gray code manner [PR93]. The

Tree algorithm uses O(∆(P)) time, where ∆(P) is the maximal in-degree of

any event in the computation. The algorithm first finds a backward spanning

tree in the lattice of consistent global states, where the root is the global state

that contains all events of the computation, e.g., the global state G22 shown in

Figure 4.2; G22 is the global state [1, 3, 3] in Figure 4.1. Then, it traverses the

spanning three in a depth-first manner. The Tree algorithm [JMN95,HMNS01]

requires a stack to store the intermediate information regarding its spanning

tree. The size of the stack is equal to the total number of events in the com-

putation in the worst case. Hence, its space complexity is O(|E|).

The lexical algorithm [Gan10, Gar03] explores the lattice of consistent

global states using a pre-defined total order, called lexical order, among the

consistent global states. The order <x is defined as follows:

G <x G
′ ≡ ∃k : (∀i : 1 ≤ i < k : G[i] = G′[i]) ∧ (G[k] < G′[k]),

where G and G′ are two arbitrary consistent global states in the lattice. In

Figure 4.2, the lexical order of the two global states G2 = [0, 0, 1] and G3 =

[0, 1, 0] is G2 <x G3, where k = 2. The number of each global state in

Figure 4.2 is its lexical order among the consistent global states in the lattice.

61

The lexical algorithm requires O(n) space besides the input, i.e., the

computation, because it avoids storing any intermediate consistent global state

by exploiting the fact that the graph is a distributive lattice generated from the

poset of the computation. The O(n) space is only used for storing the vector

clock that represents the current global state. Table 4.1 summarizes the time

and space complexity of the above-mentioned enumeration algorithms.

In this chapter, we present QuickLex which reduces the time complex-

ity of the original lexical algorithm [Gan10,Gar03] from O(n2) to O(n·∆(P)).

The time complexity of QuickLex can be reduced to O(n) for the commonly

used model of computations [CSR08,LC06,FF09,HMNS01,JMN95], in which

most events send and receive at most one message. Both QuickLex and Lex al-

gorithms enumerate consistent global states in the same order. However, they

are fundamentally different in computing the next consistent global state in

the lexical order. The Lex algorithm simply uses the current consistent global

state and vector clocks to determine the next consistent global state. Thus,

it has to repeatedly calculate the information that is reusable. QuickLex re-

duces the computational cost using two approaches. First, it preprocesses the

computation and pre-calculates the statically reusable information. Second, it

incorporates dynamic programming to reuse the dynamic information during

the enumeration. Although QuickLex uses O(n2) space for dynamic program-

ming; however, the additional space is insignificant from our experimental

results.

62

Table 4.1: Time and space complexity of the related enumeration algorithms.

Algorithms Time per CGS Space

BFS [CM91] O(n3) exp. in n
Tree [JMN95,HMNS01] O(∆(P)) O(|E|)
Lex [Gan10,Gar03] O(n2) O(n)

QuickLex [CG15b] O(n·∆(P)) O(n2)

n: the number of processes in the computation P.
E: the set of events in P.
∆(P): the maximal in-degree of any event in P.

Number = 1 2 ... 2

digits

digits: high order low order

(a)

indices

Global State = [1, 2, ..., 2]
p2p1 pn

processes: high priority low priority
(b)

Figure 4.3: (a) A number consists of multiple digits. The digits at the left
are high order digit and those at the right are low order digits. (b) A global
state that is represented by an array of indexes. The array can be considered
as a number and each index as a digit of that number. The processes whose
indexes are located at the left are high priority processes and the processes
whose indexes at the right are low priority processes.

4.1 Overview of QuickLex

In QuickLex, the array of indices of a global state is considered as a

number and each index is a single digit of that number. Figure 4.3 shows the

mapping between an array of indices and a number of digits. In a global state,

the processes at the left are high priority processes and those at the right are

low priority processes.

To advance from one global state to the other (which is also referred

63

Algorithm 11 QuickLex(P)

Input: A computation P with L as the least global state andM as the greatest
global state.

1: G := L . Use L as the initial global state.
2: for every event e in P do locateRemoteEvents(e)
3: initialStacks()
4: while true do
5: enumerate(G) . Evaluate the predicate on G.
6: k := propagate(G,M) . Find pk to propagate.
7: if k < 1 then break . true: no process to propagate.
8: G[k] := G[k] + 1 . Add the new event ek into G.
9: reset(G, k) . Reset the maximal events of lower priority processes,

i.e., pk+1 to pn.
10: end while

as one iteration) in the lexical order, we use the notion of carrying over from

arithmetic addition, in which we continuously add one to the low-order digit of

a number and propagate the carry to a higher order digit that has not reached

its limit. Then, all lower order digits are reset to their least value.

Similarly, QuickLex contains two main parts. The first part adds the

next event of the least priority process pn into the current global state. If the

next event of pn is not available (e.g., if the limit of the digit is reached), the

carry is propagated to a higher priority process, say pk. The second part resets

the maximal events of lower priority processes, i.e., p(k+1) to pn.

Algorithm 11 shows the pseudo code of QuickLex, which takes as in-

put a computation P . The least global state L and the greatest global state

M of P are acquired from the computation itself and no additional calcu-

lation is needed. Take the computation in Figure 4.1 for example, where

64

L = [0, 0, 0] and M = [1, 3, 3]. QuickLex enumerates every global state G

such that L ≤x G ≤x M . The function locateRemoteEvents at line 2

pre-calculates the reusable information for the propagate procedure. The

function initializeStack at line 3 initializes the memory space for dynamic

programming, which speeds up the reset procedure.

Part 1 (lines 6-8): Informally, an event is enabled if it can be added

into the current global state G without violating the consistency of G. There

might be multiple enabled events with respect to G. Since we enumerate global

states in the lexical order, the propagate procedure locates the enabled event

that occurs on the process that has the least priority, say pk. If k is 0, then

the next global state has exceeded the maximal global state M and hence the

enumeration is terminated; otherwise, the enabled event is added into G.

Once k is decided by the propagate procedure, the processes in the

computation are divided into two sets: Ph and Pl. The set Ph of processes

contains the processes whose priorities are higher or equal to process pk, and

Pl contains those whose priorities are lower than pk. In Figure 4.1, for example,

if k = 2, then the set Ph = {p1, p2} and the set Pl = {p3}. From now on, the

symbols ph and pl denote an arbitrary process in Ph and Pl, respectively. In

addition, the condition h ≤ k < l always holds.

Part 2 (line 9): After part 1, the maximal events for Ph are decided

and fixed. Thus, we need to ensure that all the events of Pl that happened

before the events of Ph are included in the next global state. We define the

maximum dependency event of any process pl as the event, which has the

65

largest index among the events that occur on pl, that has to be included in

G due to the consistency of the HB relation. The procedure reset finds the

maximum dependency event for every pl.

The details of the first and second part of QuickLex are described next.

4.2 Part 1: Procedure propagate and Enabled Events

The procedure propagate determines the next enabled event to be

included in the global state G for lexical enumeration. We use the compu-

tation in Figure 4.1 and the lattice in Figure 4.2 to show how the procedure

propagate works during an iteration of QuickLex. Assume that the current

global state is G2 = [0, 0, 1] and thus the next global state to be enumerated

is G3 = [0, 1, 0]. The advancement from G2 to G3 is shown as a dashed arrow

in Figure 4.2. First, event e6 is considered as the next event to be added into

G2. However, e6 cannot be included in G2 because e3 → e6 and e3 6∈ G2,

i.e., e6 is not enabled. Thus, the carry is propagated to p2. Since event e2 is

enabled, it is added to G2. Now, we have reached an intermediate global state

[0, 1, 1]. In the second part of QuickLex, the maximal event G[3] of p3 will be

reset to 0 and hence G3 = [0, 1, 0] is reached.

Definition 3. An event e is enabled in a global state G iff all events that

happened before e are included in G.

Assuming that event e occurs on process pi, this condition can be de-

66

termined using the property of vector clocks [Fid88,Mat88]:

(e.vc[i] = G[i] + 1) ∧ (∀j 6= i : e.vc[j] ≤ G[j]).

Unfortunately, it takes O(n) time to compare the vector clocks in the latter

part of the condition. QuickLex reduces the time complexity by pre-calculating

the remote events for each event and an event is enabled if all of its remote

events have been included in the current consistent global state G.

Informally, if an event r sends a message to an event e, r is the remote

event of e. Formally, an event r is a remote event of event e if 1) r → e, 2)

r and e occur on different processes, and 3) there does not exist any event f

such that r → f → e. If an event does not have any remote event, it is a

local event. In Figure 4.1, for example, event e6’s remote event is event e3,

and event e6’s remote event is event e3. Events e2, e3, e4, e5, and e7 are

local events. Similarly, event d is the predecessor of e if 1) d → e, 2) d and e

occur on the same process, and 3) there does not exist any event f such that

d→ f → e. In Figure 4.1, event e6’s predecessor is e5.

QuickLex uses the following theorem to reduce the time complexity to

O(∆(P)), where ∆(P) is the maximal number of remote events for any event:

Theorem 4. Let R(e) be the set of remote events of event e, which occurs on

process pi, and event d be the predecessor of e, then e is enabled iff d ∈ G and

∀r ∈ R(e) : r ∈ G.

Proof. (⇒): From Definition 3.

67

(⇐): The proof is shown by the information of vector clocks. Assume

that the predecessor d of e is included in G, we get (e.vc[i] = G[i] + 1).

Since d is included in G, we also get ∀j : 1 ≤ j ≤ n : d.vc[j] ≤ G[j]

due to the property of vector clocks. Assume that all remote events of e are

also included in G, we get ∀r ∈ R(e) : (∀j : 1 ≤ j ≤ n : r.vc[j] ≤ G[j]). From

the property of vector clocks, we get (∀j 6= i : e.vc[j] ≤ G[j]). As a result, e is

enabled when its predecessor and all remote events are included in G.

Theorem 4 reduces the computational cost of the procedure that de-

termines whether event e is enabled by ignoring the events that transitively

happened before e. For example, if event e is a local event, which does not

have any remote event, then e is enabled when its predecessor is included in G.

In a computation P , ∆(P) is at most (n−1) because there are at most (n−1)

events that occur on different processes and send messages to e. If any event in

P can have at most one remote event [CSR08,LC06,FF09,HMNS01,JMN95],

then ∆(P) is O(1). Note that the Tree algorithm [HMNS01,JMN95] also uses

this assumption to reduce its time complexity.

Algorithm 12 shows a procedure which uses the property of vector

clocks to locate the set R(e) of remote events for any event e. The func-

tion has two steps. In the first step (lines 2-5), the vector clock of e and that

of e’s predecessor are compared. If the i-th value (except the one for e itself)

of e’s vector clock is updated, then a new HB relation is established between e

and event(i, e.vc[i]), which is the event, whose index is e.vc[i], that occurs on

68

Algorithm 12 Locate the set R(e) of remote events for event e

Input: An event e of the computation P .
Output: The set R(e) of remote events for the event e.
1: function locateRemoteEvents(e)
2: Let d be e’s predecessor.

. The following loop finds the new HB relation on event e.
3: for i from 1 to n except e.pid do . e.pid is the id of the process on

which e occurs.
4: if d.vc[i] 6= e.vc[i] then Add event(i, e.vc[i]) into RCandidate.
5: end for

. The following loop finds the direct HB relation on event e.
6: for every r ∈ RCandidate do
7: Let r′ be any other event in RCandidate.
8: if r.vc[r.pid] is larger than all r′.vc[r.pid] then Add r to R(e).
9: end for

10: end function

process pi. However, we are interested in only direct HB relation because of

Theorem 4. Thus, the second step (lines 6-9) uses another property of vector

clocks: if event r has not happened-before event r′, then the vector clock of r′

does not contain r’s latest clock value, i.e., r.vc[r.pid], where pid is the id of

the process on which r occurs. Note that Algorithm 12 is executed only once

at the beginning of QuickLex and the calculated R(e) for event e is reused

during the enumeration.

Algorithm 13 shows the procedure propagate. The procedure decides

which process to propagate starting from the least to the highest priority

processes in order to follow the lexical order. Moreover, the event that occurs

69

Algorithm 13 Procedure propagate and Function isEnabled

Input: The maximal global state M .
Output: The process pk to propagate.
1: procedure propagate(G,M)
2: for k from n to 1 do . From pn to p1.
3: if G[k] + 1 ≤M [k] then . G+ ek ≤x M
4: ek := the next event on process pk.
5: if isEnabled(G, ek) then return k
6: end if
7: end for
8: return 0 . No process to propagate.
9: end procedure

Input: The next event ek on process pk.
Output: Returns true if ek is enabled w.r.t. G.
10: function isEnabled(G, ek)
11: if ek is a local event then return true
12: if ∀r ∈ R(ek) s.t. r.vc[r.pid] > G[r.pid] then return true . r.pid is the

id of the process on which r occurs.
13: return false
14: end function

70

after the currently maximal event of process pk is chosen. Thus, the predecessor

of ek is always included in G. The function isEnabled checks if either one of

the following two conditions holds to determine whether ek is enabled: 1) ek

is a local event or 2) all remote events of ek are included in G. If any event

in the computation has at most one remote event, then isEnabled takes

constant time. If ek is enabled, then propagate has found the process pk and

it returns k. If the process pk does not exist, which implies that M is reached,

then propagate returns 0.

4.3 Part 2: Procedure reset and Maximum Depen-
dency Events

The maximal events of Pl are not always reset to index 0. Assume that

we are advancing from G12 = [0, 3, 3] to G13 = [1, 1, 0] in Figure 4.2. After

propagate decides k = 1, we reach the intermediate global state [1, 3, 3].

However, we cannot simply reset the global state to [1, 0, 0] because it is not

consistent; it includes e1 but does not include e2 even though e2 → e1 (see

Figure 4.1). So, the procedure reset has to find the maximum dependency

events of p2 and p3 that would satisfy the consistency of the global state.

From now on, the symbol Gm[l] denotes the maximum dependency

event of pl, which becomes the maximal event G[l] of pl after reset. When

ek is decided, the maximal events of Ph are also decided. The maximum

dependency event Gm[l] for every pl can be calculated using the property of

71

p1

p2

p3

p5

G[1].vc[5]=2

Ph
Pl

G[2].vc[5]=1

G[3].vc[5]=4

pk=4
G[4].vc[5]=3

G

idx = 1 2 3 4

G[1]

e1 e2 e3 e4
the maximum dependency event for p5

X5(1)=2

X5(2)=2

X5(3)=4

X5(4)=4

G[2]

G[3]

G[4]

p1:2
p3:4 top

index value (val)

stack5

X5(5)=4

Figure 4.4: The symbol Xl(i) denotes the function max1≤j≤iG[j].vc[l]. The
upside-down stack5 on the right is the actual stackl that is used by QuickLex.

vector clocks:

Gm[l] = max
1≤j≤n

(G[j].vc[l])

For simplicity, we use the symbolXl(i) to denote the expression max1≤j≤i(G[j].vc[l]).

We next use the computation in Figure 4.4 to explain how the maximum de-

pendency event Gm[l] of a process pl is identified by Xl(n).

In Figure 4.4, the events e1, e2, e3, and e4 are four events that occur

on process p5. Assume that their indices are 1, 2, 3, and 4, respectively.

Suppose that k = 4. Thus, G[4] is the new event ek. The fifth indices of

the vector clocks of the maximal events of p1, p2, p3, and p4 are shown in the

figure (i.e., G[1].vc[5], G[2].vc[5], G[3].vc[5], and G[4].vc[5]). The bold arrows

between events are the HB relations that are obtained from these indices.

Since G[3].vc[5] has the largest index, i.e., 4, it follows that e4 is the maximum

dependency event of p5. In other words, Gm[5] = X5(4) = 4.

In fact, Gm[l] can be identified by Xl(k) instead of Xl(n):

72

Theorem 5. For a global state G, k, and any process pl, Xl(i) = Xl(k) for

all i > k.

Proof. Assume that the condition is not true, i.e., ∃i : i > k : Xl(i) > Xl(k).

The condition implies that Gm[l]→ ei, which is an event that occurs on process

pi. Because i > k, we get pi ∈ Pl and thus ei → Gm[i]; so ei is included in G.

Moreover, since Gm[i] is a maximal dependency event, there exists an event

eh such that Gm[i]→ eh, where eh occurs on a process ph, where h ≤ k.

Due to the transitivity of HB relation, we get Gm[l]→ ei → Gm[i]→ eh

and hence Xl(h) also contains the largest value of Xl(i). Since h ≤ k < i, we

get Xl(h) = Xl(k) = Xl(i), which contradicts the assumption.

According to Theorem 5, Xl(k) has the largest clock value among Xl(i)

for all i. Consequently, Gm[l] can be identified by Xl(k). Now we show how

to calculate the value of Xl(k) in amortized constant time for each iteration

using dynamic programming. It is easy to see that the value of Xl(i) satisfies

the following recursive equation:

Xl(i) =

{
G[1].vc[l], if i = 1

max
(
Xl(i− 1), G[i].vc[l]

)
, otherwise

(4.1)

We use an auxiliary integer array Xl for each process pl, in which each value

Xl[i] stores the value ofXl(i). Note thatXl(i) is the value of max1≤j≤i(G[j].vc[l])

and Xl[i] is a calculated result. The array Xl has to satisfy the invariant:

∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i)

73

Algorithm 14 Incremental update of array Xl

Input: The process id of pl, the decided k, and ∀i : 1 ≤ i ≤ n :
Xl[i] = Xl(i) w.r.t. global state F .

Output: ∀i : 1 ≤ i ≤ n : Xl[i] = Xl(i) w.r.t. global state G.

1: function updateArrayX(l, k)
2: Xl[k] := max

(
Xl[k − 1], G[k].vc[l])

)
3: for i from (k + 1) to n do Xl[i] := Xl[k]
4: end function

For any global state G and a given k, we can calculate the array Xl

for each process pl with respect to G. Assume that F is the previous global

state of G in the lexical order. Instead of calculating the array Xl for G

from scratch, we incrementally construct Xl from that of F . The incremental

update procedure is shown in the function updateArrayX in Algorithm 14.

Theorem 6. Function updateArrayX maintains the invariant of Xl after

the incremental update.

Proof. We consider the three intervals of the values in Xl:

(a) i < k: Since the maximal events of Ph are not changed, the values

of Xl(i) for i < k remain the same. Thus, updateArrayX does not need to

update Xl[i] for i < k.

(b) i = k: Xl[i] is updated at line 2 using equation (4.1), where the

value of Xl(i− 1) is obtained from Xl[i− 1].

(c) i > k: Xl[i] is updated at line 3 using Theorem 5.

74

Algorithm 15 Initialize stacks for every process

1: function initializeStacks()
2: for i from 1 to n do . For every process pi in P .
3: push [p1 : G[1].vc[i]] into stacki
4: for j from 1 to (i− 1) do . k < i is always true.
5: if top.val < G[j].vc[i] then
6: push [pj : G[j].vc[i]] into stacki
7: end for
8: end for
9: end function

4.3.1 Calculating Maximum Dependency Event in Amortized Con-
stant Time

Since the results of Xl are non-decreasing, we only need to store the

values that are larger than their previous one and the process ids of the events

that provide the values. For instance, stack5 in Figure 4.4 is the actual stack

(which is shown upside down) for storing the results of X5. In stack5, the top

entry [p3 : 4] means X5[3] = X5[4] = · · · = X5[n] = 4 and the bottom entry

[p1 : 2] means X5[1] = X5[2] = 2.

Algorithm 15 constructs the stacki of each process pi for the initial

global state of a computation, which is [0, 0, ..., 0]. Although k does not exist

in the initial global state, we know that k < i for each process pi because of

the definition of Pl. Therefore, it is safe to assume that k = (i− 1) when con-

structing stacki. It is easy to see that the construction of stacki is equivalent

to the construction of the array Xi. Moreover, the function updateArrayX

in Algorithm 14 can be converted to the function updateStack in Algorithm

75

Algorithm 16 Function updateStack and Procedure reset

Input: The process id of pl and the decided k.
Output: The top value of stackl is G[l].
1: function updateStack(l, k)
2: pop stackl until top.pid ≤ k.
3: if top.val < G[k].vc[l] then
4: if top.pid = k then top.val := G[k].vc[l]
5: else push [pk : G[k].vc[l]] into stackl
6: end if
7: end function

Input: The decided k.
Output: The maximum dependency events of Pl are found.
8: procedure reset(G, k)
9: for l from (k + 1) to n do

10: UpdateStack(l, k)
11: G[l] := top.val . Set G[l] to Gm[l].
12: end for
13: end procedure

76

16. Line 2 of updateArrayX is equivalent to lines 2-6 of updateStack and

line 3 of updateArrayX is achieved by the property of stackl.

Theorem 7. Gm[l] can be identified using stackl in an amortized constant

time per global state.

Proof. At line 2 of Algorithm 16, if stackl pops m entries, then there exist m

iterations that cumulatively pushed m entries into stackl. Therefore, the cost

of the pop operations can be evenly charged to the m iterations and be reduced

to amortized constant time. The operations at lines 4 and 5 take constant time.

As a result, the time complexity for updating a stack is amortized constant

time per global state.

Finally, lines 8-13 of Algorithm 16 shows the procedure reset, which

updates stackl for every pl. The maximum dependency event of pl is identified

from the top entry of stackl.

4.4 Correctness and Worst Case Time Complexity of
QuickLex

We first show the correctness of QuickLex algorithm:

Theorem 8. QuickLex enumerates the lattice of global states of a computation

in the lexical order such that every global state is enumerated exactly once.

Proof. Assume that F is the previously enumerated global state and G is the

current global state to be enumerated.

77

Lexical Order: Since propagate adds a new event ek to F , we get

∃k : (∃i : 1 ≤ i < k : F [i] = G[i]) ∧ (F [k] < G[k]) and hence F <x G.

Exactly Once: Since F <x G, every global state is enumerated at

most once. We next show that every global state is enumerated at least once.

Since F <x G, we get ∀i : 1 ≤ i < k : F [i] = G[i] and G[k] = F [k]+1. Assume

that F ′ is a consistent global state such that F <x F
′ <x G. We consider the

following cases:

(a) F ′[k] < F [k]: This case implies that F ′ <x F , which contradicts

the assumption F <x F
′.

(b) F ′[k] = F [k]: Since F <x F
′, this case implies that there exists a

process pk′ such that k′ > k and pk′ has an enabled event w.r.t. F . However,

propagate locates the enabled event from pn to p1 and hence k′ ≤ k. A

contradiction.

(c) F ′[k] = F [k]+1 = G[k]: After reset, any pl cannot have a maximal

event that is smaller than its maximum dependency event Gm[l] due to the

consistency of the HB relation. Thus, we get 6 ∃l : F ′[l] < G[l] = Gm[l]. So, F ′

does not exist.

(d) F ′[k] > F [k] + 1 = G[k]: This case implies that G <x F
′, which

contradicts the assumption F ′ <x G.

We next calculate the time complexity of QuickLex algorithm:

Theorem 9. The worst case time complexity of QuickLex is O(n·∆(P)) per

global state.

78

Table 4.2: The information of benchmarks and runtimes (sec.) of the compared
algorithms.

Benchmark n #events
#consistent
global states

BFS Tree Lex QuickLex

d-300 10 300 42,695,907 58.43 3.80 3.41 0.76
d-500 10 500 237,475,992 375.06 19.40 18.67 3.78
d-10K 10 10,000 4,962,876,973 8,211.87 393.74 448.28 86.38
bank 8 96 815,730,721 o.o.m. 56.67 64.37 9.69
tsp 8 105,282 13,474,170 9.85 1.63 2.37 0.37
hedc 12 216 4,486,599,595 o.o.m. 322.04 488.22 78.34

elevator 12 38,528 27,643,588,608 o.o.m. 2,248.39 4,677.12 660.40
w-4 4 480 9,381,251 2.51 0.88 0.38 0.16
w-8 8 480 7,392,009,768 o.o.m. 609.74 454.28 128.03
w-12 12 480 206,379,406,870 o.o.m. 19,225.98 21,303.66 3,996.17
w-16 16 480 991,493,848,554 o.o.m. 111,452.52 179,844.62 23,263.05

o.o.m.: Out of memeory.

Proof. There are two main procedures during each iteration of QuickLex:

propagate and reset. We first analyze the worst time complexity of prop-

agate. Each invocation the function isEnabled takes O(∆(P)) time and

the for loop of propagate is executed at most n iterations. So, the worst

time complexity of propagate is O(n·∆(P)) time.

We now analyze the worst case time complexity of reset. Each invoca-

tion of the function updateStack takes amortized O(1) time and the for loop

of reset is executed at most n iterations. So, the worst case time complexity

of reset is amortized O(n) time. As a result, the worst time complexity of

each iteration of QuickLex is O(n·∆(P)).

79

4.5 Evaluation

Table 4.2 shows the information of the benchmarks that are used in

the experiments. The benchmarks contain three different sets of computations.

The benchmarks that start with the prefix “d-” are randomly generated posets

of events for modeling distributed computations. The benchmarks bank, tsp,

hedc, and elevator are the computations that are captured from the executions

of real-world concurrent applications. We establish the HB relation in these

concurrent computations using the following rules that are defined in chapter 2.

The benchmark banking is a toy program for demonstrating typical er-

ror patterns in concurrent programs [FNU03]; tsp is a parallel solver for the

traveling salesman problem; hedc is a crawler for searching Internet archives;

and elevator is a discrete event simulator for an elevator system. The bench-

marks tsp, hedc, and elevator are the benchmark programs that are used

in [CSR08,FF09,vPG01].

Finally, the benchmarks that start with the prefix “w-” have the same

number of events, i.e., 480 events, but different number of processes in the

computation. The set of benchmarks is used to show how different n influences

the performance of enumeration algorithms, and therefore we keep the number

of events constant.

4.5.1 Improvements to the Related Enumeration Algorithms

Besides QuickLex, we implemented the breadth-first strategy (BFS)

algorithm [CM91, Gar03], the ideal tree traversal algorithm (Tree) [JMN95,

80

HMNS01], and the original lexical algorithm (Lex) [Gan10, Gar03]. In BFS

algorithm [CM91], a global state might be enumerated more than once, so we

use the strategy in [Gar03] to ensure that every global state is enumerated

exactly once. In our experiments, we use the improved BFS algorithm.

For Lex [Gar03], we improve the nested for loops of function Least-

GlobalState(). Each of the for loop goes through process p1 to process

pn, which takes O(n2) time. However, looping through all processes is not

necessary. We modify the first loop, which only loops from p1 to pk, and

the second loop, which only loops from pk+1 to pn. In other words, the Lex

algorithm incorporates Theorem 5 but not Theorem 6. Although the time

complexity remains the same, the practical runtime is improved significantly.

In our experiments, we use the improved Lex algorithm.

The Tree algorithm [HMNS01,JMN95] finds a backward spanning tree

in the lattice of global states, where the root is the global state that contains

all events, e.g., the state G22 that is shown in Figure 4.2. Then it traverses

the spanning three in a depth-first manner. The performance of Tree mainly

dependents on the data structure SList [JMN95], which is a customized linked

list that continuously adds and removes the nodes of the spanning tree. So,

we use the following implementation techniques to improve its performance:

• First, we calculate the least number of nodes that is required by SList

during the enumeration. Then, we pre-allocate all the nodes in an object

pool, which is implemented using an array, and reuse the nodes through

81

Computation:
Vector Clocks Preprocessor

Remote Event
and Predecessor

Enumeration
Algorithm

The Set of
Global States

Input

Figure 4.5: The setup of the experiment.

the enumeration procedure.

• Second, each node of SList has a counter that has to be updated and there

are ∆(P) nodes that need to be updated in each iteration. We replace

the counter with a timestamp, which achieves the same functionality but

only needs to be set once and requires no further updates. Hence, the

cost of the update is reduced from O(∆(P)) time to constant time.

From our empirical observations, the two implementation enhancements have

reduced approximately 50% of the original running time and 90% of the orig-

inal memory usage. In our experiments, we use the improved Tree algorithm.

4.5.2 Experimental Results

Figure 4.5 shows the setup of the experiment. The input of the Tree,

BFS and QuickLex algorithms is the vector clocks of the events in the com-

putation. For the Tree and QuickLex algorithm, the information about the

remote and the predecessor event for every event is extracted from vector

82

clocks [Fid88, Mat88] in a preprocessing stage, which is performed once for

each benchmark. The time complexity of the extraction is far smaller than

O(i(P)), so the runtime can be omitted in comparison with that of enumer-

ation algorithms. Afterwards, the enumeration algorithm outputs the set of

consistent global states of the computation.

The input of the compared algorithms is the vector clocks of the events

in the computation and the output is the set of global states of the computa-

tion. Table 4.2 also shows the experimental results. All the experiments are

conducted on a Linux machine with an Intel Xeon 2.67GHz CPU and the heap

size of Java virtual machine is limited to 2GB. The runtime is measured in

seconds. As it can be seen, BFS algorithm has the worst performance because

of its high time complexity. Moreover, it failed to finish on more than half of

the benchmarks because it ran out of the available 2GB memory. The reason

is that it has to store intermediate global states for future iterations and the

number of intermediate global states might grow exponentially in n in the

worst case.

We first compare the runtimes of Tree, Lex, and QuickLex in the first

and second set of benchmarks. Figure 4.6 shows the normalized runtimes

of each algorithm with respect to the runtime of Tree. We normalized the

runtimes to those of Tree because it has an amortized time complexity of

O(1) per global state and the smallest theoretical time complexity among the

existing enumeration algorithms. From Figure 4.6, QuickLex is approximately

7 times faster than Lex and consistently 4–5 times faster than Tree. One reason

83

d-300
d-500

d-10k
bank tsp hedc

elev
ator w-4 w-8

w-12
w-16

0
0.25
0.5

1

1.5

2

2.5

Benchmark

N
or

m
al

iz
ed

R
u
n
ti

m
e

w
.r

.t
.

T
re

e

Tree
Lex

QuickLex

Figure 4.6: Normalized runtime of each algorithm w.r.t. the runtime of Tree
algorithm.

that Tree is not as fast as QuickLex is that its intermediate information has

to be stored in a linked list and therefore the cost of accessing the information

is high.

We now compare the runtimes of Tree, Lex, and QuickLex in the third

set of benchmarks; the benchmarks that start with the prefix “w-”. From

Figure 4.6, we can see that the normalized runtimes of Lex increase as the

number of processes increases. On the other hand, the normalized runtimes of

QuickLex are consistently 4 times faster than those of Tree, which shows that

the time complexity of QuickLex can achieve amortized O(1) per global state

in practice.

We now explain how QuickLex achieves amortized O(1) time per global

state in practice. Suppose that any event in the computation can have at most

84

p1
p2
p3

(a)

p1
p2
p3

(b)

Figure 4.7: (a) The best case for QuickLex. (b) The worst case for QuickLex.

one remote event, then the worst time complexity of propagate is O(n) per

global state. Recall that each call of propagate runs through (n − k + 1)

processes before returning k. If there exist more than (n− k+ 1) global states

between current and most recent propagate call that returns the same k, then

the cost of current propagate call can be charged to the iterations between

these two propagate calls, which cumulatively enumerated (n−k+1) global

states. Thus, the current propagate call is amortized to O(1).

Figure 4.7(a) illustrates the explanation. Assume that the cost of a

propagate call is c if the while loop of propagate executes c iterations.

For instance, the cost of a propagate call that returns k = 2 is 2. However,

QuickLex has enumerated 4 global states, e.g., [0, 0, 0], [0, 0, 1], [0, 0, 2], and

[0, 0, 3], between any two propagate calls that return k = 2. Consequently,

the additional cost of the current propagate call, which returns k = 2, can

be evenly charged to 5 global states, including the current one. Similarly, there

are 17 global states for any propagate call that returns k = 1 to share the

additional cost. As a result, the time complexity of any propagate call can

be amortized to O(1) time per global state. The same reason holds for the

85

d-300
d-500

d-10k
bank tsp hedc

elev
ator w-4 w-8

w-12
w-16

0

50

100

150

200

250

300

Benchmark

M
em

or
y

(M
B

)
Tree
Lex

QuickLex

Figure 4.8: Memory usage of Tree, Lex, and QuickLex algorithm.

time complexity of reset.

Figure 4.7(b) shows the worst case for QuickLex, in which only one

global state exists between propagate calls. Therefore, the cost cannot be

amortized and hence propagate takes O(n) time. The events in this compu-

tation are totally ordered, which is not a common computation.

Figure 4.8 shows the memory usage of the compared enumeration al-

gorithms. Since Lex is stateless, its memory is mainly used for storing the in-

put, i.e., the computation. From Figure 3.10, QuickLex uses almost the same

amount of memory even though QuickLex requires additional O(n2) space to

store the stacks for dynamic programming. The O(n2) space is quite small

because the space only stores integers. Tree, however, consumes much more

memory space than Lex and QuickLex because it needs to store the informa-

tion regarding its backward spanning tree, whose size is linear to O(|E|). Note

86

Table 4.3: The performance of ParaMount with different enumeration algo-
rithms.

Information Runtime (ms) # Detection
Benchmark LoC Thread #Var Lex QuickLex

banking 139 4 7 72 20 1
set (faulty) 223 4 10 152 69 1
set (correct) 260 4 10 110 51 0
arraylist1 1,474 4 6 19 19 3
arraylist2 1,377 4 16 22 15 0
sor 255 4 20 81 25 0
tsp 702 4 36 114 42 1
raytracer 1,885 4 77 1240 236 1
hedc 25,027 8 345 940 335 4

that |E| is much larger than n2 in practice.

4.6 Applications of QuickLex

4.6.1 Predicate Detection in Concurrent Systems

In this section, we compare the performance of Lex and QuickLex in real-

world applications. In Chapter 3, we implemented a predicate detector, named

ParaMount, for concurrent programs. The detector captures the execution

trace of users’ program using Java bytecode injection. The captured execution

trace is converted to a concurrent computation using the methods discussed

in [FF09,LC06]. In short, the detector captures 1) the read and write opera-

tions of all variables, 2) the causal dependency of fork-and-join operations of

thread, and 3) the causal dependency of the acquisition-and-release operations

of locks (including implicit locks and monitors) in users’ program. The causal

dependency is represented by HB relation in the computation.

87

ParaMount uses a sequential enumeration algorithm (e.g., Lex or Quick-

Lex) as the subroutine to enumerate the set of global states in an online-and-

parallel fashion. During the enumeration, each global state is checked for the

predicate corresponding to data races. A data race occurs when conflicting op-

erations (i.e., a pair of read-write or write-write operations) are concurrently

executed on the same memory address by different threads. In summary, the

detector takes as input a program and outputs the variables that have data

races.

Table 4.3 shows the result of the detection. “LoC” shows the lines of

code of the benchmark program. “Thread” shows the number of threads that

are used to drive each benchmark. “#Var” shows the number of variables of

the benchmark. Every variable is checked if it is accessed by different threads

without the protection of any lock. Besides the four real-world applications

that are used in Section 4.5, we also use the following applications. The

benchmarks set (faulty) and set (correct) are incorrect and correct implemen-

tations of the concurrent set [HS08]; arraylist1 is a non-thread-safe container

and arraylist2 is a thread-safe container from Java library; sor is a scientific

computation application; and raytracer is a benchmark for measuring the per-

formance of a 3D raytracer. The benchmarks sor, tsp, raytracer, and hedc are

also used in [CSR08,FF09,vPG01].

The running time of ParaMount includes the time to inject bytecode

for monitoring, to execute the benchmark program, to capture the executed

events, to enumerate global states, and to evaluate the predicate of data races.

88

The column “Lex” shows the original execution time of ParaMount using the

Lex as its subroutine and column “QuickLex” shows the improved execution

time. On average, QuickLex improves the execution time of ParaMount by a

factor of 3. “#Detection” shows the number of variables that have data races;

all the detected variables are also detected by [CSR08,FF09], so the results do

not have false positives.

4.6.2 Other Applications of QuickLex

In [Gar06,Gar15], it has been shown that many families of combinato-

rial objects can be mapped to the lattice of global states of appropriate posets.

Thus, lexical traversal that is discussed in this dissertation can also be used to

efficiently enumerate all subsets of [n], all subsets of [n] of size m, all permu-

tations, all permutations with a given inversion number, all integer partitions

less than a given partition, all integer partitions of a given number, and all

n-tuples of a product space.

89

Chapter 5

A Model for Computations with Lock-
ing Constraints

In this chapter, we introduce a new model called Loset (Locking Poset) for

modeling parallel computations with locking constraints.

The poset model [Lam78] originally does not consider the constraints

due to locks, one common modification to the model is to capture the real-time

order of lock synchronizations as the causality of the program [FF09, LC06,

CG15a,CSR08]. With the modification, the results of predicate detection using

the poset model do not have false positives [FF09] (assuming that process

and thread scheduling is the only source of nondeterminism in the program).

However, the detection may miss the predicate if it does not become true in

the locking schedule that is captured by the current poset.

In this chapter, we argue that the synchronization due to locks is fun-

damentally different from the potential causality. We present an alternative

model that makes a distinction between the happened-before relation and the

synchronization of locks. Informally, a Loset is a Poset augmented with the

notion of locks and locking intervals. In a loset, synchronization due to locks

are not modeled using the happened-before relation. Instead, the intervals of

90

events that are executed under one or more locks are modeled separately. If

two locking intervals I1 and I2 are executed under the same lock, then it is un-

derstood that events in I1 and I2 cannot be interleaved but they can happen

in either order. Since there can be an exponential number of different locking

schedules, a loset in effect would model an exponential number of posets.

In the following section, we give the formal definition of the loset model.

5.1 Loset Model of a Computation

A Loset (Locking Poset) of events represents the computation that is

captured from the execution of parallel programs. Formally, a Loset is defined

as follows.

Definition 4 (Loset). A loset L is a six-tuple L = (E,→, n, L, pid, I) where:

• E: is a set of events,

• →: is an irreflexive transitive binary relation on E,

• n: is the number of threads,

• L: is the number of locks,

• pid: is a partition of E to E1, E2, · · · , En such that each of Ei is totally

ordered, i.e. for all distinct e, f ∈ Ei : (e → f) ∨ (f → e). For con-

venience, we define the process order relation (denoted by ≺) such that

e ≺ f means e→ f in some Ei.

91

• I: is a set of locking intervals, where each locking interval I is a four-

tuple I = (t, l, acq, rel) where t ∈ {1..n}, l ∈ {1..L}, acq, rel ∈ Et, and

acq ≺ rel.

The locking interval I = (t, l, acq, rel) denotes that thread I.t acquired

the lock I.l at event I.acq and released it at event I.rel. The relation →

represents the potential causality between events, i.e., e → f means that the

event e may directly or transitively cause the event f . For distributed systems,

it corresponds to the usual Lamport’s happened-before (HB) relation [Lam78].

In concurrent systems, we may have additional order constraints due to the

Fork-Join events of threads and the Wait-Notification events of conditional

synchronizations [FF09, LC06, CG15a, CSR08]. In the rest of this chapter,

we assume that the HB relation between events is traced using vector clocks

[Fid88,Mat88].

Note that the objective of the HB relation is to capture the causality of

events but not the real-time locking order between the acquisition and release

events of locks. Formally,

Definition 5 (Valid Poset of a Loset). A poset P = (E,→P) is a valid poset

of a loset L = (E,→, n, L, pid, I) if (→⊆→P) and for all I, J ∈ I such that

I.l = J.l, we have (I.rel→P J.acq) ∨ (J.rel→P I.acq).

Informally, the intervals for the same lock in loset L are totally ordered in

the poset P . For instance, the loset in Figure 5.1(c) is equivalent to the two

valid posets in Figure 5.1(a) and Figure 5.1(b). In Figure 5.1(d), suppose that

92

t1
a1 a2 a3 a4

t2
b1 b2 b3 b4

(a)

t1
a1 a2 a3 a4

t2
b1 b2 b3 b4

(b)

t1
a1 a2 a3 a4

t2
b1 b2 b3 b4

{l} {l} { } { }

{l} {l} {l} { }

(c)

t1

t2

…

…

m

(d)

t1
t2

tm

…

(e)

Figure 5.1: (a) and (b) Two posets that are captured from different executions
of the same program. (c) The loset that is equivalent to the two posets in (a)
and (b). (d) A loset that is equivalent to C2m

m posets. (e) A loset that is
equivalent to m! posets.

93

each thread contains m locking intervals for the same lock, then the loset is

equivalent to C2m
m valid posets because m intervals of t1 can be interleaved

with m intervals of t2 in any order. Similarly, the loset in Figure 5.1(e) is

equivalent to m! valid posets. Figure 6.3 shows a more complex loset.

5.1.1 Global States

We next define the notion of a global state of a loset.

Definition 6 (Global States). A global state G is a subset of E such that

∀e, f ∈ E : (f ∈ G) ∧ (e ≺ f)⇒ (e ∈ G).

In Fig. 5.1(c), {a1, a2, b1} is a global state, but {a2, b1} is not a global

state because it contains a2 but not a1 even though a1 ≺ a2. A global state

G can equivalently be identified by the number of events of each Ei in G. For

example, the global state {a1, a2, b1} is represented by the array [2, 1]. The

symbol G[i] denotes the maximal (latest) event of Ei in the global state G.

The order G � H between the two global states means G[i] � H[i] holds for

any thread i.

Definition 7 (Consistent Global States). A global state G is consistent iff

∀e, f ∈ E : (f ∈ G) ∧ (e→ f)⇒ (e ∈ G).

A consistent global state preserves the → relation of the loset. Note that the

initial global state (G = φ), and the final global state (G = E) are always

consistent. Next, we ensure that the global state also respects the locking

94

t1

t2

G

a1 a2 a3 a4

b1 b2 b3 b4
: lx : ly

Figure 5.2: The global state G is feasible but not reachable.

constraints. We define the set el(e) of effective locks for any event e, which

are the locks being held by the thread that has executed e:

Definition 8 (Effective Locks). el(e) = {I.l | I.acq � e ≺ I.rel}.

In Figure 5.1(c), the effective locks of the events in the computation are shown

in curly brackets. We can now define the set of global states that respect the

locking constraints.

Definition 9 (Compatible Global States). A global state G is (lock) compatible

iff for any i 6= j,G[i] and G[j] are pairwise (lock) compatible, i.e., el(G[i]) ∩

el(G[j]) = ∅.

Finally, the feasibility of a global state is defined as follows:

Definition 10 (Feasibility). A global state is feasible iff it is consistent and

compatible.

If a global state is not feasible then it violates either the consistency

constraints or the locking constraints. Therefore, only feasible global states

95

are reachable from the initial global state. However, not all feasible global

states are reachable. In Figure 5.2, for example, the global state G is feasible

but not reachable. In G, the thread t1 holds the lock lx. Therefore, t2 has

to release lx before t1 acquires lx and thus we get the inferred locking order

b3 → a2. Similarly, the thread t1 has to release ly before t2 acquires ly and

thus we get the inferred locking order a3 → b2. This results in a cycle in the

→ relation: a3→ b2→ b3→ a2→ a3. Hence, G is unreachable.

5.1.2 Reachable Global States and Runs

We first introduce a sequence of events called run, R, in which the

total order between events is denoted by ≺R. The symbol δ(G,R) denotes

the global state that is reached by executing the sequence R of events starting

from any global state G. The symbol Ri denotes the prefix of R that contains

i events. Since only feasible states are reachable in a loset, we require that

a run go through only feasible global states. Formally, a run R is defined as

follows:

Definition 11 (Run). A sequence R of events is a run starting from G iff the

global state δ(G,Ri) is feasible for any i such that 0 ≤ i ≤ |R|.

The reachability of a global state G (from the initial global state φ) is defined

as follows:

Definition 12 (Reachability). A global state G is reachable from φ iff there

exists a run R such that δ(φ,R) = G.

96

The reachability problem is defined as:

Definition 13 (Reachability Problem). Given a loset L and a global state G,

is G a reachable global state of L?

Theorem 10. The reachability problem of any global state G in a loset L is

NP-complete.

Proof. The reachability problem is in NP because given a global state G and

a sequence S of events that contains exactly the same set of events as G, we

can verify if S is a run of G by verifying that if S passes through only feasible

global states, i.e., δ(φ,S i) is feasible for any i such that 0 ≤ i ≤ |S|. The

feasibility of global state can be checked in a polynomial time; specifically, it

takes O(n2) and O(n+L) time for checking the consistency and compatibility,

respectively. Since S contains at most |E| events, the verification takes at

most O(n2|E|) time.

We now show that the reachability problem is NP-hard. In [Tar00], the

predicate control problem asks if there exists a control sequence, which is a

total order among the critical sections for the same lock, such that the pred-

icate Φ remains true after the control sequence is added to the computation

P = (E,→). In other words, the control sequence adds additional → rela-

tions to P such that the critical sections for the same lock are totally ordered.

The new computation, say, Q, cannot contain any cycle of the → relation.

In addition, every consistent global state G of P such that Φ is true remains

consistent in Q.

97

The NP-completeness of predicate control problem is proven by con-

verting any 3-SAT instance into a computation, where the total orders between

critical sections are the values for the corresponding variables. The predicate

to detect is “every event in the set E of events of the computation is executed.”

Consequently, the existence of the control sequence such that all events in E

are executed is equivalent to the satisfiability of that 3-SAT instance.

The model defined in [Tar00] is a special case of our loset model, where

locking intervals do not overlap. Moreover, a control sequence does not violate

the constraints of mutual exclusion and the happened-before consistency, so

an execution that follows the control sequence only passes through feasible

global states. Hence, the condition holds: there exists a control sequence that

reaches the global state G iff there exists a run reaches G in the computation.

As a result, the predicate control problem is a special case of the reachability

problem of a loset.

5.2 Valid Losets

Since we use the loset model for analyzing parallel computations, we

are interested only in those losets that capture a possible execution from a

real-world application.

Definition 14 (Valid Loset). A loset is valid iff its final global state E is

reachable from the initial global state φ.

It is easy to see that if a loset contains a cycle of the→ relation, then its

98

I1(lx)

I2(lx)

I3(ly)

I4(ly)

I5(lz)

I6(lz)

E

(a)

I1(lx)

I2(lx)

I3(ly)

I4(ly)

I5(lz)

I6(lz)
(b)

I1(lx)

I2(lx)

I3(ly)

I4(ly)

I5(lz)

I6(lz)
(c)

Figure 5.3: (a) A loset whose final global state is unreachable. (b)(c) The →
relations in (a) is partitioned into two groups.

final global state is unreachable. We now show that it is possible to construct

a loset that does not contain any cycle of the → relation and its final global

state is still unreachable.

The example of a loset that is not valid is shown in Figure 5.3(a). The

computation has three locks, lx, ly, and lz; and six locking intervals, I1 to I6.

The lock lx is acquired by I1 and I2, ly by I3 and I4, and lz by I5 and I6.

Moreover, each interval contains the sequence of events: the acquisition of the

lock, a source of the→ relation, a sink of the→ relation, and the release of the

lock. For simplicity, the symbol I[i] denotes the event, whose index is i, that

occurs in the locking interval I. We now explain why the final global state is

unreachable.

Figure 5.3(b) shows the central part of the→ relation in Figure 5.3(a).

In Figure 5.3(b), if I1[1] is executed before I2[1], then the locking order I1 → I2

99

(i.e., I1[4] → I2[1]) is implicitly induced. Then, from the chain of relations:

I3[2] → I1[3] → I1[4] → I2[1] → I2[2] → I4[3], we get I3(ly) 7→ I4(ly) and

hence the locking order I3 → I4. On the other hand, if I2[1] is executed before

I1[1], then we get I2 → I1 and hence I4 → I3. Therefore, the solid arrows in

Figure 5.3(b) would induce one of the two sets of locking orders.

(I1 → I2 ∧ I3 → I4) ∨ (I2 → I1 ∧ I4 → I3). (5.1)

Due to the dashed arrows, our two sets of locking orders become:

(I1 → I2 ∧ I3 → I4 ∧ I5 → I6) ∨ (I2 → I1 ∧ I4 → I3 ∧ I6 → I5). (5.2)

Similar to Figure 5.3(b), the → relation in Figure 5.3(c) induces one of the

two sets of locking orders depending upon whether I1[1] is executed before or

after I2[1]:

(I1 → I2 ∧ I6 → I5) ∨ (I2 → I1 ∧ I5 → I6). (5.3)

Figure 5.3(a) merges the relations→ in Figure 5.3(b) and Figure 5.3(c).

Initially, the computation does not have any cycle because every pair of the

→ relation starts from the second event and ends at the third event of locking

intervals. However, a cycle is formed whenever an event is executed. For

instance, suppose that the event I1[1] is executed, then we get (I1 → I2) ∧

(I3 → I4) ∧ (I5 → I6) from (5.2), and (I1 → I2) ∧ (I6 → I5) from (5.3). Thus,

the cycle I6 → I5 → I6 is formed. Consequently, the final global state E is

unreachable.

Since the final global state of the computation in Figure 5.3(a) is un-

reachable, this computation cannot correspond to an actual execution of a

program.

100

Chapter 6

Reachability of Global States in a Loset

In this chapter, we present two useful classes of global states — lock-free

feasible global states and strongly feasible global states in the loset model. A

lock-free feasible global state is always reachable and a reachable global state is

always strongly feasible. Thus, these two sets of global states provide a lower

and an upper bound on the set of reachable global states (see Figure 6.1).

Both of these classes can be checked efficiently in polynomial time, whereas

the reachability problem is NP-complete. Moreover, to check reachability of a

global state G, it is sufficient to check its reachability from the greatest lock-

free feasible global state that precedes G instead of checking it from the initial

global state of the computation.

Reachable
Stron

gly Feasible

Lock-Free
Feasible

Figure 6.1: The set of lock-free feasible global states and the set of strongly
feasible global states are a lower and an upper approximation of reachability,
respectively, in a valid loset.

101

6.1 Lock-Free Feasible Global States

We first show that given a reachable global state G of any loset (not

just valid losets), the reachability of any lock-free feasible global state F � G

is implied:

Theorem 11. Given a reachable global state G of a loset and a lock-free

feasible global state F � G, there exists a run that reaches both F and G.

Proof. Since G is reachable, there exists a run R such that δ(φ, R) = G.

Let the sequence S1 of events be R ↑ F , which is the projection of R that

contains only the events in F , and let S2 = R ↑ (G\F). Let S = S1 ⊕ S2

(S1 concatenated with S2). We show that the sequence S of events is also

a run, i.e., δ(φ,S i) is feasible for any S i, which implies δ(φ,S1) = F and

δ(F,S2) = G.

Claim 1. ∀i : 0 ≤ i ≤ |S| : δ(φ,Si) is consistent:

It is sufficient to show that S is a linear extension of L, i.e., the partial order

→ is preserved by the total order ≺S . For any two events, e and f , in S such

that e ≺S f , we have

Case 1. (e, f ∈ S1)∨(e, f ∈ S2): The→ relation between e and f is preserved

in ≺R because R is a run. Since S1 and S2 are projections of R, the

relation → is preserved in ≺S1 and ≺S2 .

Case 2. e ∈ S1, f ∈ S2: If e → f , the → relation is preserved by the con-

catenation S1 ⊕ S2. The case f → e is not possible because F is

102

consistent and e ∈ F but f 6∈ F .

Claim 2. ∀i : 0 ≤ i ≤ |S1| : δ(φ,Si
1) is compatible:

Let the global state V = δ(φ, S i
1). We show that

∀s 6= t : el(V [s]) ∩ el(V [t]) = ∅. (6.1)

Let Rj be the shortest prefix of R such that Rj ↑ F = S i
1 and let W = δ(φ,

Rj). Then, the following condition holds because R is a run:

∀s 6= t : el(W [s]) ∩ el(W [t]) = ∅. (6.2)

Since S i
1 contains the same or fewer events than Rj, we get V ⊆ W ,

which implies V [t] � W [t] for any thread t. We now consider the following

two cases:

Case 1. V [t] ≺ W [t]: Because S i
1 = Rj ↑ F , this case holds only if Rj

contains the events in G\F w.r.t. Et, which implies that S i
1 contains

all the events in F w.r.t. Et. Thus, we get V [t] = F [t] ≺ W [t]. Since

F is lock-free, we get el(V [t]) = ∅ ⊆ el(W [t]).

Case 2. V [t] = W [t]: In this case, we get el(V [t]) = el(W [t]).

From cases 1 and 2, el(V [t]) ⊆ el(W [t]) holds for any thread t. Then, from

(6.2), (6.1) holds.

Claim 3. ∀i : 0 ≤ i ≤ |S2| : δ(F,Si
2) is compatible:

Let the global state V = δ(F, S i
2). We show that

∀s 6= t : el(V [s]) ∩ el(V [t]) = ∅. (6.3)

103

Let Rj be the shortest prefix of R such that Rj ↑ (G\F) = S i
2 and W = δ(φ,

Rj). Then, the following condition holds because R is a run:

∀s 6= t : el(W [s]) ∩ el(W [t]) = ∅. (6.4)

Since V initially contains all the events in F and S i
2 contains the same

events in G\F as Rj, we get W ⊆ V , which implies that W [t] � V [t] holds

for any thread t:

Case 1. W [t] ≺ V [t]: Because S i
2 = Rj ↑ G\F , this case holds only if Rj

contains only the events in F w.r.t. Et, which implies that S i
2 does

not contain any event of Et. Thus, we get W [t] ≺ V [t] = F [t]. Since

F is lock-free, we get el(W [t]) ⊇ el(V [t]) = ∅.

Case 2. W [t] = V [t]: We get el(W [t]) = el(V [t]).

From the two cases, el(W [t]) ⊇ el(V [t]) holds for any thread t. Then, from

(6.4), (6.3) holds.

From claims 1, 2, and 3, S is a run that reaches first F using the run

S1 and then reaches G using the run S2.

A simple consequence of Theorem 11 is that whenever L is a valid loset,

then every lock-free feasible global state of L is reachable.

Corollary 1. All lock-free feasible global states of any valid loset L are reach-

able.

104

Proof. From the definition of valid loset, the final global state of the loset L is

reachable. Then from Theorem 11, given any lock-free feasible global state G

of L, we can obtain a run that reaches G by reordering the run that reaches

the final global state. Consequently, every lock-free feasible global state of L

is reachable.

The set of lock-free feasible global states also satisfies the following nice

property for all losets (and not just valid losets):

Theorem 12. The set of reachable lock-free feasible global states of a loset L

forms a distributive lattice.

Proof. We show that for any two reachable lock-free feasible global states, G

and H, their meet M = (GuH) and join J = (GtH) are also reachable lock-

free feasible global states. Since G and H are consistent global states, their

meet and join are also consistent global states. Furthermore, the maximal

events of G and H do not hold any lock, so the maximal events of M and J

also do not hold any lock. As a result, M and J are lock-free feasible global

states. Then, from Theorem 11, M is reachable because M � G. Now we

show that their join J is reachable.

Because G is reachable, there exists a run RG. Then, from Theorem

11, the run RG = RM ⊕ RMG, where RM and RMG are also runs such that

δ(φ,RM) = M and δ(M,RMG) = G. Similarly, there exists a run RH =

RM ⊕RMH because H is reachable. We create a sequence SJ of events such

105

that SJ = RG ⊕RMH . Since SJ contains all the events in J , J is reachable if

SJ is a run.

Claim 1. ∀i : 0 ≤ i ≤ |SJ | : δ(φ,Si
J) is consistent:

Similar to the claim 1 of Theorem 11, we consider the two cases for any two

events, e and f , in SJ such that e ≺SJ f :

Case 1. (e, f ∈ RG) ∨ (e, f ∈ RMH): Since RG and RMH are runs, the →

relation between e and f is preserved in ≺RG
and ≺RMH

and hence

in ≺SJ .

Case 2. e ∈ RG, f ∈ RMH : If e → f , the → relation is preserved by the

concatenationRG⊕RMH . The case f → e is not possible; otherwise,

the consistency of G is violated.

Since RG is a run, it is sufficient to show that the execution of Ri
MH

starting from G results in a compatible global state:

Claim 2. ∀i : 0 ≤ i ≤ |RMH| : δ(G,Ri
MH) is compatible:

Let V = δ(G,Ri
MH). We show that

∀s 6= t : el(V [s]) ∩ el(V [t]) = ∅. (6.5)

Let W = δ(M,Ri
MH), then the condition holds because RMH is a run to reach

H from M :

∀s 6= t : el(W [s]) ∩ el(W [t]) = ∅. (6.6)

106

Since both G in δ(G,Ri
MH) and M in δ(M,Ri

MH) are lock-free feasible global

states, we get el(V [t]) = el(W [t]) for any thread t. Then, from (6.6), (6.5)

holds.

From claims 1 and 2, SJ is a run and hence J is reachable.

Finally, the lattice of lock-free feasible global states is distributive be-

cause it is a sub-lattice of the distributive lattice of consistent global states.

Theorem 12 has two important implications. First, since the set of

lock-free feasible global states forms a distributive lattice, we can concisely

represent all lock-free feasible global states using the set of join-irreducible

elements of the distributive lattice [DP90] and use slicing to study various

sublattices [MSG07,Gar15]. Secondly, as shown next, we can reduce the search

space to determine reachability of a feasible global state that is not lock-free.

Given a global state G, we first find the greatest lock-free global state F that

precedes G. On account of Theorem 12, F is well-defined whenever there exists

any lock-free feasible global state F �G. Given F , the following theorem shows

that the search for the reachability of G in a valid loset can be restricted to

the events in G\F .

Theorem 13. Given a global state G of a valid loset and the greatest lock-free

feasible global state F such that F � G, the reachability of G can be determined

by the events G\F .

Proof. From Theorem 11, F is reachable and the run that reaches the final

global state E of L can be reordered so that it first reaches F and then E. We

107

consider the following two cases: (1) If G is reachable, then from Theorem 11

there exists a run R = R1 ⊕R2, where R1 is a run that reaches F and R2 is

a run that reaches G from F . (2) If G is unreachable, then there exists no run

from F to G because F is reachable and lock-free. Hence, the existence of the

run R2 depends on only the events G\F .

Theorem 13 has one useful implication: the reachability of a global state

G can be determined using only a subset of events which is located between

G and the greatest lock-free global state that precedes G. Thus, lock-free

feasible global states act as “reset” points for reachability and can be used to

drastically reduce the time for checking reachability, by checking reachability

in a subcomputation rather than the entire computation.

Besides lock-free feasible global states, the condition for a global state

to be a reset point of reachability can be weakened. For instance, if a global

state G is feasible and any lock held by G is never released after G, then G

is also a reset state. The reason is that the locking intervals that correspond

to the locks that are held by G and never released afterwards can be removed

from the loset after G. Consequently, G is reduced to a lock-free feasible global

state. Similarly, if G is feasible and any lock held by G is never acquired by

any different thread after G, then G can also be reduced to a lock-free feasible

global state and become a reset state. In this dissertation, we use only lock-free

feasible global states as the reset points of reachability for simplicity.

108

6.2 Strongly Feasible Global States

So far we have discussed lock-free feasible global states of a valid loset

which are guaranteed to be reachable. The set of global states is a lower-

approximations of reachability. In this section, we give an upper-approximation

of reachability. We define strongly feasible global state such that every reach-

able global state is strongly feasible. Also, just as feasibility and lock-freedom

can be evaluated in polynomial time, strong feasibility can also be evaluated

in polynomial time.

6.2.1 Locking Order

Even though real-time locking order is not modeled in a loset, some

orders between locks may be implied due to the happened-before orders be-

tween events and the constraint of mutual exclusion due to locks, i.e., events

in different locking intervals of the same lock cannot be interleaved. We next

introduce the relation 7→ for capturing such implied ordering constraints.

The relation 7→ is defined between locking intervals of the same lock

such that I 7→ J means the locking interval I has to start before J can finish:

Definition 15 (The Relation 7→). Let I(l) and J(l) be the locking intervals of

the same lock l. I(l) 7→ J(l) iff there exist events e and f such that (I(l).acq �

e) ∧ (e→ f) ∧ (f � J(l).rel).

Because of the locking constraint from the lock l, the event I(l).rel has to be

executed before J(l).acq. Hence, we define the locking order →L as follows:

109

acq ≼ e ≺ rel
ti

acq ≼ f ≼ rel
tj

J(l)I(l)

(a)

acq ≼ f ≼ rel

acq ≺ rel ≼ e

(b)

acq ≼ e ≺ rel

f ≺ acq ≺ rel
(c)

f ≺ acq ≺ rel

acq ≺ rel ≼ e

(d)

Figure 6.2: All possible cases of I(l) 7→ J(l) across different threads and the
locking order I(l).rel→ J(l).acq.

Definition 16 (Locking Order). →L
def≡ {(e, f) | ∃I(l), J(l) : (e = I(l).rel) ∧

(f = J(l).acq) ∧ (I(l) 7→ J(l)).}

If I(l) and J(l) belong to the same thread, then the →L relation is implied

by their process order. Therefore, we only consider the →L relation across

different threads. Figure 6.2 shows all possible cases of I(l) 7→ J(l) and the

corresponding locking order. For convenience, the locking order I(l).rel →L

J(l).acq is simplified as I(l)→ J(l) from now on.

In this dissertation, we assume for simplicity that the initial global state

of the loset are lock-free. If it is not lock-free, then any interval I(l) that is

part of the initial global state is ordered (by locking constraints) before all

other intervals with the same lock. Similarly, an interval J(l) that is part of

the final global state would be ordered after all other intervals with the same

lock.

110

: lw : lx : ly : lz

t1

t2

t3

acq(lw)

acq(lx)

acq(ly)

acq(lz)

rel(lw)

rel(lx)

rel(ly)

rel(lz)

acq(lw)

acq(lw)

rel(lw)

rel(lw)

acq(lx) rel(lx)

acq(ly) rel(ly)acq(lz) rel(lz)

acq(lz) rel(lz)

{lw} {lw} { } {ly} {ly lx} {lz} { }{lx} {lx lz}

{lw} {lw} {lw} {lw lz} {lz} {lw ly} {ly} { }

{lx} {lx lz} {lz} {lz lw} {lz lw} {lw} { }

Figure 6.3: An initial loset L, which contains only the HB relation.

6.2.2 Normalization of Loset

Since the combination of HB orders and locking constraints may intro-

duce additional order constraints→L during execution, it is easier to determine

the reachability of a global state in a loset that satisfies ∀e, f : e→L f ⇒ e→

f . Thus locking order leads us to the following definition:

Definition 17 (Normal Loset). A loset L = (E,→, n, L, pid, I) is normal if

∀e, f ∈ E : e→L f ⇒ e→ f .

Figure 6.3 shows a loset L, which contains only the HB relation. The

events acq(l) and rel(l) correspond to the operations acquireLock(l) and

releaseLock(l) of the program, respectively. The solid arrows are direct HB

relations between events. The boxes of different gray-levels are the locking

intervals with different locks. The effective locks of events are shown in the

curly brackets. Figure 6.4 shows the corresponding normal loset L′, which

has locking orders added to L. The dashed arrows in Figure 6.4 are used to

111

: lw : lx : ly : lz

t1

t2

t3

a8 a9a7a6a5a4a3a2a1

b1 b2 b3 b4 b5 b6 b7

c1 c2 c3 c4 c5 c6 c7

b8

I2(lz)

I3(lz)

I1(lw)

I2(lw)

I3(lw)

Figure 6.4: A normalized loset L′, where the locking orders (the solid arrows)
are added to the original loset L.

explain the procedure of normalization as shown next.

At first, the HB relation a2 → b2 induces the relation I1(lw) 7→ I2(lw)

and hence the locking order a3→ b1. Therefore, the relation a3→ b1 is added.

Similarly, the HB relation b3 → c5 induces the relation I2(lw) 7→ I3(lw) and

hence the locking order b5 → c4. Afterwards, the relation b5 → c4 induces

I2(lz) 7→ I3(lz) and hence the locking order b7→ c2. The procedure continues

until no new locking order is induced. Note that the transitive HB relation

a2→ c5 is not shown in Figure 6.4, which induces I1(lw) 7→ I3(lw) and hence

the locking order a3→ c4, because its corresponding locking order a3→ c4 is

transitively implied by other relations.

Algorithm 17 shows a procedure to normalize a loset L. The algorithm

takes as input the direct and transitive HB relations in the computation (i.e.,

a2 → b2, b3 → c5, and a2 → c5 in Figure 6.3) and iteratively adds the

locking orders to the computation by locating the cases of the 7→ relation in

112

Algorithm 17 NormalizeLoset(L, H)
Input: A loset L and a set H of seed relations, which initially contains all

HB relations in L.
Output: Returns false if a cycle in the → relation is detected; otherwise, the

loset L is normalized.
1: for each seed order ei → ej in H do . H initially contains all direct and

transitive → relations.
2: for each l ∈ EL(ei) ∪ EL(ej) do . Exclude the case of Figure 6.2(d).
3: Let I(l) be the most recent locking interval for l s.t. I(l).acq � ei.
4: Let J(l) be the first locking interval for l s.t. ej � J(l).rel.
5: if either I(l) or J(l) does not exist then continue . None of the

cases, Figure 6.2(a), 6.2(b), or 6.2(c), holds.
6: if the relation I(l)→ J(l) completes a cycle then return false
7: else
8: Add I(l)→ J(l) to the loset and to the set H . I(l)→ J(l) means
I(l).rel→ J(l).acq.

9: Append new transitive relations due to I(l)→ J(l) to H
10: end if
11: end for
12: end for
13: return true

113

Figure 6.2(a), 6.2(b), and 6.2(c). The case of Figure 6.2(d) is ruled out in

Algorithm 17 because the locking order is transitively implied by I(l) 7→ J(l)

and does not induce any new → relation. At line 9, if the addition of I(l)→

J(l) induces any transitive relation, say e → f , then e → f is also appended

to the set H for checking if any new 7→ relation is induced.

We now show that the normalized loset contains the same set of runs,

which reach the final global state, as the original loset. We first define the

runs Runs(L) of a global state G in the loset L:

Definition 18 (Runs of a Loset). Given any loset L, the set Runs(L) =

{R | R is a run that reaches the final global state E of L from the initial

global state φ}.

Theorem 14. Given a loset L and the corresponding normal loset L′, then

Runs(L) = Runs(L′).

Proof. We show that Runs(L′) ⊆ Runs(L) and Runs(L) ⊆ Runs(L′). Since

L′ contains more constraints of the → relation, we get Runs(L′) ⊆ Runs(L).

On the other hand, we show that any run R in Runs(L) is also a run of

Runs(L′). Since R cannot violate any locking order constraint and therefore

only goes through feasible states, it is sufficient to show that the normalization

of L does not remove any feasible global that is contained in anyR of Runs(L).

Figure 6.5 shows all three cases in which the feasible global state G of L is

removed during the normalization. Note that Figure 6.5 shows the cases in

which 7→ relation across two threads, but the relation can be extended to the

114

acq ≼ e ≺ rel

acq ≼ f ≼ rel

ti

tj
G E

(a)

acq ≼ f ≼ rel

acq ≺ rel ≼ e

G E

(b)

acq ≼ e ≺ rel

f ≺ acq ≺ rel

G E

(c)

Figure 6.5: All possible cases of the removed feasible global state G during the
normalization of a loset L, i.e., G is feasible in L but not feasible in L′. The
dashed arrows only appear in L′.

cases with more than 2 threads. As it can be seen, the removed feasible global

state G implies that thread tj has to acquire the lock before ti. However, the

relation e → f implies that ti has to acquire the lock before tj, which is a

contradiction. Consequently, G is either leading to a deadlock (Figure 6.5(a)

and 6.5(b)) or unreachable (Figure 6.5(c)). Hence, the normalization of a loset

only removes feasible global states that cannot be contained in any run R of

Runs(L). Therefore, we get Runs(L) ⊆ Runs(L′).

We now discuss the complexity of the normalization procedure.

Theorem 15. The time complexity of Algorithm 17 is O(n|E|3L).

Proof. Line 1 executes at mostO(|E|2) times because there are at mostO(|E|2)

pairs of the → relation in the computation. Line 2 executes at most L times.

The procedures at lines 3 and 4 can be done in constant time by using lookup

tables. Finally, the time complexity for detecting the cycle at line 6 and for

locating the transitive relations at line 9 is O(n|E|) by recomputing vector

clocks after the addition of the relation I(l)→ J(l) at line 8.

115

6.2.3 Strong Feasibility of Global States

The main idea behind strong feasibility is as follows. If a lock l is held

by a thread t in the global state G, then the release of l that occurred on the

other threads prior to G should have happened before the acquisition of l that

occurred on t. We refer to this order as the dynamic locking order:

Definition 19 (Dynamic Locking Order). Let J(l) be the locking interval

that contains G[j]. Let I(l) be the most recent interval, if any, such that

I(l).rel � G[i]. Then, I(l).rel→L J(l).acq.

Similar to the normalization of a loset L, the dynamic locking orders

due to G can be added to L and then be normalized. We now define the strong

feasibility of a global state as follows:

Definition 20 (Strong Feasibility). A feasible global state G is strongly feasible

iff the normalization due to the dynamic locking orders of G does not induce

any cycle in the relation →.

We use the feasible global state G = [8, 7, 7] in Figure 6.6 to show the

calculation of strong feasibility:

Step 1: From Theorem 13, this calculation can be bounded between G and

the greatest lock-free feasible global state F that precedes G, i.e., the grayed

out events in Figure 6.6 are excluded.

Step 2: Since the lock ly is currently held by the thread t2, we get the dynamic

locking order a6 → b6. Similarly, the lock lz is held by the thread t1, so we

get c6→ a7 and b7→ a7.

116

: lw : lx : ly : lz

t1

t2

t3

a8 a9a7a6a5a4a3a2a1

b1 b2 b3 b4 b5 b6 b7

c1 c2 c3 c4 c5 c6 c7

b8

F G

I1(lx)

I3(lx)

Figure 6.6: The feasible global state G is unreachable because the dynamic
locking order completes a cycle in the relation →.

Step 3: The HB relations of the bounded loset along with dynamic locking

orders are added to the setH for normalization. From b3→ c5, we get b5→ c4

and then b7 → c2. Moreover, the transitive relation a6 → c2 establishes the

relation I1(lx) 7→ I3(lx) and hence the locking order a8→ c1. Consequently, a

cycle in the relation → is induced: a8 → c1 → c6 → a7 → a8. Hence, G is

not strongly feasible.

Theorem 16. The time complexity for calculating the strong feasibility of a

global state is O(n|E|3L).

Proof. In step 1, the bound F can be identified using the detection algorithm

of conjunctive predicate [GW91] in a backward fashion starting from G. The

predicate to detect is “all threads hold no locks”. In addition, the algorithm

takes at most O(|E|) time. In step 2, we can locate the dynamic locking orders

due to G by pairwise processing the maximal events of G for each lock, which

117

takes O(n2L) time. In step 3, the dynamic locking orders and the HB relations

in the bounded loset are used as the set H for Algorithm 17, which takes at

most O(n|E|3L) time.

6.3 Reachability of Strongly Feasible Global States

The set of strongly feasible global states is a superset of reachable global

states because of the following two reasons. First, a reachable global state G

is strongly feasible because the normalization during the calculation of strong

feasibility does not remove any run that reaches G; from Theorem 13, we

can replace L and E of Theorem 14 with the bounded loset and G during the

calculation of strong feasibility, respectively. Second, strong feasibility does not

imply reachability; in section 6.3.1, we show an example loset where a strongly

feasible global state is not reachable. However, strong feasibility is still useful

in practice. In section 6.3.2 we show that reachability and strong feasibility

are equivalent for any loset with two threads. Moreover, in section 6.3.3 we

present experiments to show that the gap between the strong feasibility and

the reachability seldom exists in practice.

6.3.1 Strong Feasibility Does Not Imply Reachability

Since a reachable global state cannot contain any cycle in the→ relation

of a loset, a run can go through only strongly feasible global states. Hence, if

none of the maximal events e of G can be removed from G such that G− {e}

is strongly feasible, then G is unreachable. In this section, we show a strongly

118

I1(lu)
I2(lu)

I3(lw)

I4(lw)

I5(lv)

I6(lv)

I7(lx)
I8(lx)
I9(ly)

I10(ly)
I11(lz)
I12(lz)

(a) (b)

G

(c)

G'

(d)

G'

(e)

Figure 6.7: A computation whose final global state is reachable. In addition,
G is strongly feasible but unreachable. The dynamic locking orders are drawn
in dashed arrows.

feasible global state G such that removing any of its maximal events would

result in a global state that is not strongly feasible, i.e., G is strongly feasible

but not reachable.

The example computation is shown in Figure 6.7(a), which has six

locks: lu, lw, lv, lx, ly, and lz. The lock lu is a coordinator, which has the →

relation that is similar to that in Figure 5.3(b). In short, any removal of the

last event of the intervals I2, I4, I6, I8, and I10, induces the set A of dynamic

locking orders: (I1 → I2) ∧ (I3 → I4) ∧ (I5 → I6) ∧ (I7 → I8) ∧ (I9 → I10);

and any removal of the last event of the intervals I1, I3, I5, I7, and I9, induces

the set B of dynamic locking orders: (I2 → I1) ∧ (I4 → I3) ∧ (I6 → I5) ∧

119

(I8 → I7) ∧ (I10 → I9).

Figure 6.7(b) shows the remaining → relation in the computation, i.e.,

the combination of Figure 6.7(a) and 6.7(b) is the complete computation. The

computation does not contain any cycle in the → relation initially because

every pair of the→ relation starts from the second event and ends at the third

event of locking intervals. For ease of reading, the arrows in Figure 6.7(a) are

omitted in the other figures of Figure 6.7. The final global state can be reached

by the run that preserves the partial order: (1) I11 → I12, and (2) (I1 → I2)

∧ (I3 → I4) ∧ (I5 → I6) ∧ (I7 → I8) ∧ (I9 → I10).

Figure 6.7(c) shows the strong feasible global state G, where the dy-

namic locking order I12 → I11 is induced because lz is held by the thread t11.

In G, the removals of G[11] and G[12] would violate the consistency constraints

and the locking constraints, respectively. Thus, we consider the removal of the

maximal events on other threads, i.e., G[1] to G[10]. Those maximal events

can be divided into two groups: the ones that induce the set A of dynamic

locking orders and the ones that induce the set B of dynamic locking orders.

Let the symbol I[i] denote the event, whose index is i, that occurs in

the locking interval I. We first consider the case where the set A of dynamic

locking orders is induced, which is shown in Figure 6.7(d). Without loss of

generality, suppose that the set of orders is induced by the removal of G[2]

(i.e., I2[4]). Then, the following cycle is induced: I3[4] → I4[1] → I4[2] →

I5[3] → I5[4] → I6[1] → I6[2] → I3[3] → I3[4]. On the other hand, suppose

that the set B of dynamic locking orders is induced by the removal of G[1]

120

(i.e., I1[4]) as shown in Figure 6.7(e). Then, the following cycle is induced:

I7[1] → I7[2] → I10[3] → I10[4] → I9[1] → I9[2] → I12[3] → I12[4] → I11[1] →

I11[2] → I8[3] → I8[4] → I7[1]. Therefore, the global state G is strongly

feasible but unreachable.

Note that since our loset model allows the locking intervals to be over-

lapped, the number of threads could be reduced to 9 threads by overlapping

the threads t4 with t5, t8 with t9, and t10 with t11.

6.3.2 Strong Feasibility Equals to Reachability in Losets with Two
Threads

This section shows that the reachability and strong feasibility are equiv-

alent for any loset with two threads:

Theorem 17. In a loset L with two threads, a global state is reachable iff it

is strongly feasible.

Proof. It is sufficient to show that any strongly feasible global state G of a loset

with two threads is always reachable. We show this by induction on the size

of G. When |G| = 0, G is the initial global state and therefore reachable. Now

consider any G such that |G| > 0. We will show that there exists a maximal

event e in G such that G − {e} is also strongly feasible. From induction

hypothesis, we can then assume that G− {e} is reachable and therefore G is

reachable.

We now show that there does not exist a strongly feasible global state

G such that removing any of its maximal event results in a global state that

121

e

ti

tj

G[i]H[i]

G[j]

GH

≼

(a)

= relG[1]H[1]

G[2]

GH

acq

acq≼

≼

I(l)
J(l)

≺
t1

t2

(b)

e
t1

t2

acq

f

G[1]H[1]

G[2]

GH

= rel

acq rel

≺ ≼ ≺

≼≺

I(l)
J(l)

(c)

e
t1

t2

acq

f

G[1]

G[2]

G

= rel

acq rel

≺ ≺

≼≺

I(l)
J(l)

(d)

Figure 6.8: (a) Case 1: H = G − G[1] is inconsistent. (b) Case 2: H is
incompatible. (c) Case 3: H induces a cycle in the → relation and either
(f � acq) or (acq � f) holds. (d) Case 3: The cycle in (c) implies G[1] →
G[2].

is not strongly feasible. Let H = G−G[1] and F = G−G[2]. Without loss of

generality, we show that if H is not strongly feasible, then G[1] → G[2]. We

consider the following three cases:

Case 1. H is not consistent: It is obvious that G[1] → G[2]. (See Fig-

ure 6.8(a).)

Case 2. H is not compatible: An example loset is shown in Figure 6.8(b).

If H is not compatible, then there exists one lock l ∈ el(H[1]) ∩ el(G[2]).

Let I(l) and J(l) be the two intervals for the lock l such that I(l).acq �

H[1] ≺ I(l).rel and J(l).acq � G[2] ≺ J(l).rel. Since G is compatible (i.e.,

el(G[1]) ∩ el(G[2]) = ∅), we get G[1] = I(l).rel. Consequently, the dynamic

122

locking order I(l).rel→L J(l).acq is induced in G and hence G[1]→ G[2].

Case 3. H contains a cycle in the→ relation: Figure 6.8(c) shows an example

loset. Since G is strongly feasible, the cycle must be completed by a dynamic

locking order that is induced by H. Suppose that the dynamic order is induced

because of the lock l, then the following conditions hold:

1. Since the dynamic locking order only exits in H, there exists an interval

I(l) such that H[1] ≺ I(l).rel = G[1].

2. There exists an interval J(l) such that J(l).rel � G[2]. Thus, the dy-

namic locking order J(l).rel →L I(l).acq can be induced in H but not

G.

In order to complete the cycle, there exists a relation e→ f in H such

that I(l).acq ≺ e � H[1] and f ≺ J(l).rel. Since the computation has only

two threads, any dynamic locking order due to H must point toward the events

that occur on ti. Hence, the relation e → f is either an existing HB relation

of the computation or a dynamic locking order that is induced by G[2]. In

either case, e → f also exists in G. Then, e → f would induce the relation

I(l) 7→ J(l) in G (see Figure 6.8(d)) and hence the dynamic locking order

G[1]→L J(l).acq, which implies G[1]→ G[2].

If both H and F are not strongly feasible, then we get G[1]→ G[2] and

G[2]→ G[1]. Therefore, G contains the cycle G[1]→ G[2]→ G[1], which is a

contradiction to the assumption that G is strongly feasible.

123

6.3.3 Enumeration of Reachable Global States Using Strong Fea-
sibility

In this section, we present experiments to show that the gap between

the strong feasibility and the reachability seldom exists in practice. Specifi-

cally, we enumerate the reachable global states, by enumerating the strongly

feasible global states, of losets that are captured from the execution of bench-

mark programs. In comparison with two naive but accurate enumeration al-

gorithms, which simulate the execution of the program using one thread in a

BFS or DFS fashion and hence only reachable global states are enumerated,

our enumeration approach is able to produce exactly the same set of global

states while using only 15–40% of their runtime.

There are two approaches in literature to enumerate reachable global

states of a computation L. The first approach uses breadth (BFS) or depth

(DFS) first strategy to add one event to the current global state G at a time

[CM91, Gar03]. The event to be added satisfies the feasibility of G. This

approach simulates the execution the program using one thread and hence

every enumerated global state is reachable. Because DFS and BFS algorithms

might enumerate the same global state more than once, this approach has to

store the enumerated global states. In the worst case, the memory space for

storing might grow exponentially in the number of threads in L.

An alternative approach predefines or calculates a spanning tree among

the lattice of consistent global states and enumerates the global states following

the edges of the tree [PR93, JMN95, HMNS01, Gan10, Gar03, CG15b]. How-

124

ever, an edge may pass through unreachable global states because the set of

consistent global states is a superset of reachable global states a loset. There-

fore, this approach needs to incorporate an additional function to prune the

consistent but unreachable global states. In this dissertation, we use Quick-

Lex [CG15b] to enumerate the consistent global states and use the strong

feasibility to prune the unreachable global states.

6.3.3.1 Enumerating the Reachable Global States in a Loset Using
QuickLex

Since QuickLex only guarantees that the global state G to be enumer-

ated is consistent, so G has to be checked if it is strongly feasible. QuickLex

checks the strong feasibility of G in two steps: First, it checks if G is feasible.

Then, it calculates the strong feasibility of G.

Algorithm 18 shows the modified lexical algorithm, where the original

lines in QuickLex are underlined. To speed up the calculation of the feasibility

and the strong feasibility of a global state, QuickLex has the following modi-

fications. First, the strong feasibility of the current global state G is implied

if G = F + e, where e is an event such that G is feasible and F is a reachable

or strongly feasible global state. In Algorithm 18, we only use the global state

from the previous iteration as the global state F for performance and memory

space concerns. The global variable sum, which is updated whenever an event

is added to or removed from G, indicates the difference of events between

the current G and the global states from the previous iteration. The vari-

125

Algorithm 18 EnumerateStrongFeasibleGlobalStates(L)

Input: A normal loset L that contains n threads.
1: sum := 0 . A global variable which indicates the number of events that

have been added in and removed from G.
2: compatibleUntilT := (n+ 1) . A global variable which

means that the maximal events from G[1] to G[compatibleUntilT-1] are
pairwise compatible.

3: prevGisStrFeasible := true
4: while true do

. Lines 5–10 reduces the number of the calculation of strong feasibility of
global states.

5: if compatibleUntilT = (n+ 1) and
((prevGisStrFeasible and sum ≤ 1) or isStronglyFeasible(G))

then
6: prevGisStrFeasible := true
7: Evaluate the predicate on G.
8: else
9: prevGisStrFeasible := false

10: end if

11: k := Propagate() . Include events of Ek into G.
12: if k = 0 then break . No more events can be included.
13: Reset(k) . Reset low order part and find the next forbidden

maximal-event.
14: end while

126

Algorithm 19 GetForbiddenMaximalEvent(G)

Input: A global state G.
Output: The maximal forbidden event of G.
1: for i from 1 to n do
2: for j from 1 to (i− 1) do
3: if G[i] is incompatible with G[j] then return G[i]
4: end for
5: end for
6: return null . G is compatible.

able prevGisStrFeasible indicates whether the global state from the previous

iteration is strongly feasible.

Second, QuickLex provides an useful property: the high-order parts of

two consecutive global states are identical. This property allows us to skip

multiple incompatible global states using the forbidden maximal-event, which

is defined as follows:

Definition 21 (Forbidden Maximal Event). For i from 1 to n, the maximal

event G[i] is a forbidden maximal-event iff it is the first G[i] that is not pairwise

compatible with G[j], where j ranges from 1 to (i− 1).

The notion of forbidden maximal event is that if G[i] is a forbidden maximal-

event, then the global state G remains incompatible unless more events of

Ei are included. Algorithm 19 shows the procedure for locating the forbid-

den maximal event for any given global state G. Note that our implementa-

tion does not actually use Algorithm 19; instead, we use the global variable

compatibleUntilT to indicate the forbidden maximal-event of G and the vari-

127

Algorithm 20 Propagate()

Output: Returns k= 0 if no more events can be included; otherwise, includes
new events from Ek while the maximal events, G[1] to G[k], are pairwise
compatible.

1: n′ :=min(n, compatibleUntilT)
2: while k from n′ to 1 do
3: sum := 0 . Reset sum.
4: orgGk :=G[k] . The current maximal event of Ek.
5: while G+ ek�E do . ek is the successor event of G[k] and E is the

final global state of L.
6: if ek does not consistent with G[1] to G[k − 1] then break
7: G :=G+ ek . Include one more event from Ek

8: sum := sum +1
9: if ek is compatible with G[1] to G[k − 1] then return k

10: end while
11: G[k] := orgGk . Restore G[k] and proceed to Ek−1.
12: end while
13: return 0

able is updated incrementally. Therefore, G is compatible when compatible-

UntilT equals (n+ 1).

Algorithm 20 shows the details of the function Propagate, which

is modified to ensure that the maximal events at the high-order part of the

global state, i.e., G[1] to G[k], are pairwise compatible with each other. The

original function Propagate includes one event of Ek at a time, the mod-

ified Propagate may include multiple events of Ek in order to resolve the

incompatibility of locks. In Algorithm 20, since EcompatibleUntilT contains the

forbidden maximal-event, Propagate initially assigns EcompatibleUntilT to Ek

and includes more events until the incompatibility is resolved. However, if the

128

Algorithm 21 Reset()

Input: The decided k.
Output: The maximal event of every G[l] is set to its least value.
1: procedure reset(k)
2: compatibleUntilT := (n+ 1)
3: for l from (k + 1) to n do
4: leastIdx := compute the least index (value) for G[l]
5: G[l] := leastIdx
6: sum := sum + abs(G[l]− leastIdx)
7: if (l < compatibleUntilT) and G[l] is not pairwise compatible with

any of G[1] to G[l − 1] then
8: compatibleUntilT := l
9: end if

10: end for
11: end procedure

event to be included violates the consistency of G, then all succeeding events

also violate the consistency [Gar03, Gan10]; hence, Propagate proceeds to

the next sequence Ek−1 of events and try to resolve the incompatibility by

including more events from Ek−1. Algorithm 21 shows the details of the func-

tion Reset, which finds the least value for all G[l], where l > k, and the next

forbidden maximal-event.

Finally, since the high order maximal events, i.e., G[1] to G[k − 1], re-

mains the same between consecutive global states, the compatibility of G in

the line 9 of Propagate and the line 7 of Reset can be calculated incremen-

tally. We define the array EL that stores the sets of effective locks such that

EL[i] =
⋃i

j=1el(G[j]). When checking if ek is compatible with the high order

maximal events, i.e., G[1] to G[k − 1], we check if el(ek) ∩ EL[k − 1] = ∅.

129

Table 6.1: The information of benchmarks and runtimes (sec.) of each enu-
meration approach.

Benchmark n #events #GS BFS DFS Lex1 Lex2

bank 7 91 664,325 0.99 3.20 0.20 0.09
set (faulty) 6 114 947,951 1.36 5.25 4.55 1.16
set (correct) 6 140 2,762,420 3.55 28.70 16.84 3.16
arraylist1 12 56 354,293 0.57 1.06 0.11 0.07
arraylist2 7 103 3,045,808 4.48 30.28 2.42 0.22

sor 14 66 3,188,645 9.16 32.29 0.29 0.22
tsp 8 76 1,235,981 1.99 11.26 0.80 0.17

raytracer 9 121 4,882,833 10.36 42.57 1.67 0.54
hedc 7 92 458,334 0.64 1.50 0.66 0.38

bank 9 121 53,808,433 350.27 o.o.m. 21.76 4.47
set (faulty) 7 147 15,040,942 40.21 o.o.m. 183.68 23.02
set (correct) 7 189 78,130,591 452.43 o.o.m. 1476.82 160.38
arraylist1 16 76 28,697,813 175.80 o.o.m. 3.22 1.66
arraylist2 8 118 25,740,144 104.81 o.o.m. 43.62 1.75

sor 16 76 28,697,813 174.48 o.o.m. 2.47 1.64
tsp 10 90 25,000,001 115.77 o.o.m. 807.08 52.33

raytracer 10 132 24,414,083 98.15 o.o.m. 10.30 2.83
hedc 9 121 24,522,560 108.37 o.o.m. 90.29 7.30

o.o.m.: Out of memeory.

Afterwards, EL[k] = el(ek) ∪ EL[k − 1].

6.3.3.2 Experimental Results

Table 6.1 shows the information of the benchmarks that are used in

the experiment. The benchmark banking is an toy program, which was used

to demonstrates typical error patterns in concurrent programs [FNU03]; set

(faulty) and set (correct) are incorrect and correct implementations of the

concurrent set [HS08]; arraylist1 is a non-thread-safe container and arraylist2

130

is a thread-safe container from Java library; sor is a scientific computation

application; tsp is a parallel solver for the traveling salesman problem; raytracer

is a benchmark for measuring the performance of a 3D raytracer; and hedc is

a crawler for searching Internet archives. The benchmarks sor, tsp, raytracer,

and hedc are the benchmark programs that are used in [CSR08,FF09,vPG01].

In addition, the columns of “n”, “#events”, and “#GS” show the number of

threads, the number of events, and the number of enumerated global states of

the computation, respectively.

All the experiments are conducted on a Linux machine with an Intel

Xeon 2.67 GHz CPU and the heap size of Java virtual machine is limited to

2GB. The runtime is measured in seconds. Table 6.1 contains two sets of

results. The set at the upper part of the table shows the largest computations

that the DFS algorithm can handle, i.e., the DFS algorithm would run out of

memory when the computations have one more thread. On the other hand,

the set at the lower part of the table shows the largest computations that

the BFS algorithm can handle. The BFS and DFS algorithms generate the

reachable global states and the lexical algorithms generate strongly feasible

global states. However, all the compared algorithms generate the same set of

global states.

The runtimes of our enumeration approach are shown in Lex1 and Lex2,

where Lex1 checks the strong feasibility on every consistent global state and

Lex2 only checks the strong feasibility when the previous global state is not

strongly feasible. As it can be seen, Lex2 reduces 60% of runtime in average.

131

Moreover, Lex2 reduces 84% and 61% of runtime in comparison with BFS and

DFS algorithms, respectively.

6.4 Viable Global States

In this section, we present viable global states such that a viable global

state is always reachable and viability can be determined in polynomial time.

Moreover, every lock-free feasible state is always viable although the converse is

false. Both viable and lock-free feasible global states are a lower approximation

of reachability. However, the set of viable global states is larger than or equal

to the set of lock-free feasible global states.

Definition 22. In a valid loset L′′ that is normalized with the HB relation, a

global state G is viable if (1) it is feasible, and (2) if I(l) is any interval on

thread i such that I.l ∈ el(G[i]) and J(l) is any interval on thread j such that

J(l).rel � G[j], then J(l) 7→ I(l).

Note that the loset L′′ is normalized before the dynamic locking orders

due to G are identified, i.e., only the HB relation of the loset are initially

added to the set H of seed relation. Since a lock-free global state is feasible

and cannot have any interval I(l) such that I(l).acq � G[i] ≺ I(l).rel, it is

trivially viable. We now show

Theorem 18. Given a loset L′′ that is normalized with the HB relation, a

reachable global state G of L′′, and a viable global state V � G, V is reachable.

132

G

U

F

s

t

V

Figure 6.9: G is a reachable global state of the normal loset; V is a viable
global state; F follows R reaching G from φ; and U follows S reaching V from
φ.

Proof. Let R be the run that takes the loset to G, i.e., δ(φ,R) = G, and the

sequence S = R ↑ V of events be the projection of R that contains exactly

the events in V . If S is a run, then V is reachable. Since S is a projection

of R, it also preserves the → relation and hence ∀i : 0 ≤ i ≤ |S| : δ(φ,S i) is

consistent. We now show that ∀i : 0 ≤ i ≤ |S| : δ(φ,S i) is compatible:

Let the global state U = δ(φ,S i). We need to show that

∀s 6= t : el(U [s]) ∩ el(U [t]) = ∅. (6.7)

Let Rj be the shortest prefix of R such that Rj ↑ V = S i and let

F = δ(φ, Rj). Since R is a run, we get

∀s 6= t : el(F [s]) ∩ el(F [t]) = ∅. (6.8)

The global states G, V , U , and F are shown in Figure 6.9. We now

consider the following three cases for any s 6= t in the global state U :

Case 1. (U [s] = F [s]) ∧ (U [t] = F [t]): In this case, we get (el(U [s]) =

el(F [s])) ∧ (el(U [t]) = el(F [t])). Then from (6.8), el(U [s]) ∩

el(U [t]) = ∅ holds.

133

Case 2. (U [s] ≺ F [s]) ∧ (U [t] ≺ F [t]): Because S i = Rj ↑ V , (U [s] ≺ F [s])

holds only if Rj contains the events in G\V w.r.t. Es, which implies

that S i contains all the events in V w.r.t. Es. Thus, we get (U [s] =

V [s] ≺ F [s]). Similarly, (U [t] = V [t] ≺ F [t]). Since V is feasible,

el(U [s]) ∩ el(U [t]) = ∅ holds.

Case 3. (U [s] ≺ F [s]) ∧ (U [t] = F [t]): Because S i = Rj ↑ V , we get (U [s] =

V [s] ≺ F [s]) and (U [t] = F [t] � V [t]). If (U [t] = F [t] = V [t]), we

get el(U [s]) ∩ el(U [t]) = ∅ because V is feasible.

We now consider (U [t] = F [t] < V [t]). Assume that there exists a

lock l ∈ (el(U [s]) ∩ el(U [t])). Let S and T be the locking intervals

that contain U [s] and U [t], respectively. Since U [t] < V [t] and V

is feasible, we get U [t] ≺ T.rel � V [t]. Then, because V is viable

and L′′ is normalized, we get T 7→ S and hence T.rel → S.acq.

Since U [t] ≺ T.rel and S.acq � U [s], T.rel → S.acq violates the

consistency of U and hence a contradiction. Consequently, el(U [s])∩

el(U [t]) = ∅ holds.

From cases 1, 2, and 3, (6.7) holds. Hence, S is a run.

Note that a viable global state V cannot be used as a reset point of

reachability. Assume that the global state G in the normal loset shown in

Figure 6.10 is reachable. The viable global state V is reachable because of

Theorem 18, but G cannot be reached from V because the thread t of V is

not able to acquire the lock that is currently held by the thread s.

134

6.5 Relationship Among Various Classes of Global States

The relationship among different sets of global states in a valid loset,

whose final global state is reachable, is shown in Figure 6.11. The set of

strongly feasible global states is a superset of reachable global states because

of Theorem 10. Moreover, if a global state G is not strongly feasible, then

the dynamic locking order due to G induces a cycle in the relation →, and

therefore, G cannot be reachable. Corollary 1 and Theorem 18 show that all

lock-free feasible global states and viable global states are reachable, respec-

tively. Hence, they are subsets of reachable global states.

G

s

t

V

Figure 6.10: G and V is a reachable and viable global state of the normal
loset, respectively.

Feasible

Reachable
Strong

ly Feasible

Viable

Lock-Free
Feasible

Figure 6.11: The relationship among various classes of global states in a valid
loset.

135

Is G Feasible
in !

Not reachable

No

Is G lock-freeYes

Reachable

Yes

No
Is G strongly

feasible in in !’

No Yes

Likely reachable due to
the NP-completeness

Is G viable
in !’’

Yes

No

Figure 6.12: The decision flow for determining the reachability of a global
state in a loset L.

Figure 6.12 shows a flow for determining the reachability of a global

state G in a loset L. The loset L′′ is the loset L that is normalized to the HB

relation, i.e., the dynamic locking orders are initially excluded from the set

H. The loset L′ is the sub-loset of L that is normalized to the HB relation

along with the dynamic locking orders due to the given G. From Figure 6.12,

given a feasible global state G, it is easy to answer reachability if either it

is lock-free feasible, viable, or not strongly feasible. If none of these cases

holds, then the precise reachability cannot be determined efficiently because

the NP-completeness of reachability problem. However, from Theorem 13, the

calculation of reachability of G can be bounded in the sub-loset (G\F), where

F is the greatest lock-free feasible global state that precedes G, rather than

the entire computation.

136

Chapter 7

Conclusions

In this dissertation, we study the technique of predicate detection for general-

purpose predicates. The problem of predicate detection is to predictively de-

tect if the predicate could become true in any reachable global state of the

given computation, i.e., the execution trace of the program. This predictive

technique assumes that process or thread scheduling is the only source of

the non-determinism of the program. Moreover, our work focus on general-

purpose predicate detection which does not make assumptions on the nature of

the predicate. Hence, our technique of predicate detection ensures that every

reachable global state of the computation is enumerated exactly once.

The first part of this dissertations introduces the first online-and-parallel

predicate detector, named ParaMount [CG15a], for detecting general-purpose

predicates. ParaMount provides a strategy to partition the set of consis-

tent global states. In addition, ParaMount can run along with the execu-

tion of user’s program and hence is applicable even to non-terminating pro-

grams such as web-server applications. In ParaMount, each subset of con-

sistent global states can be enumerated individually using existing sequential

enumeration algorithms, e.g., the BFS algorithm [CM91] or the lexical algo-

137

rithm [Gan10,Gar03,CG15b].

Our online predicate detector, ParaMount, uses the method [FF09,

LC06] for capturing computation from the execution of the program. Al-

though the method can be used in an online setting, it does not consider the

commuting of mutex. Therefore, the detector may miss the predicate un-

der a different locking schedule. The problem can be solved by incorporating

the technique of RichTest [LC06], which uses a thread scheduler to control the

threads and changes the acquisition order of locks. The technique ensures that

every re-execution of the program produces a new poset of events. Therefore,

RichTest and our online predicate detector are complementary tools.

The second part presents a fast sequential enumeration algorithm, named

QuickLex, for consistent global states. In comparison with the original lexi-

cal algorithm, QuickLex incorporates a preprocessing procedure and dynamic

programming to reduce the time complexity from O(n2) to O(n·∆(P)), where

∆(P) is the maximal in-degree of any event in the computation. Although

QuickLex uses O(n2) space for dynamic programming, the additional space is

insignificant from our experimental results.

The third part of this dissertation proposes a new model, named Loset,

for modeling the computation with locking constraints. We have shown that

the reachability problem is NP-complete in the loset model. To cope with

the NP-completeness, we introduce the set of lock-free feasible global states

and the set of strongly feasible global states, which are a lower and upper

approximation of reachability, respectively, that can be calculated in polyno-

138

mial time. We also show that reachability equals to strong feasibility of global

states in computations that contain at most two threads. Moreover, our exper-

iments show that the gap between reachability and strong feasibility of global

states seldom exists in practice. We also show that the set of viable global

states could reduce the gap between the lower and upper approximation of the

reachability of global states.

Altough the reachability of a global state in a parallel computation has

also been solved using SAT/SMT solver [WKGG09, WLGG10, HZ11], these

solvers take exponential amount of time in the worst case. Our techniques are

orthogonal to techniques using SAT/SMT solvers and take only polynomial

time. Specifically, given a computation, instead of calculating the reachability

of a global state G from the initial global state, we only need to compute

if G is reachable from its greatest preceding lock-free consistent global state.

Moreover, we only need to calculate the reachability with a SAT/SMT solver

only if G is strongly feasible. Therefore, we could restrict the input of the

SAT/SMT solver in a subcomputation rather than the entire computation.

139

Chapter 8

Future Work

This chapter describes the future work for ParaMount, QuickLex, and Loset

model.

8.1 Future Work of ParaMount

In the context of distributed systems, the techniques of predicate detec-

tion for different kinds of condition have been extensively studied. These predi-

cates can be roughly categorized into conjunctive predicates [GW94,HMRS96],

linear and semi-linear predicates [CG98], relational predicates [TG97], re-

stricted temporal logics [OG07,SG02], etc. Those techniques studies the prop-

erties of the predicates and the time complexity of the detection could be

reduced to polynomial time because only a partial set of consistent global

states is needed to be enumerated. Therefore, one possible future direction of

ParaMount is developing online partitioning algorithms for different categories

of predicates.

Another future direction for ParaMount is to optimize the construction

the poset during runtime verification. One possible solution is incorporating

140

the technique of computation slicing (or simply slicing), which is commonly

used technique in distributed debugging. Briefly, slicing is a technique that

efficiently find all global states that satisfy the given predicate without enu-

merating all global states explicitly. Suppose that we wants to detect if the

predicate (x1 + x2 + x3 < 10) ∧ (x1 = 3) ∧ (x2 = 3) can become true in one of

the global states. We can compute a slice of the poset in which this part of the

predicate, (x1 = 3) ∧ (x2 = 3), is always true for all consistent global states.

Then, we enumerate the lattice of consistent global states of the sliced poset,

which is much smaller than the original lattice. Chauhan et al. [CGNM13] has

proposed an online slicing technique for distributed computations. Therefore,

one future direction of ParaMount is to apply the online slicing technique and

reduce the size of the constructed poset.

8.2 Future Work of QuickLex

In QuickLex, the bottleneck of its time complexity is the propagate

function, which takes O(n·∆(P)) time for finding the enabled event for the

current iteration. Although the time complexity could be reduced to O(n) for

the commonly used computations [CSR08,LC06,FF09,HMNS01,JMN95], the

time complexity might be O(n2) for general posets of computations, where

an event may have (n − 1) incoming HB relations. One future direction for

QuickLex is to investigate the possibility of reducing the time complexity of

propagate function from O(n·∆(P)) to amortized constant time.

141

8.3 Future Work of Loset

One future work of Loset model is to study the problem of online-

and-parallel predicate detection using the loset model. Without considering

the compatibility of global states, the consistent global states of a loset also

forms a distributive lattice, which means that we could use ParaMount to

partition the lattice into multiple subsets. After that, we could use the strong

feasibility to prune the consistent global states that are unreachable. However,

Theorem 13 shows that the calculation of strong feasibility can be bounded

between two lock-free feasible global states. So, the calculation may need the

events which happen after the current global state. Besides parallelism, the

online property is limited by the normalization procedure of the loset mode,

which may also need events that happen after the current global state of the

system. Therefore, two possible future work are to develop a partition method

to ensure all required events for the calculation are included; and to develop

an online normalization procedure for losets.

Another future work is to investigate the equivalence between the reach-

ability and the strongly feasibility. Specifically, we are interested in the upper

bound of the number of threads with which the reachability is still equivalent

to the strong feasibility of a global state. In addition, we are also interested

in finding the sets of global states that can further reduce the gap while the

approximate reachability of a global state can still be calculated in polynomial

time.

142

Bibliography

[ASM] ASM. A java bytecode engineering library.

[AV01] Sridhar Alagar and Subbarayan Venkatesan. Techniques to tackle

state explosion in global predicate detection. IEEE Transactions

on Software Engineering, 27:412–417, 2001.

[CG98] C. Chase and Vijay K. Garg. Detection of global predicates:

Techniques and their limitations. Distributed Computing, 11(4):191–

201, 1998.

[CG15a] Yen-Jung Chang and Vijay K. Garg. A parallel algorithm for

global states enumeration in concurrent systems. In ACM SIG-

PLAN Symposium on Principles and Practice of Parallel Pro-

gramming, pages 140–149, 2015.

[CG15b] Yen-Jung Chang and Vijay K. Garg. Quicklex: A fast algorithm

for consistent global states enumeration of distributed computa-

tions. In International Conference On Principles of Distributed

Systems, 2015.

[CGNM13] Himanshu Chauhan, Vijay K. Garg, Aravind Natarajan, and Neeraj

Mittal. A distributed abstraction algorithm for online predicate

143

detection. In Symposium on Reliable Distributed Systems, pages

101–110, 2013.

[CL85] K. M. Chandy and L. Lamport. Distributed snapshots: Deter-

mining global states of distributed systems. ACM Transactions

on Computer Systems, 3(1):63–75, February 1985.

[CM91] R. Cooper and K. Marzullo. Consistent detection of global predi-

cates. In Proceedings of the Workshop on Parallel and Distributed

Debugging, pages 163–173, 1991.

[CSR08] Feng Chen, Traian Florin Serbanuta, and Grigore Roşu. jPredic-

tor: a predictive runtime analysis tool for java. In Proceedings

of the International Conference on Software Engineering, pages

221–230, 2008.

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E.

Leiserson. Introduction to Algorithms. McGraw-Hill Higher Ed-

ucation, 2nd edition, 2001.

[DP90] B. A. Davey and H. A. Priestley. Introduction to lattices and

order. In Cambridge University Press, Cambridge, UK, 1990.

[FF09] Cormac Flanagan and Stephen N. Freund. FastTrack: efficient

and precise dynamic race detection. In Proceedings of ACM SIG-

PLAN the Conference on Programming Language Design and Im-

plementation, pages 121–133, 2009.

144

[Fid88] Colin J. Fidge. Timestamps in message-passing systems that

preserve the partial ordering. In Proceedings of the Australian

Computer Science Conference, pages 56–66, 1988.

[FNU03] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how

to test them. In Proceedings of the International Parallel and

Distributed Processing Symposium, 2003.

[Gan10] Bernhard Ganter. Two basic algorithms in concept analysis. In

Proceedings of the International Conference on Formal Concept

Analysis, pages 312–340, 2010.

[Gar03] Vijay K. Garg. Enumerating global states of a distributed compu-

tation. In Proceedings of the International Conference on Parallel

and Distributed Computing Systems, pages 134–139, 2003.

[Gar06] Vijay K. Garg. Algorithmic combinatorics based on slicing posets.

Theor. Comput. Sci., 359(1-3):200–213, 2006.

[Gar15] Vijay K. Garg. Introduction to Lattice Theory with Computer

Science Applications. John Wiley & Sons, Inc., 2015.

[GW91] Vijay K. Garg and B. Waldecker. Detection of unstable predi-

cates. In Proceedings of the Workshop on Parallel and Distributed

Debugging, 1991.

145

[GW94] Vijay K. Garg and B. Waldecker. Detection of weak unstable

predicates in distributed programs. IEEE Transactions on Par-

allel and Distributed Systems, 5(3):299–307, 1994.

[HMNS01] Michel Habib, Raoul Medina, Lhouari Nourine, and George Steiner.

Efficient algorithms on distributive lattices. Discrete Appl. Math.,

110(2-3):169–187, 2001.

[HMRS96] M. Hurfin, M. Mizuno, M. Raynal, and M. Singhal. Efficient

distributed detection of conjunctions of local predicates in asyn-

chronous computations. In Proceedings of the IEEE Symposium

on Parallel and Distributed Processing, pages 588–594, 1996.

[HS08] Maurice Herlihy and Nir Shavit. The Art of Multiprocessor Pro-

gramming. Morgan Kaufmann, 2008.

[HZ11] Jeff Huang and Charles Zhang. Persuasive prediction of concur-

rency access anomalies. In Proceedings of the International Sym-

posium on Software Testing and Analysis, pages 144–154, 2011.

[JMN95] Roland Jegou, Raoul Medina, and Lhouari Nourine. Linear space

algorithm for on-line detection of global predicates. In Proceed-

ings of the International Workshop on Structures in Concurrency

Theory, pages 175–189, 1995.

[KIG05] Vineet Kahlon, Franjo Ivancic, and Aarti Gupta. Reasoning

about threads communicating via locks. In Proceedings of Inter-

146

national Conference on Computer Aided Verification, pages 505–

518, 2005.

[KW10] Vineet Kahlon and Chao Wang. Universal causality graphs: A

precise happens-before model for detecting bugs in concurrent pro-

grams. In Proceedings of International Conference on Computer

Aided Verification, pages 434–449, 2010.

[Lam78] Leslie Lamport. Time, clocks, and the ordering of events in a

distributed system. Communications of the ACM, 21(7):558–565,

1978.

[LC06] Y. Lei and R.H. Carver. Reachability testing of concurrent pro-

grams. IEEE Transactions on Software Engineering, 32(6):382–

403, 2006.

[LTQZ06] Shan Lu, Joseph Tucek, Feng Qin, and Yuanyuan Zhou. AVIO:

detecting atomicity violations via access interleaving invariants.

In Proceedings of the International Conference on Architectural

Support for Programming Languages and Operating Systems, pages

37–48, 2006.

[Mat88] Friedemann Mattern. Virtual time and global states of dis-

tributed systems. In Proceedings of the International Workshop

on Parallel and Distributed Algorithms, pages 125–226, Chateau

de Bonas, France, 1988.

147

[MQ07] Madanlal Musuvathi and Shaz Qadeer. Iterative context bound-

ing for systematic testing of multithreaded programs. In Pro-

ceedings of ACM SIGPLAN conference on Programming language

design and implementation, pages 446–455, 2007.

[MR10] Patrick Meredith and Grigore Roşu. Runtime Verification with

the RV system. In the International Conference on Runtime

Verification, volume 6418, pages 136–152, 2010.

[MSG07] Neeraj Mittal, Alper Sen, and Vijay K. Garg. Solving compu-

tation slicing using predicate detection. IEEE Transactions of

Parallel Distributed Systems, 18(12):1700–1713, 2007.

[OC03] Robert O’Callahan and Jong-Deok Choi. Hybrid dynamic data

race detection. In Proceedings of the ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, pages 167–

178, 2003.

[OG07] Vinit A. Ogale and Vijay K. Garg. Detecting temporal logic

predicates on distributed computations. In Proceedings of In-

ternational Symposium in Distributed Computing, pages 420–434,

2007.

[PLZ09] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: exposing

atomicity violation bugs from their hiding places. In Proceed-

ings of the International Conference on Architectural support for

programming languages and operating systems, pages 25–36, 2009.

148

[PR93] Gara Pruesse and Frank Ruskey. Gray codes from antimatroids.

Order 10, pages 239–252, 1993.

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Ander-

son. Eraser: a dynamic data race detector for multi-threaded

programs. In Proceedings of the ACM Symposium on Operating

System Principles, pages 27–37, 1997.

[SFM10] Francesco Sorrentino, Azadeh Farzan, and P. Madhusudan. PENE-

LOPE: weaving threads to expose atomicity violations. In Pro-

ceedings of the ACM SIGSOFT International Symposium on Foun-

dations of Software Engineering, pages 37–46, 2010.

[SG02] A. Sen and V. K. Garg. Detecting temporal logic predicates on

the happened-before model. In Proceedings of the International

Parallel and Distributed Processing Symposium, 2002.

[Squ95] Matthew B. Squire. Enumerating the ideals of a poset. In PhD

Dissertation, Department of Computer Science, North Carolina

State University, 1995.

[Ste86] George Steiner. An algorithm to generate the ideals of a partial

order. Oper. Res. Lett., 5(6):317–320, 1986.

[Tar00] Ashis Tarafdar. Software fault tolerance in distributed systems

using controlled re-execution. In PhD Dissertation, Department

149

of Electrical and Computer Engineering, The University of Texas

at Austin, 2000.

[TG97] A. I. Tomlinson and V. K. Garg. Monitoring functions on global

states of distributed programs. Journal of Parallel and Dis-

tributed Computing, 41(2):173–189, 1997.

[VHB+03] Willem Visser, Klaus Havelund, Guillaume Brat, SeungJoon Park,

and Flavio Lerda. Model checking programs. Automated Soft-

ware Engineering Journal, 10(2):203–232, 2003.

[vPG01] Christoph von Praun and Thomas R. Gross. Object race de-

tection. In Proceedings of the ACM SIGPLAN conference on

Object-Oriented Programming, Systems, Languages, and Applica-

tions, pages 70–82, 2001.

[WKGG09] Chao Wang, Sudipta Kundu, Malay Ganai, and Aarti Gupta.

Symbolic predictive analysis for concurrent programs. Formal

Methods, 29:256–272, 2009.

[WLGG10] Chao Wang, Rhishikesh Limaye, Malay Ganai, and Aarti Gupta.

Trace-based symbolic analysis for atomicity violations. In Pro-

ceedings of the International Conference on Tools and Algorithms

for the Construction and Analysis of Systems, pages 328–342,

2010.

150

[YNPP12] Jie Yu, Satish Narayanasamy, Cristiano Pereira, and Gilles Pokam.

Maple: A coverage-driven testing tool for multithreaded programs.

In Proceedings of the ACM International Conference on Object

Oriented Programming Systems Languages and Applications, pages

485–502, 2012.

151

Vita

Yen-Jung Chang was born in Taipei, Taiwan on 14 July 1983, the son of Dr.

Jung-Feng Chang and Su-Luwan Lee. He received the Bachelor of Science de-

gree in Computer Science from the National Chiao Tung University at Hsinchu

in May, 2002 and the Master of Science degree in Computer Science from the

National Tsing Hua University at Hsinchu in July, 2008. He has been em-

ployed at Synopsys, Inc.; Intel Corporation; VMware, Inc.; and LinkedIn in

the summers of 2007, 2012, 2013, 2014, respectively. He was also employed

at TASS Consultant Group from 2008 to 2010. Thereafter, he started pur-

suing a Ph.D. degree in the University of Texas at Austin. He won the 1st

place in the ISPD Global Routing Contest in 2008 and was awarded Best The-

sis Award by Taiwan IC Design Community in 2008, SpringSoft Scholarship

Award by SpringSoft, Inc. in 2008 and 2010, National Science Foundation

Student Award by NSF in 2014, and Teaching Award by the University of

Texas at Austin in 2015.

Permanent address: c/o Mrs. Su-Luwan Lee
1F., No.6, Ln. 65, Hougang 1st Rd.,
Xinzhuang Dist., New Taipei City 24259, Taiwan

This dissertation was typeset with LATEX† by the author.

†LATEX is a document preparation system developed by Leslie Lamport as a special
version of Donald Knuth’s TEX Program.

152

	Acknowledgments
	Abstract
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Predicate Detection for Debugging
	Online-and-Parallel Predicate Detection
	A Fast Enumeration Algorithm for Consistent Global States
	Predicate Detection for Computations with Locking Constraint
	Summary
	Overview

	Chapter 2. The Computation of Poset Model
	Poset Model
	Causality and the Happened-Before Relation
	Global States
	Consistent Global States

	Chapter 3. Online-and-Parallel Enumeration of Consistent Global States
	Partitioning the Set of Consistent Global States
	Bounded Enumeration Algorithm
	Correctness of ParaMount
	Work and Space Complexity of ParaMount
	Implementation of Online Predicate Detector
	Construction of Poset P
	Online Consistent Global States Enumeration
	Predicate Evaluation
	Other Implementation Details

	Evaluation
	Experimental Results of ParaMount
	Experimental Results of Online Predicate Detection

	Other Predicate Examples

	Chapter 4. A Fast Enumeration Algorithm for Consistent Global States
	Overview of QuickLex
	Part 1: Procedure propagate and Enabled Events
	Part 2: Procedure reset and Maximum Dependency Events
	Calculating Maximum Dependency Event in Amortized Constant Time

	Correctness and Worst Case Time Complexity of QuickLex
	Evaluation
	Improvements to the Related Enumeration Algorithms
	Experimental Results

	Applications of QuickLex
	Predicate Detection in Concurrent Systems
	Other Applications of QuickLex

	Chapter 5. A Model for Computations with Locking Constraints
	Loset Model of a Computation
	Global States
	Reachable Global States and Runs

	Valid Losets

	Chapter 6. Reachability of Global States in a Loset
	Lock-Free Feasible Global States
	Strongly Feasible Global States
	Locking Order
	Normalization of Loset
	Strong Feasibility of Global States

	Reachability of Strongly Feasible Global States
	Strong Feasibility Does Not Imply Reachability
	Strong Feasibility Equals to Reachability in Losets with Two Threads
	Enumeration of Reachable Global States Using Strong Feasibility

	Viable Global States
	Relationship Among Various Classes of Global States

	Chapter 7. Conclusions
	Chapter 8. Future Work
	Future Work of ParaMount
	Future Work of QuickLex
	Future Work of Loset

	Bibliography
	Vita

