Conjunctive Predicates

Goals of the lecture: Conjunctive Predicates

e Direct dependency algorithm

e Token based decentralized algorithm

e Channel Predicates

Reference: Chapter 5.

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 2

Algorithm for application process P,

e Assume fully connected network
e Mattern's vector clock

e Notation:
o (i2,k): the kth state on process P, (or simply k)

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates

Monitor Processes for WCP

e Monitor processes responsible for searching for a WCP cut.

e [he token stores a candidate cut.

e [he token also stores information to determine whether the
candidate cut Is consistent.

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 4

Informal Description

e A token is sent to a process F; only when the current cut
Is not consistent. Specifically, when current state from F;
happened before some other state in the candidate cut.

e Once the monitor process for P; has eliminated the current
state,
« receive a new state from the application process

« check for consistency conditions again.

e This process is repeated until

. all states are eliminated from some process P; or
« the WCP is detected.

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 5

Token

e A monitor process is active only if it has the token.

e token consists of two vectors (G and color.

« (' is a global state vector represents the candidate global cut

. G[i] = k indicates that state (¢, k) is part of the current cut.

. We maintain the invariant that G[i| = k implies that any global cut C' with (¢, s) €
C' and s < k cannot satisfy the WCP.

. color, indicates which states have been eliminated.

o If color[i] = red then state (i, (G[i]) has been eliminated and can never satisfy the
global predicate.

o If color[i| = green, then there is no state in GG such that (¢, G[t]) happened before
that state.

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 6

Monitor Process Algorithm

var
candidate:array|[1..n] of integer;

on receiving the token (G,color)
while (color[i] = red) do
receive candidate from application process P
if (candidate.vclockl[i] > Gli]) then
Gli] := candidate.vclockli]; color[i]:=green;
endwhile
for 5 # 1
if (candidate.vclock[j] > G[j]) then
G[j] := candidate.velock]j];
color|j]:=red;
endif
endfor
if (3 j: color[j] = red) then send token to P;
else detect := true;

Figure 1: Monitor Process Algorithm

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 7

Correctness of WCP Detection Algorithm

The algorithm correctly detects the first cut that satisfies a
WCP.

Lemma 1 For any 1,

1. Gli] # 0Acolor|i] = red = 35 : 5 # 1 : (i,G1]) —
(4,Gl]):

2. color[i] = green = Yk : (i, G[i]) % (k,G[K]);

3. (colorli] = green)A(color[j] = green) = (i, G[i])||(J, G[j])-
4. If (color|i] = red), then there is no global cut satisfying
the WCP which includes (i, G|i]).

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 8

Analysis of Single-Token WCP Algorithm

e time complexity: the total computation time for all processes
is O(n’m)
. Every time a state is eliminated, O(n) work is performed

« [here are at most mn states.

e Message complexity: the total number of messages O(mn).
. the token is sent at most mn times.

. each monitor receives at most m messages from its application pro-
cess.

e Communication bit complexity: O(n?m).
. size of both the token and the candidate messages is O(n).

e space complexity: O(mn) space is required by the algorithm
for every process.

« the buffer for holding messages

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 9

Channel Predicates

e A channel predicate: any boolean function of the accumula-
tion of send and receive events on that channel.

e Only uni-directional channels

s,t: states at different processes.
s.send|t.p]: string of all messages sent at or before state s from
s.p to t.p.
t.recetved|s.p|: string of all messages received at or before state
t from t.p to s.p.
The channel predicate can then be written as:

ci(s.sendlt.p], t.received|s.p])
or in short notation as:

c¢;i(S, R) = cj(s.send[t.p], t.receive[s.p))

e Requirements for monotonicity

(©Vijay K. Garg Distributed Systems Spring 96

10

Conjunctive Predicates

Examples

Example 1 Empty channels: len(S)=len(R): This says that if
a channel predicate is false, then it cannot be made true by
sending more messages without receiving more messages.

Example 2 Nonempty channels: (ns > nr): (ns —nr > nk)
/* at least k messages in the channel */

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 11

GCP-cuts

C: global cuts that satisfy a GCP with monotone channel pred-
Icates

o C' < D iff Vi : C[t] 2 Dli]. We show that the concept of
first cut that satisfies a GCP is well-defined.

Theorem 2 If C,D € C, then their greatest lower bound 1s
also in C.

Proof:

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 12

Example: no first cut in general

predicate: There are an odd number of messages in the channel.
true only at points C'[1] and D|[1] for Py, and C|2] and D|2] for
Ps.

the GCP is true in the cut C' and D but not in their greatest
lower bound.

d1] O 1]
\‘\\ ;
o e -
O 2] d 2]

Figure 2: consistent cuts satisfying a GCP is not a lattice.

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates

Non-checker process algorithm

13

initially Vj : 7 # ¢ :lcmvector[j] = 0;
lcmvector[:] = 1;
firsflag = true;incsend = increcv = {;

For sending m do
send (lcmvector, m);
lcmvector[:]++ ;
firstflag:=true;
iIncsend:= incsend @ m:

Upon receive (msg_lcmvector, m) do
lcmvector:=max(lcmvector, msg Icmvector);
firstflag:=true;

Increcv:= Increcv & m;
Upon (local pred = true)A firstflag do

send (lcmvector,incsend,increcv) to checker ;

firstflag := false; incsend:=increcv:=0;

(©Vijay K. Garg

Distributed Systems Spr

ing 96

Conjunctive Predicates 14

Data Structures of the Checker Process - per-process data

e cut:array[l..n] of struct v:vector of integer; color:red, green

. The color of a state is either red or green.
green: the current state is concurrent with the current states from all
other green processes.
red: the current state cannot be part of a GCP cut

e A FIFO queue of successive local snapshots from this process.

e q:array[l..n] of queues of struct
. Vv:vector of integer;
. incsend:array[l..n] of sequences of messages;

. increcv:array[l..n] of sets of messages;

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 15

Per-Channel Data

three data structures for each channel:

1. A pending-send list: messages sent but not yet received S[i,j]:
sequence of messageinfo;

2. A pending-receive list: ordered list of message sequence num-
bers. R[i,j]: sets of messageinfo;

3. A CP-state flag. Value of channel predicates

e T (true) only if the channel predicate for that channel is
true for the current cut

e F (false) only if the channel predicate for that channel is
false for the current cut.

The CP-state flag can take the value X (unkown) at any time.
cplij]: X, F, T

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates 16

Formal description

S[1..n,1..n], R[1..n,1..n] : sequence of message;
cp[l.n,l.n]: {X, F, T};
cut : array[l..n] of struct {

v : vector of integer;

color : {red, green};

incsend, increcv : sequence of messages }
initially

cut[i].v = 0; cutli].color = red; S[i,j], R[i,j] = 0;

repeat
while (3 i : (cut[i].color = red) A (qli] # 0))
cutfi] := receive(qli]);
paint-state(i);
update-channels(i);
endwhile

if (31 : ep[ij] = X A cutli].color = green A cutlj].color = green) then
cplij] := chanp(S[i,j]);
if (cpli,j] = F) then
if (send-mono(i,j)) cutlj].color := red;
else cutli].color := red; /* receive-mono(i,j) */
until (Vi : cutfi].color = green) A (V 1,j: cplij] =T
detect := true;

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates

Update Channels

17

update-channels(i)

for (j : cut[i].incsend[j] # ?) do

(©Vijay K. Garg

S’ == 8li,j];
R":= R[i,jJ;
S[i,j] := S’ @ (cut[i].incsend[j] - R);

R[i,j] := R’ — cut][i].incsend]j];
if (= send-mono(i,j) V cpli,j] = T) cpli,j] := X;

. S[j.1l;
R’ := R[j,iJ;
R[j ,.1] = R’ @ (cut[i].increcvlj] - S');

, S’ — cutl[i].increcvlj];
if (= recv-mono(j,i) V cp[j,i] = T) cplj,i] := X;

Distributed Systems Spr

ing 96

Conjunctive Predicates 18

Overhead analysis

e Time complexity:
« any state is compared to at most n other states.

2 comparisons

. There are mn states in all. Therefore, mn
. at most two evaluations of the predicate per message.
. at most 2mn message send and receive events.
« each predicate evaluation takes at most ¢ time units, The total time
spent Is 2mnc.
e Space complexity

« n queues each with at most m elements. assume that component of
each vector and every message: a constant number of bits.

. Therefore, for each queue: O(mn).
« Summing up all incremental channel histories, we get O(m).

. Total space required by the checker process is O(mn?).

(©Vijay K. Garg Distributed Systems Spring 96

Conjunctive Predicates

o Message Complexity Every process sends at most m
messages to the checker process. Using same assumptions
(space complexity): O(mn) bits sent by each process.

(©Vijay K. Garg Distributed Systems Spring 96

