Goals of the lecture

Repeated Computation of a Global Function

- Deadlock Detection
- Clock Synchronization
- Distributed Branch and Bound Search
- Distributed Debugging
Desirable Characteristics

- **Light Load**
 - not more than k messages/time step

- **High Concurrency**
 - $\log_k N$ time steps

- **Symmetry (Equitable Workload)**
 - load balancing
 - fairness
Some Possible Approaches

- Centralized

- Ring-based

- Hierarchical

All links are logical connections
Message Flow Table

Static Hierarchy
- Number of nodes (processes) = 7

<table>
<thead>
<tr>
<th>time step</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1, 3 → 2, 5, 7 → 6</td>
</tr>
<tr>
<td>2</td>
<td>1, 3 → 2, 5, 7 → 6, 2, 6 → 4</td>
</tr>
<tr>
<td>3</td>
<td>1, 3 → 2, 5, 7 → 6, 2, 6 → 4</td>
</tr>
</tbody>
</table>
Overlapping Trees

\begin{center}
\begin{tikzpicture}
 \node (6) {6} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (3) {3} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (7) {7} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (4) {4} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (2) {2} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (1) {1} [split, level distance=2cm, sibling distance=2.5cm,]}
 }
 child {node (5) {5} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (6) {6} [split, level distance=2cm, sibling distance=2.5cm,]}
 }
 }
 }
 child {node (1) {1} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (2) {2} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (4) {4} [split, level distance=2cm, sibling distance=2.5cm,]}
 }
 child {node (5) {5} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (3) {3} [split, level distance=2cm, sibling distance=2.5cm,]}
 }
 }
 }
 child {node (2) {2} [split, level distance=2cm, sibling distance=2.5cm,]
 child {node (4) {4} [split, level distance=2cm, sibling distance=2.5cm,]}
 child {node (5) {5} [split, level distance=2cm, sibling distance=2.5cm,]}
 }
end{tikzpicture}
\end{center}
Message Flow Table

- Revolving Hierarchy
 - number of nodes = 7

<table>
<thead>
<tr>
<th>time step</th>
<th>Messages</th>
<th>idle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2 ← 1,3</td>
<td>6 ← 5,7</td>
</tr>
<tr>
<td>2</td>
<td>4 ← 2,6</td>
<td>5 ← 1,3</td>
</tr>
<tr>
<td>3</td>
<td>7 ← 4,5</td>
<td>1 ← 2,6</td>
</tr>
<tr>
<td>4</td>
<td>3 ← 7,1</td>
<td>2 ← 4,5</td>
</tr>
</tbody>
</table>

- Reorganization of Hierarchy
- Reuse of messages

\[
\begin{pmatrix}
1 & 2 & 3 & 4 & 5 & 6 & 7 \\
5 & 1 & 7 & 2 & 6 & 3 & 4
\end{pmatrix}
\]
Requirements for Desired Permutation

- **Gather tree constraints**
 - interior nodes of $T_i = $ subtree of T_{i+1}

- **Fairness constraints**
 - No cycle of size less than N.

![Diagram of tree constraints](image-url)
Interesting but ..

- Does there always exist such a permutation?
- Is there a systematic method to find it?
- Is there an efficient implementation for it?
Method to Generate the Permutation

next(x) :
[
 even(x) → x' := x/2; (* gather tree constraint *)

 odd(x) ∧ (x < 2^{n-1}) → x' := x + 2^{n-1}; (* fairness constraint *)

 odd(x) ∧ (x > 2^{n-1}) →
 [x = N → x' := (N - 1)/2;

 x ≠ N → y := x - 2^{n-1} + 2
 x' := y * 2^\lfloor \log_2\frac{x}{y} - 1 \rfloor
]
]
Implementation 1

Q: Who should I send message to at time t?

$$
\text{msg}(x, t) = \text{next}^{-t}(\text{parent}(\text{next}^t(x))), \text{ if } \text{next}^t(x) \text{ is odd}
= \text{nil}, \text{ otherwise}
$$

x is in-order label

next is the new position function

parent is the parent function for in-order labeling

parent of $x = x$ with last two bits changed to 10
Repeated Computation of a Global Function

Implementation 2

\[msg(x, t) = \text{new}_\text{parent}(x + t) - t, \quad \text{if} \ (x + t) \ \text{is a leaf-node} \]
\[= \text{nil}, \quad \text{otherwise} \]

- Just need to store \text{new}_\text{parent} \ \text{array}
Communication Required

- Communication distance set (CDS)

 \[CDS = \{ \text{new_parent}(j) - j \mid j \text{ a leaf node} \} \]

- Process \(x \) will send a message to process \(y \) iff \(y - x \in CDS \).

 - For \(N = 15 \)

 \[CDS = \{1, 5, 8, 10, 13, 14\}. \]

- CDS depends on the \textit{next} function.
Data Gathering and Broadcasting

- a process can send/receive only one message per time step
- require that the same set of messages is used for data gathering and broadcasting.

Constraints:

1. fairness constraints
 - equal load
2. gather tree constraints.
 - $G(t)$ available at $t + \log N$ time step at one node.
3. broadcast constraints.
 - $G(t)$ available at $t + 2 \log N$ time step at all nodes.
Message Flow Table

<table>
<thead>
<tr>
<th>time step</th>
<th>Messages</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0 → 7, 4 → 6, 1 → 3, 2 → 5</td>
</tr>
<tr>
<td>1</td>
<td>7 → 6, 3 → 5, 0 → 2, 1 → 4</td>
</tr>
<tr>
<td>2</td>
<td>6 → 5, 2 → 4, 7 → 1, 0 → 3</td>
</tr>
<tr>
<td>3</td>
<td>5 → 4, 1 → 3, 6 → 0, 7 → 2</td>
</tr>
<tr>
<td>4</td>
<td>4 → 3, 0 → 2, 5 → 7, 6 → 1</td>
</tr>
</tbody>
</table>

- fairness in workload
- four times less messages than static hierarchy
Method to Generate the Permutation

\[
bcnext(x) :: \\
[
\begin{array}{l}
\quad b_0 = 1 \rightarrow \quad x' := RS_0(x) \\
\quad \square \quad (b_0 = 0) \land (b_1 = 0) \rightarrow \quad x' := RS_1(x) \\
\quad \square \quad (b_0 = 0) \land (b_1 = 1) \rightarrow \quad x' := LS_1^a ((LS_0^b(x) + 2) \mod 2^{n-1}) \\
\end{array}
\]

\[
b_{n-1} \cdots b_0 = x \\
RS_p = \text{Right shift with } p \text{ as m.s.b} \\
LS_p = \text{Left shift with } p \text{ as l.s.b.} \\
a = \text{number of leading zeros} \\
b = \text{number of leading ones}
\]
Algorithm to find Current Minimum in the Network

- Distributed branch and bound

- Distributed simulation

- process $x : step = 0$

 $dest_{msg}(x, step) \neq nil \rightarrow send_{msg}(dest_{msg}(x, step), mymin)$

 $step := step + 1$

 $src_{msg}(x, step) \neq nil \rightarrow recv_{msg}(src_{msg}(x, step), hismin)$

 recompute $mymin$

 $step := step + 1$
Performance of the Algorithm

- at most k messages handled by a node/time step

- the global function $G(t)$ is available at $t + \lceil \log N \rceil$ time steps.

- a throughput of one global function per times step.

- number of messages required \sim half of that for static hierarchy.

- equal workload distribution
Extensions

- General N
 - use virtual nodes

- General k
 - methods to generate permutations for binary trees generalize to k-ary trees.

- asynchronous messages
 - can be used instead of synchronous messages. Nodes synchronized due to “receives”.
Conclusions

• Useful for algorithms that
 - use hierarchical control
 - run for long time

• main advantages
 - equal workload distribution.
 - reduction in number of messages due to their reuse

• main disadvantages
 - requires that the communication network has more edges than static hierarchy.