Goals of the lecture

- Knowledge Hierarchy

- Relevance to Distributed Systems

- Impossibility of achieving common knowledge
Puzzle

- Father: at least one of you have mud on your forehead (S)

- He repeatedly asks the question: Do you know if you have mud on your forehead?

- What happens?
Solution

First $k - 1$ times: all say “No”.

k^{th} time: dirty children say “Yes”.

Proof: (by induction on k)

$k = 1, 2$

$k = i \rightarrow i + 1$

<table>
<thead>
<tr>
<th>$k = 1$</th>
<th>$k = 2$</th>
<th>$k = 3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>b</td>
<td>b</td>
</tr>
<tr>
<td></td>
<td></td>
<td>c</td>
</tr>
</tbody>
</table>
Puzzle [Contd.]

- Let \(k > 1 \implies \text{Father did not tell the children anything they did not know.} \)

- What if \(S \) was not stated?

- What is the role of \(S \)?
Assumptions

• Knowledge is monotone
 • no forgetting
 • \(p \) is true at \(t_0 \) \(\Rightarrow \) \(p \) is always true.

• Processes are not faulty
 • honest processes
Definitions

\[K_i p \equiv \text{individual } i \text{ knows } p \]

Knowledge Axiom

\[K_i p \Rightarrow p \]

G: group of individuals
Levels of Knowledge

Implicit Knowledge: $I_G p$

$$\{ K_i q, K_j (q \Rightarrow p) \} \Rightarrow I_G p$$

Someone Knows: $S_G p$

$$S_G p \equiv \bigvee_{i \in G} K_i p$$

Everyone Knows: $E_G p$

$$E_G p \equiv \bigwedge_{i \in G} K_i p$$
Levels of Knowledge [Contd.]

Everyone\(^k\) Knows : \(E^k_G p\)

\[\begin{align*}
E^1_G p & \equiv E_G p \\
E^{k+1}_G p & = E_G E^k_G p
\end{align*}\]

Common Knowledge : \(C_G p\)

\[C_G p \equiv p \land E_G p \land E^1_G p \land E^2_G p \land \cdots\]
Dirty Children

\(m \): There are children with mud on their forehead.

Before \(S \)
- \(k = 2 : m \ (true), \ E m \ (true), \ E^2 m \ (false) \)
- \(k = 3 : m \ (true), \ E m \ (true), \ E^2 m \ (true), \ E^3 m \ (false) \).

Check: with \(E^k m \) dirty children can prove \(E^{k-1} m \) they cannot.

After \(S \)

\[C m \Rightarrow E^k m \]
Knowledge and Distributed Systems

• Knowledge hierarchy

\[C p \Rightarrow \cdots \Rightarrow E^{k+1} p \Rightarrow \cdots \Rightarrow E p \Rightarrow S p \Rightarrow I p \Rightarrow p \]

How does the level of knowledge of a fact \(p \) changes?

• Examples:
 - fact discovery \((I_p \text{ to } S_p)\)
 - deadlock detection
 - fact publication \((S_p \text{ to } C_p)\)
 - new common protocol
Coordinated Attack Problem

Message Delivery not guaranteed

Q: Can the generals coordinate their attack?
Coordinated Attack [Contd.]

Theorem 1 There is no protocol for attaining common knowledge if communication is not guaranteed.

Proof: no message delivered

Q: How about any run of protocol instead of all runs of protocol?
Coordinated Attack [Contd.]

Theorem 2 If q is not common knowledge then no run of any protocol ever attains C_q.

Proof: Let p have n messages.

Induction on n.

Q: What if communication is guaranteed?
- any message takes either 0 time or ε time.
Coordinated Attack [Contd.]

Theorem 3 *Common knowledge is still unattainable*

Proof:

\[
\begin{align*}
R_2 & & D_2 \\
\vdots & & \vdots \\
t_r + \epsilon & D_2 \text{ knows } m & t_d + \epsilon & R_2 \text{ knows } \\
t_r + 2\epsilon & D_2 \text{ knows } R_2 & t_d & R_2 \text{ knows } \\
& \text{knows } D_2 \text{ knows } m & & D_2 \text{ knows } m
\end{align*}
\]

\[
\begin{align*}
m & & t_r \\
K_R K_D m & & t_r + \epsilon \\
K_R K_D K_R K_D m & & t_r + 2\epsilon \\
\vdots & & \vdots \\
(K_R K_D)^n m & & t_r + n\epsilon
\end{align*}
\]

\[\Rightarrow m \text{ can never be common knowledge}\]
\(\epsilon\)-Common Knowledge

Common Knowledge: any message will arrive in at most \(\epsilon\) time.

- \(R_2\) initially knows \(m\).
- within \(\epsilon\) both will know \(m \equiv m_1\)
- within \(\epsilon\) both will know \(m_1\)

\[
O^\epsilon = \epsilon \text{ time units later}
\]

\[
C^\epsilon p \equiv p \land O^\epsilon E p \land \cdots \land (O^\epsilon E)^n p \cdots
\]
Asynchronous Communication

Every message sent will eventually reach

\[R_2 \xrightarrow{m} D_2 \]

\(R_2 \) knows

- \(m \) eventually \(D_2 \) will know \(m \)
- Eventually \(D_2 \) will know that \(R_2 \) will know that \(D_2 \) will know \(m \)

\(C^n p \equiv p \land \Diamond E p \land \cdots \land (\Diamond E)^n p \land \cdots \)

\(\Diamond \equiv \text{eventually} \)
Cheating to Attain \(C m \)

\(R_2 \) sends “\(C m \)” instead of “\(m \)” and asserts \(C m \).

message takes 0 time

both assert \(C m \) simultaneously

message takes \(\epsilon \) time

inconsistency for \(\epsilon \) time
Weak Common Knowledge

Examples:
- within ϵ
- eventually
- with probability π
- likely

can be attained

- and then you can cheat to get common knowledge.
Conclusions

Common Sense may be uncommon but

Common Knowledge is Impossible
(in a distributed system)