Clocks 1

Goals of the lecture

e Logical Clocks (Lamport’s clocks)

e Concurrency vs Simultaneity

e Total Ordering

e Physical Clocks

e Vector Clocks
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Clocks

Logical Clocks

A global clock C: S — N that satisfies:
Vs,te€S:s=<1tVs~t=C(s)<C(t)

C : the set of all global clocks
Equivalent to :

Vs,teS:s—=>t=VCeC:C(s)<C(t) (CC)

e Lemma: C is non-empty iff (S, —) is an irreflexive partial
order.

e happened-before relation
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Clocks 3

Concurrency = simultaneity for some observer

Yu,v € S :ullv=3C €C: (C(u) = C(v))

If two local states are concurrent, = there exists a global clock
such that both states are assighed the same timestamp. This
will show the converse of (CC), i.e.,

Vs,teS:shAt=33CcC:-(C(s) < C(t))

3 7 9 12 3 7 10 13
O /Q W /Q O /Q W /O
O G < O O W < 0,

2 10 13 15 2 10 13 16

Transitivity 7
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Clocks 4

Logical Clock

e Useful for various algorithms
e Actions taken for each event type:

For any initial state s:
s.c = 0;

Rule for a send event (s, snd,t): /* s.c is sent as part of msg */
t.c:=s.c+ 1;

Rule for a receive event (s, rcv(u),t):
t.c := max(s.c,u.c) + 1;

Rule for an internal event (s, int,t):
t.c:=s.c+ 1;

The following claim is easy to verify: (Converse ?7)

Vs,teS:s—>t=sc<t.c
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Clocks 5

Ordering the events totally

e Extend the logical clock with process number

« the timestamp of any event is a tuple < e.c,e.p >

e the total order < is obtained as:

(e.cep) < (fec. f.p)
p—

(e.c < f.e)V ((e.c= f.c) A (ep < f.p)).
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Clocks 6

Physical Clocks

e \What if some messages do not follow the algorithm 7

e Given approximately correct physical clocks, one can syn-
chronize clocks such that v — v implies C'(u) < C'(v).

« k = upper bound on the drift rate of any clock
« [ = minimum transmission time for any message

. t = physical time at which the message is sent

We require
Ci(t+ p) > C;(t) for all 7, j,t.
From the bound on the drift we know that
Ci(t +p) > Ci(t) + (1 — 5)p.
Thus, we need Ci(t) + (1 — x)u > Cj(t).
That is, C;(t) — Ci(t) < (1 — k).
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Clocks 7

Clock Synchronization Algorithm

The synchronization constant (¢) < (1 — k)pu.
e Algorithm:

. send out a timestamped message along its outgoing link at least every
T seconds.

. Every message takes time between 1 and u + €.
« On receipt of a message timestamped with T}, the clock is updated
as maximum of the previous value and T, + pu.

e Let the network be strongly connected with d as the diam-
eter. Then, it can be shown that ¢ = d(2k7 + &) for all
t > tg+ 7d assuming that pu + & << 7.

VAN <}7

O
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Clocks 8

Vector Clocks

e Logical clocks satisty
s —=1t= s.c<t.c
However, the converse is not true.
e Vector clock satisfy:

s >t s.v<to.
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Clocks 9

Consistent Cuts

¢ (F,<)
« down-set Y in this partial order will be called a prefix.
« The set of all prefixes is a lattice.

. supY for any prefix Y is called a cut.

e (F,—) where — is the causal-precedes.
« A down-set Y in this partial order is called a consistent prefix.
« Similarly, supY is called a consistent cut.

« The set of all consistent prefixes is also a lattice.
F C E is a consistent cut iff Ve, f € F: =(e — f).
Cut B Cut A
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Clocks

Vector Algorithm

10

e Let there be NV processes
e Algorithm:

For any initial state s:
(Vi :i # s.p:s.ofi

=0) A (s.v]s.p] =1)

Rule for an internal event (s, int,t):

t.v = s.v;
tolt.p] + +;
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Clocks 11

Vector Algorithm [Contd.]

Rule for a send event (s, snd,t):
t.v 1= 8.v;
tolt.p] + +;
Rule for a receive event (s, rcv(u),t):
fori:=1to N
t.oli] ;= max(s.v|i], u.v|i]);
tolt.p] + +; "
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Clocks 12

Properties of the Vector Clock Algorithm

Lemma 1 Let s #t. Then,

s A t=tw|s.p|] < s.v[s.p]

Proof:

« t.p = s.p: then it follows that ¢ < s.

. 5.p # t.p. Since s.v[s.p] is the local clock of P;, and P, could not
have seen this value as s /4~ ¢ .

Theorem 1 s — ¢t iff s.v < t..
Proof: (s = t) = (s.v < t.w)

« s — t: there is a message path from s to t. Therefore,
VEk : s.wlk] < t.wlk]. Furthermore, since t /4 s, from lemma 1
tolj] > s.vlj].

« |he converse follows from Lemma 1. .
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Clocks 13

Optimization

Recall x < y if and only if
(Vi @ x[r] < yle]) A (F7 = z[j] < ylg]). If we know the
processes the vectors came from, the comparison
between two states can be made in constant time.

Lemma 2 s — t iff
(s.v]s.p] < tw[s.p]) A (s.v[t.p] < tolt.p])
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