Goals of the lecture

- Time domain vs Causality domain
- Lamport's Mutual Exclusion Algorithm
- Formal Verification
 - Key Lemmas
 - Safety
 - Liveness
 - Fairness

References: Lamport 79,

Garg and Tomlinson 94

Time domain vs Causality domain

- most problems require causality domain
 - accounts for variable execution schedule
- problems in causality domain easier
 - mutual exclusion
 - ordering of messages
 - observing a global property

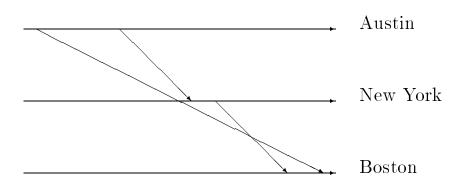
Properties of the Mutual Exclusion Algorithm

- a fixed number of processes
- a shared resource called the critical section (CS).
- Task is to coordinate processes.
- Requirements are:

Safety: Two processes should not use the CS simultaneously.

Liveness: Every request for the CS is eventually granted.

Fairness: Requests must be granted in the order they are made.



Formal Specification

Lamport's algorithm assumes that all channels are FIFO

$$s \prec t \land s \leadsto u \land t \leadsto v \Rightarrow \neg(v \prec u)$$

- $req(s) = P_{s.p}$ has requested the critical section
- $cs(s) = P_{s,p}$ has permission to enter the critical section in s
- Cooperation assumption:

$$cs(s) \Rightarrow (\exists t : s \prec t : \neg req(t))$$

Formal Requirements

$$s||t\Rightarrow \neg(cs(s) \land cs(t))$$
 (Safety)
 $req(s)\Rightarrow (\exists t:: s \prec t \land cs(t))$ (Liveness)

$$next_cs(s) = min\{t \mid s \prec t \land cs(t)\}$$

$$req_start(s) = req(s) \land \neg req(s.prev)$$

$$req_start(s) = P_{s.p} \text{ made a request for the CS in state } s.$$

$$(req_start(s) \land req_start(t) \land s \rightarrow t) \Rightarrow next_cs(s) \rightarrow next_cs(t)$$

$$\textbf{(Fairness)}$$

- $next_cs(s)$ and $next_cs(t)$ exist due to liveness.
- $next_cs(s)$ and $next_cs(t)$ are not concurrent due to safety.

Informal Specification of the Mutual Exclusion Algorithm

- request CS: send a timestamped message to all other processes and add a timestamped request to the queue.
- On receiving a request: the request and its timestamp is stored in the queue and an acknowledgment is returned.
- To release the CS: send a release message to all other processes.
- On receiving a "release": delete the corresponding request from the queue.

$$P_{3} \circ | \overline{req(21,1), \cdots}$$

$$\begin{array}{c|c} P_1 & \circ & P_2 & \circ \\ \hline |req(21,1),ack(24,2),ack(25,3),\cdots & |req(21,1),\cdots | \end{array}$$

Informal Specification [Contd.]

can access CS if

- ullet it has a request in the queue with timestamp t, and
- t is less than all other requests in the queue, and
- it has received a message from every other process with timestamp greater than t_{\cdot}

$$P_3 \circ | \underline{req(21,1), req(24,2) \cdots}$$

Formal Description

• Local variables in each state s:

s.q[1..n] : integer initially ∞ s.v : DDClock

• To request the critical section in t where $s \prec_1 t$:

$$\begin{aligned} t.q[t.p] &= s.v[t.p] \\ \text{for all } j: j \neq t.p: \text{send "request" to } P_j \end{aligned}$$

• On receiving "request" in state t sent from state u ($u \leadsto t$):

$$t.q[u.p] = u.q[u.p]$$

send ack to $u.p$

• To release the critical section in state t:

$$t.q[t.p] = \infty$$
 for all $j \neq t.p$, send "release" to P_j

• On receiving "release" sent from state *u*:

$$t.q[u.p] = \infty$$

Formal Description [Contd.]

State s has permission to access the critical section when

- there is a request from $P_{s.p}$ with timestamp less than all other requests
- and $P_{s,p}$ has received a message from every other process with a timestamp greater than the timestamp of its own request.

Formal description of $CS(s) \equiv$

$$\forall \, j: j \neq s.p: (s.q[s.p], s.p) < (s.v[j], j) \ \land \ (s.q[s.p], s.p) < (s.q[j], j).$$

Proof of Correctness

We define the predicate

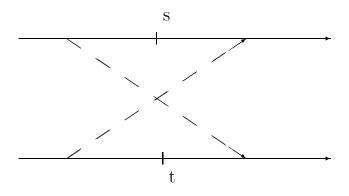
$$msg(s,t) \equiv (\exists u, t' : u \leadsto t' \land u \prec s \land t \prec t')$$

That is, there exists a message which was sent by $P_{s,p}$ before s and received by $P_{t,p}$ after t.

Lemma 1 Assume FIFO. $\forall s, t : s.p \neq t.p : s \not\rightarrow t \land \neg msg(s,t) \Rightarrow t.q[s.p] = s.q[s.p].$

The following Lemma is crucial in proving the safety property.

Lemma 2 $\forall s, t : s.p \neq t.p : s \not\rightarrow t \land s.q[s.p] < t.v[s.p] \Rightarrow t.q[s.p] = s.q[s.p]$



10

Safety Property

Lemma 3 (Safety) $s.p \neq t.p \land s || t \Rightarrow \neg(cs(s) \land cs(t)).$

Proof: We will show that $(s||t) \wedge cs(s) \wedge cs(t)$ implies false.

Case 1:
$$t.v[s.p] < s.q[s.p] \land s.v[t.p] < t.q[t.p]$$

We get the following cycle.

$$s.q[s.p]$$

$$< \{ cs(s) \land s.p \neq t.p \}$$

$$s.v[t.p]$$

$$s.v[s.p]$$

$$< \{ this case \}$$

$$t.q[t.p]$$

$$s.q[t.p]$$

$$s.q[t.p]$$

$$s.q[t.p]$$

$$t.q[s.p]$$

$$t.v[s.p]$$

$$s.q[s.p]$$

$$t.v[s.p]$$

$$s.q[s.p]$$

s.q[s.p].

Safety Property [Contd.]

```
Case 2: s.q[s.p] < t.v[s.p] \land t.q[t.p] < s.v[t.p]
We get the following cycle.
    s.q[s.p]
< \{ cs(s) \land s.p \neq t.p \}
                                                          s.v[t.p] •
    s.q[t.p]
                                                                               t.v|s.p|
= \{\ t.q[t.p] < s.v[t.p],\ t \not\rightarrow s \text{, Lemma 2}\ \}^{s.v[s.p]} \ \bullet
                                                                                \bullet t.v[t.p]
                                                          s.q[t.p]
                                                                               • t.q[s.p]
    t.q[t.p]
                                                          s.q[s.p]
                                                                                • t.q[t.p]
< \{ cs(t) \land s.p \neq t.p \}
    t.q[s.p]
= \{ s.q[s.p] < t.v[s.p], s \nrightarrow t, Lemma 2 \}
    s.q[s.p].
```

Safety Property [Contd.]

```
Case 3: s.q[s.p] < t.v[s.p] \land s.v[t.p] < t.q[t.p]
We get the following cycle.
    s.q[s.p]
< \{ cs(s) \land s.p \neq t.p \}
    s.v[t.p]
                                                   s.v[t.p]
                                                                       t.v|s.p|
                                                   s.v[s.p]
                                                                       t.v[t.p]
< { this case }
                                                   s.q[t.p]
                                                                       • t.q[s.p]
    t.q[t.p]
                                                                       • t.q[t.p]
                                                   s.q[s.p]
< \{ cs(t) \land s.p \neq t.p \}
    t.q[s.p]
= \{ s.q[s.p] < t.v[s.p], s \not\rightarrow t, Lemma 2 \}
    s.q[s.p].
Case 4: Similar to case 3.
```

©Vijay K. Garg

Liveness Property

Lemma 4 (Liveness) $req(s) \Rightarrow \exists t : s \prec t \land cs(t)$

Proof: req(s) is equivalent to $s.q[s.p] \neq \infty$. $s.q[s.p] \neq \infty$ implies that there exists $s_1 \in P_{s.p}$ such that $s_1.v[s.p] = s.q[s.p] \land event(s_1) = request$.

We show existence of the required t with the following two claims:

Claim 1:

$$\exists t_1 : \forall j \neq s.p : t_1.v[j] > s.q[s.p] \land s.q[s.p] = t_1.q[s.p]$$

Claim 2:

$$\exists t_2 : \forall j \neq s.p : t_2.q[j] > s.q[s.p] \land s.q[s.p] = t_2.q[s.p]$$

Fairness Property

Lemma 5 (Fairness) $(req_start(s) \land req_start(t) \land s \rightarrow t)$ $\Rightarrow (next_cs(s) \rightarrow next_cs(t))$

Proof:

Let $s' = next_cs(s)$ be state in which critical section is acquired, and let s'' be state which it is released. Let $t' = next_cs(t)$.

Let r be the state in $P_{t,p}$ which received the request message sent from s.

Fairness Property [Contd.]

We know the following facts:

- 1. $r \prec t$, due to FIFO channels.
- 2. t.v[t.p] = t.q[t.p], due to request event at t.
- 3. s.v[s.p] < t.v[t.p], since $s \to t$ (DD2).
- 4. s.q[s.p] = s.v[s.p], due to request event at s.
- 5. r.q[s.p] = s.q[s.p], due to receiving request at r.
- 6. r.q[s.p] < t.q[t.p], from 2, 3, 4, 5.
- 7. t.q[t.p] = t'.q[t.p], by defin of t'.
- 8. $t'.q[t.p] \le t'.q[s.p]$, since cs(t').
- 9. $r.q[s.p] < t'.q[t.p] \le t'.q[s.p]$, from 6, 7, 8.

This means that q[s.p] must be increased between r and t'.

That can only happen when $P_{t.p}$ receives the release message sent from s''. Thus $s'' \to t'$. And since $s' \to s''$, we conclude $s' \to t'$.

©Vijay K. Garg