Agreement Problem

- Motivation
 - Transaction commit
- Main difficulty: failures
 - process failures
 - link failures
- Different fault models
 - initially dead, fail-stop, omission, byzantine
- Surprising result: *Even in presence of one unannounced process death, agreement problem is impossible to solve.*
 - No Byzantine failures
 - Reliable messages
 - Processing is completely asynchronous
Consensus Problem

- Every process starts with an initial value of \{0,1\}
- A non-faulty process decides by entering a decision state
- Require that *some* process eventually make a decision
System Model

- Processes are modeled as automata (possibly infinite state)
- communication using messages
- Atomic step
 - attempt to receive a message
 - perform local computation
 - send a finite set of messages to other processes
Consensus Protocol

- N processes
- one bit input register
- output register with values $\{0, 1, b\}$ initially b
- output register write-once
- unbounded storage
- message system: a buffer with
 - $\text{send}(p,m)$: places (p,m) in the buffer
 - $\text{receive}(p)$: deletes (p,m) and return m or return \emptyset
- Condition on the message system
 - If $\text{receive}(p)$ is performed infinitely times, then every message is eventually delivered.
Global State

- Configuration
 - defined by local states. message buffer
 - initial configuration
 - step = primitive step by one process
 - step determined by the pair $e = (p, m)$

- Application of an event e to C

- Schedule from C
 - finite or infinite sequence σ of events
 - when σ finite $\sigma(C')$: result of application
 - reachable configuration
Commutativity Property

- Lemma 1: If two schedules are disjoint, then they can be commuted.
- decision value of C
- Partially correct consensus protocol
 - no accessible configuration has more than one value
 - for each \(v \in \{0, 1\} \), some accessible configuration has decision value \(v \)
Faults

- faulty vs nonfaulty process
 - faulty = takes only finite number of steps

- admissible run
 - at most one process is faulty
 - all messages sent to non-faulty process eventually delivered

- deciding run
 - some process reaches a decision state
 - Totally correct protocol
 - Partially correct
 - every admissible run is deciding
Main Result

• Theorem: No consensus protocol is totally correct in spite of one fault.

• Proof: main idea. To show that there exists an admissible run which remains forever indecisive.
 • there is an initial such configuration
 • there exists a method to keep the system indecisive. The system does not take the “commit” step.

• Bi-valent vs univalent configurations
 • if univalent, 0-valent or 1-valent
Initial ambiguity

- Lemma: The protocol P has a bivalent initial configuration.
 - there exist adjacent 0-valent and 1-valent configurations
 - apply schedule in which p takes no steps.
Remaining indecisive

• Lemma: Let C be a bivalent configuration of P. Let $e = (p, m)$ be applicable to C. Let C be the set of configurations reachable from C. Let $D = e(C)$. Then D contains a bi-valent configuration.

 • Pf: Assume if possible D contains no bi-valent configs.

 • claim: D contains both 0-valent and 1-valent states.

 • claim: exists neighbors $C0$, $C1$ such that
 • $D0 = e(C0)$ is 0-valent
 • $D1 = e(C1)$ is 1-valent
 • w.l.o.g. let $C1 = e'(C0)$, where $e' = (p', m')$

 • case 1: p different from p'
 • contradiction

 • case 2: $p = p'$
 • consider any finite deciding run in which p takes no steps
Constructing admissible non-deciding run

- Maintain a queue of processes
- maintain message buffer a FIFO queue
- in each stage the process at the head of the queue receives the earliest message
- Move the process to the back of the queue
- Now use earlier lemmas