Mutual Exclusion 1

Goals of the lecture

e Time domain vs Causality domain

e Lamport's Mutual Exclusion Algorithm

e Formal Verification
« Key Lemmas
. Safety
« Liveness

« Fairness

References: Lamport 79,

Garg and Tomlinson 94

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion

Time domain vs Causality domain

e most problems require causality domain

« accounts for variable execution schedule

e problems in causality domain easier
« mutual exclusion
. ordering of messages

« observing a global property

(©Vijay K. Garg

Distributed Systems Spring 96

Mutual Exclusion 3

Properties of the Mutual Exclusion Algorithm

e a fixed number of processes
e a shared resource called the critical section (CS).
e Task is to coordinate processes.

e Requirements are:

Safety: Two processes should not use the CS simultaneously.
Liveness: Every request for the CS is eventually granted.

Fairness: Requests must be granted in the order they are made.

Austin

\ New York
\ Boston

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 4

Formal Specification

Lamport’s algorithm assumes that all channels are FIFO

s<tAs~uANt~v=>-(v=<u)

o req(s) = Psp has requested the critical section
o cs(s) = Psp has permission to enter the critical section in s

e Cooperation assumption:

cs(s) = (At :s <t:—req(t))

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 5

Formal Requirements

sl|t = —(es(s) A ces(t)) (Safety)
req(s) = (It : s <t Acs(t)) (Liveness)

next cs(s) = min{t|s <t Acs(t)}
req start(s) = req(s) A —req(s.prev)
req_start(s) = Psp, made a request for the CS in state s.
(req_start(s)Areq_start(t)As — t) = next cs(s) — next cs(t)

(Fairness)

e next cs(s) and next cs(t) exist due to liveness.

e next cs(s) and next cs(t) are not concurrent due to safety.

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 6

Informal Specification of the Mutual Exclusion Algorithm

e request CS: send a timestamped message to all other pro-
cesses and add a timestamped request to the queue.

e On receiving a request: the request and its timestamp
Is stored in the queue and an acknowledgment is returned.

e To release the CS: send a release message to all other
processes.

e On receiving a “release”: delete the corresponding re-
quest from the queue.

Py o |req(21,1),---

Plo PQO
|req(21,1), ack(24,2), ack(25,3), - - - |req(21,1), - -

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion

Informal Specification [Contd.]

e can access CS if
« It has a request in the queue with timestamp ¢, and
« tis less than all other requests in the queue, and

. it has received a message from every other process with timestamp
greater than t.

Py o |req(21,1),req(24,2) - -

Pl o) P2 o)
|req(21,1),req(24,2), ack(25,3), - - |req(21,1),req(24,2) - --

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 8

Formal Description

e Local variables in each state s:
s.q[1..n] : integer initially oo
s.v : DDClock

e To request the critical section in ¢ where s <7 ¢:
t.q[t.p] = s.v[t.p]
for all j:j # t.p: send “request” to P;
e On receiving “request” in state ¢ sent from state u (u ~ t):

t.qlu.p|] = u.qlu.p]
send ack to u.p

e [0 release the critical section in state ¢:

t.q[t.p] = o
for all 7 # t.p, send “release” to Pj

e On receiving “release” sent from state wu:
t.qlu.p] = oo

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 9

Formal Description [Contd.]

State s has permission to access the critical section when

. there is a request from P;, with timestamp less than all other re-
quests

. and P, , has received a message from every other process with a
timestamp greater than the timestamp of its own request.

Formal description of C'S(s) =
Vj:j#sp:(sqlspl,sp) <(svljl,j) A (s.q[sp],sp) <(s.qlj],)

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 10

Proof of Correctness

We define the predicate
msg(s,t) = (Fu,t u~t' ANu<sAnt<t)

That is, there exists a message which was sent by Ps), before
s and received by P, after ¢.

Lemma 1 Assume FIFO.Vs,t:s.p# t.p:s /A tA-msg(s,t)
= t.q|s.p] = s.q[s.p].

The following Lemma is crucial in proving the safety property.
Lemma 2Vs,t : s.p Z t.p: s A t A s.qls.p] < tw[s.p] =
t.qls.p|] = s.q[s.p]

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 11

Safety Property

Lemma 3 (Safety) s.p # t.p A s||t = —(cs(s) Acs(t)).

Proof: We will show that (s||t) A cs(s) A cs(t) implies false.
Case 1: t.v]s.p] < s.q[s.p] A s.v[t.p] < t.qt.p]
We get the following cycle.
s.qls.p)
<{cs(s)Nsp#tp}
s.v[t.p]
< { this case }
t(]tp] s.qlt.

t.v]s.p]
< { this case }

s.q|s.pl.

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion

Safety Property [Contd.]

12

Case 2: s.q[s.p] < t.w[s.p] A t.qlt.p] < s.v[t.p]
We get the following cycle.
s.qls.p)
<{cs(s)Nsp#tp}
s.qt.p) s
= { t.q[t.p] < s.w[t.p], t /& s, Lemma 2 }°
Lalt.p
<{ecs(t)yNsp#tp} E
t.qls.p]
= { s.q[s.p] < t.w|s.p], s A t, Lemma 2 }
s.q|s.p).

(©Vijay K. Garg

Distributed Systems Spring 96

Mutual Exclusion

Safety Property [Contd.]

13

Case 3: s.q[s.p] < t.w[s.p] A s.o[t.p] < t.q[t.p]

We get the following cycle.
s.qls.p)

<{cs(s)Nsp#tp}
s.v[t.p] s.0[t.p]

< { this case } s-vls-r)
t.q[t.p] s.q[t.p]

<{ecs(t)yNsp#tp} sy
t.qls.p]

= { s.q[s.p] < t.w|s.p], s A t, Lemma 2 }

s.q|s.p).
Case 4: Similar to case 3.

(©Vijay K. Garg

Distributed Systems Spring 96

Mutual Exclusion 14

Liveness Property

Lemma 4 (Liveness) req(s) = 3t : s <t A cs(t)

Proof: req(s) is equivalent to s.q|s.p] # co. s.q|s.p] # o
implies that there exists s1 € Ps) such that

s1.v]s.p| = s.q|s.p] A event(s1) = request.

We show existence of the required ¢ with the following two
claims:

Claim 1:

dt1 : V) # s.p:t1.olj] > s.qls.p] A s.qls.p] = t1.q|s.p]
Claim 2:

dtg : V7 # s.p: ta.qly] > s.q[s.p] A s.q[s.p] = t2.q|s.p]

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 15

Fairness Property

Lemma 5 (Fairness) (req start(s) A req_start(t) A s — t)
= (next cs(s) = next cs(t))

Proof:

Let s’ = next_cs(s) be state in which critical section is
acquired, and let s” be state which it is released. Let

t' = next_cs(t).

Let » be the state in /4, which received the request message
sent from s.

(©Vijay K. Garg Distributed Systems Spring 96

Mutual Exclusion 16

Fairness Property [Contd.]

We know the following facts:

r = t, due to FIFO channels.

t. v[t p] = t.q[t.p], due to request event at ¢.

s.w[s.p] < t.wlt.p], since s =t (DD2).

s.q|s.p] = s.v[s.p|, due to request event at s.

r.q[s.p] = s.q|s.p], due to receiving request at r.

r.q|s.p] < t.qlt.p], from 2.3,4,5.

t.q[t.p] = t/.q[t.p], by defn of ¢’

t'.q[t.p] < t'.q[s.p], since cs(t).

r.q[s.p] < t'.q[t.p] < t'.q[s.p], from 6,7.8.

ThIS means that ¢[s.p] must be increased between r and t'.
That can only happen when P), receives the release message
sent from s”. Thus s’ — /. And since s’ — s” we conclude
s =t .

- L 0N OOt o=

(©Vijay K. Garg Distributed Systems Spring 96

