
COORDINATED ENERGY CONSERVATION IN AD HOC NETWORKS

Selma Ikiz, Vinit A. Ogale and Vijay K. Garg
{ikiz, ogale, garg }@ece.utexas.edu

Dept of Electrical and Computer Engineering
The University of Texas at Austin

Austin TX 78712

ABSTRACT

This paper presents a new power conservation scheme
for multi-hop ad hoc networks. A virtual backbone
consisting of special nodes (coordinators) is used for
the power saving algorithm and routing. We present
a novel algorithm for constructing a connected domi-
nating set (CDS) that is used to construct and maintain
the virtual backbone of the network. Our scheme in-
cludes a message history based variable sleeping time
for the non-coordinators. Simulations indicate that
our scheme results in better power conservation than
other practical schemes discussed in the literature if
the network has a sparse message density.

1 INTRODUCTION

An ad hoc network is a collection of wireless mobile
hosts without any fixed infrastructure. In such a
network each host can act as an intermediary and
forward packets to the next hop in order to reach the
final destination. Ad hoc mobile networks have far
reaching applications due to their suitability for rapid
deployment and inherent robustness.

Ongoing research addresses issues like routing,
network management, QoS, Media Access Control
(MAC) protocols, topology management, mobility
and security. Routing is a fundamental issue for
any network and, not surprisingly, is a very active
topic of research in ad hoc networks. Also, in most
mobile ad hoc networks, power seems to be a major
constraining factor. Hence energy conservation is one
of the key issues in any protocol or algorithm for ad
hoc networks.

In this paper we focus on energy conserving
dynamic backbone based routing technique for ad
hoc networks. A backbone based scheme involves

partitioning the network into coordinators and non-
coordinators. The coordinator nodes are responsible
for the routing within the network and hence need to
be active. The set of the coordinator nodes constitutes
the backbone of the network. In contrast, the non-
coordinator nodes are responsible for only the packets
sent by them or addressed to them and are allowed to
enter very low power consuming sleep states. This can
drastically increase the life of the non-coordinators.
Since coordinator nodes can not sleep, it is important
to dynamically update the backbone according to the
power remaining in each node, if we wish to increase
the overall life of the network. Our paper makes two
important contributions. First, we present and prove
a new algorithm for maintaining and constructing the
backbone. Secondly, we propose a power saving pro-
tocol, which allows the nodes to sleep for varying
amounts of time depending on the message history of
that node. Our simulations show that the proposed
scheme results in noticeable power saving compared
to existing schemes.

2 BACKGROUND AND RELATED WORK

The wireless exchange of data between nodes strongly
dominates other node functions including sensing and
processing in terms of energy consumption [4][2].
Furthermore a node in the sleeping mode i.e. with
their radios turned off; consumes significantly less
energy than a node in the idle, transmit or receive
mode. However, putting the node in sleep mode
essentially disconnects it from the network and
changes the network topology. Therefore instead of
allowing all nodes to sleep, we force some nodes
to become coordinators which never sleep. The
coordinators have to be chosen such that each node
is connected to at least one coordinator and the
coordinators form a connected sub graph. Therefore
we need to select a virtual backbone in the network.

1

The backbone consists of coordinators and all nodes
are connected to at least one coordinator. Such a
backbone also offers a scalable solution for routing.
Only the coordinators participate in the routing and
the non-coordinators simply send the data they want
to transmit to a coordinator. The coordinators use
a conventional ad hoc routing algorithm like DSR
[5] or AODV [6] to find a route to the coordinator
associated with the destination. The advantage with
such backbone based routing is that route discovery
becomes much simpler. Route discovery for most ad
hoc routing schemes is very expensive in terms of
time and number of messages required and the cost
increases with the number of nodes.

The backbone formation can be considered to be
a problem of determining a connected dominating set
(CDS) in ad hoc networks. A dominating set (DS) of
a graph G is a subset Vs of the vertex set V such that
each node that does not belong to the subset Vs is ad-
jacent to a node in Vs. A connected dominating set is
a dominating set which induces a connected subgraph.

We know that the task of finding a minimum
connected dominating set (MCDS) in an ad hoc
network is NP-hard [3]. Fortunately, in an ad hoc
network with high chances of link failures and
topology changes due to mobility, constructing a
minimum CDS is not the aim. Some redundancy in
the backbone is desirable to increase reliability of the
network and mitigate the backbone maintenance.

Current work in this field includes different
algorithms to construct a CDS [1][7][10]. In [10]
a scheme which factors power in construction of a
CDS is proposed. However, in this scheme the nodes
forming the backbone are not changed periodically.
AS a result the coordinators spend more energy and
die out much sooner than the other nodes.

Chen et. al.[4] suggest a protocol (Span) to
form a CDS and change the coordinator nodes peri-
odically. Span adaptively selects coordinators to form
a backbone. It has several rules based on the node’s
remaining energy level and number of neighbors for
coordinator announcement and withdrawal. It also
assumes periodic broadcasting of HELLO messages
that contain the node’s status, its neighbors and each
neighbor’s status. Span uses an approach similar
to the 802.11 ad hoc power-saving mode (PSM)

that uses periodic beacons to synchronize nodes in
the network. This synchronization is done at MAC
layer. In the 802.11 PSM, beacon periods are divided
into two time slots; the advertisement time and the
advertised packet transfer time. Moreover, Span
increases energy saving by adding another window
only for non-coordinator nodes. For such nodes,
there are three windows inside a beacon; ATIM,
NATIM, and the rest. ATIM is used to transfer packet
advertisements from node to node and coordinator
to node. New advertisement window (NATIM) is
used for packet transfers between these nodes. The
remaining time is used by coordinators for packet
transfer among themselves.

In this paper our scheme extends and improves
Span. We use a new CDS selection algorithm pre-
sented in the next section. We also propose a new
scheme which enables inactive nodes to sleep for
longer periods thus improving the overall network
life.

3 NETWORK MODEL

In a typical ad hoc wireless network, each node can
have a different transmission radius resulting in unidi-
rectional links between nodes. Fig. 1 shows an exam-
ple of the topology of a typical ad hoc wireless net-
work.

Figure 1. The topology of a typicalwireless ad hoc
network in 2D.

For convenience, we simplify the underlying
network topology by disregarding all the unidirec-
tional links. Hence we consider two nodes to be con-
nected if and only if there exists a bidirectional link
between them. The topology of such a network can

be modeled as a unit-disk graph (UDG) [1]. The sim-
plified topology for the network in Fig.1 is shown in
Fig.2.

Figure 2.

Yet, a mobile object is positioned in a 3D world
[13]. Hence, we model the underlying topology as a
unit-sphere graph (USG). This is a realistic model, if
the network topology is unknown and the nodes have
identical functions. Generally in such cases, unidirec-
tional links are not useful. The simplified 3D topol-

Figure 3. Model the topology of wireless ad hoc net-
work by unit-sphere graphs.

ogy for the network is shown in Fig 3. Each node
represents a vertex and we draw an edge between two
nodes if and only if a bidirectional wireless link exists
between the nodes. Note that the network topology is
not static and may change frequently as nodes move,
die or join the network.

4 VIRTUAL BACKBONE FORMATION ALGO-
RITHM

In this section we present our virtual backbone forma-
tion algorithm. Nodes apply the rules of the algorithm
locally to form a CDS, which forms the virtual back-
bone of the network.

4.1 NOTATION

Let us represent the network as a connected graph
G = (V,E). The backbone consists of a smaller
graph G′ ⊂ G such that G′ remains connected. Let
:

1. N(v) be the open neighbor set of vertex v, i.e.,
N(v) ≡ {u | {v, u} ∈ E},

2. n(v) be the cardinality of N(v)

3. p(v) be the power metric defined as p(v) =
Er/Et where Et is the maximum amount of en-
ergy available at the node and Er is the remain-
ing energy at the node,

4. ID(v) be the unique node identifier of v.

We construct a tuple T (v) ≡
〈N(v), p(v), n(v), ID(v)〉. To compare two such
tuples we use the following rule; T (v) ≺ T (u) if
and only if N(v) ⊂ N(u), or N(v) ≡ N(u) and we
compare the other elements lexicographically. The
two tuples are equal if and only if all their elements
are equal.
Clusters : Let v be a coordinator, then we say c.v =
true, and N(v) is the cluster of v.
Each node in the network periodically sends a HELLO
message containing a list of its neighbors. Each node
maintains a list of its neighbors and each neighbor’s
neighbor list. The nodes in the neighbor table are
marked as either coordinators or non-coordinators.

4.2 ACTIVITY I: INITIATE COORDINATOR SE-
LECTION

4.2.1 Rule 1

If any two neighbors of node v are not connected, then
node v declares itself as the coordinator. This algo-
rithm is similar to the algorithm proposed by Wu and
Li in [4][10].

4.3 ACTIVITY II : REDUCE THE BACKBONE
SIZE

4.3.1 Rule 1

A coordinator node v withdraws as a coordinator and
sends NLC (No Longer a Coordinator) to its neighbors
if there exist a node u i.e. T (v) ≺ T (u).

4.3.2 Rule 2

For the coordinator node v ::

1. Node v sends RTW (Request to Withdraw) to all
neighboring coordinators including itself if :

(a) all coordinator neighbors of node v are con-
nected to each other directly or through a
coordinator, and

(b) all the non-coordinator neighbors of v are
connected to at least one other coordinator
other than v.

2. If node v receives PTW (Permission to Withdraw)
from all neighboring coordinators, then node v
withdraws as coordinator and sends NLC (No
Longer a Coordinator) to all neighbors including
itself.

3. If node v receives RTW from one or more nodes,
then it waits till the end of the round and sends
PTW to the node that has the minimum T value.

4.4 ACTIVITY III : POWER-BASED COORDINA-
TOR RE-SELECTION

A coordinator consumes more than thrice the energy
consumed by a sleeping node [4]. Hence it is likely
that the coordinators will die much before the non-
coordinators, with the potential consequence of parti-
tioning the network. To prevent this and maximize the
overall network life, our algorithm allows a coordina-
tor v to withdraw if its power metric p(v) is lower than
the power metric of its neighboring non-coordinator
nodes.
For a coordinator node v ::

1. If the power metric p of all non-coordinator
neighbors of node v is least 15% of p(v) and
all coordinators of v are connected to each other
directly or through another node, then v sends
a RCR (Request for Coordinator Re-selection)
message to all the nodes on the alternative path
and also to each of its neighbors including itself.

2. If node v receives a RCR from node u, then node
v

• waits till the end of the round for all RCRs,

• sends VTC (Volunteer To be a Coordinator)
to the coordinator with the minimum power
metric,

• sends a CRI to all other nodes, and

• announces itself as the coordinator.

3. If node v receives a VTC from all its neighbors,
it withdraws as a coordinator. Otherwise, on re-
ceiving a CRI it sends a WCRR (Withdraw Coor-
dinator Re-selection Request) to all neighbors.

4. On receiving a WCRR a node, which had become
a coordinator in response to the RCR, withdraws.

Each coordinator in the network periodically
checks if it can withdraw by applying Activity III.
Thus the algorithm tries to balance out the energy con-
sumption amongst all the nodes in the network.

5 PROOF OF VALIDITY

Lemma 1 The coordinators decided by Activity I
form a connected dominating set if the underlying net-
work is connected.

Proof: (Outline) Assume that the coordinators
do not form a CDS. Therefore, there exist two coor-
dinators connected by a non-coordinator node. Now
Activity I requires such a node to be a coordinator.
Therefore the claim is true.

Claim 1 In Activity II, Rule 2, if node v withdraws
then no other coordinator in the same or adjoining
cluster can withdraw in the same round i.e. if c.v ∧
c.u ∧ (N(v) ∩ N(u) = Φ is true in this step, then
c.v ∨ c.u is true in the next step.

Proof: Rule 2 requires a coordinator to get a
PTW message from all neighbors before withdrawing.
Each neighbor can give a PTW to exactly one node in
a round. Hence the claim follows.

Lemma 2 The connectivity of the dominating set
does not change due to Activity II.

Proof: We show that if there exists a CDS before
applying Activity II, then the connectivity is main-
tained after applying Activity II.
CASE 1: A node v withdraws due to Rule 1 implies
that there exists a node u i.e. (T (v) ≺ T (u) ∧ c.v ∧
c.u). Therefore node u has a link to all the nodes con-
nected by v. Since both cannot withdraw in the same
round, the connectivity is maintained.
CASE 2: A node v withdraws due to Rule 2. After ap-
plying Rule 2, the connectivity of the network could
change if

1. there is a non-coordinator neighbor of v that has
no coordinator, or

2. there is no path between two coordinators in
CDS.

The algorithm eliminates the first possibility, be-
cause the coordinator v withdraws only if all the non-
coordinator neighbors are connected to at least one
other coordinator. Node v also checks if all its coor-
dinator neighbors are connected to each other directly
or through an other coordinator. Hence, the backbone
cannot be partitioned due to the withdrawal of v.

Lemma 3 The connectivity of the dominating set in
the network does not change due to Activity III.

Proof: This proof is similar to the proof of
Lemma 2.

Theorem 1 Activities I, II and III applied in sequence
result in the formation of a CDS in a connected graph.

Proof: This follows from Lemmas 1, 2 and 3.

Theorem 2 The distributed algorithm proposed in
this paper have an approximation factor of n

4 , and
O(m) message complexity in 3D environment, where
n is the number of nodes and m is the number of links
in the network.

Proof: For every activity in the algorithm mes-
sages are exchanged locally, and no message spurs
any other. Hence, the message complexity is O(m).
Next section proves the approximation factor.

6 EXAMPLE

Fig.4 shows an example of using the proposed mark-
ing algorithm. Since each node keeps track of all
its neighbors, it broadcasts its neighbor list and their
states periodically. After this information exchange
phase, every node will have information on all nodes
with a radius of two units. In Fig.4 (a), node 1 will
not mark itself as a coordinator node since two of its
neighbor is directly connected. However, node 2 will
mark itself as a coordinator seeing that node 5 and
node 4 does not have a connection. Fig.4 (b) shows
the resultant graph of the second phase. These coordi-
nator nodes absolutely form a connected dominating
set, but not the minimal one. After applying Rule 1
at the third phase, node 21 and 27 will withdraw from

being a coordinator, and will be unmarked as shown
in Fig.4(c). At phase four, coordinator nodes form
their clusters, which are simply just their neighbors.
Node 2 will check if all its coordinator neighbors are
connected, and all its non-coordinator neighbors are
connected to one more coordinator. After seeing that
its coordinator neighbors, node 4 and node 9, are con-
nected, and all its other neighbors have a coordina-
tor other than itself, node 2 will decide to withdraw.
Similarly, node 9, 13, 15, and 18 will decide to with-
draw, and broadcast withdraw request. Assuming en-
ergy levels are equal, node 2 will get permission from
node 9, while node 9 cannot get a permission from
node 2. For node 13, 15, 18 and 19, node 11 will give
permission to just one of them. Therefore, after the
first round, graph will be as shown in Fig.4(d). At the
beginning of the second round, node 9 will see that it
cannot not decide to withdraw since node 8 does not
have another coordinator. Likewise node 15 cannot
decide. On the other hand, node 18 will still insist at
withdrawing, and will get the permissions. Fig.4(e)
shows the final graph.

7 THE APPROXIMATION FACTOR OF CDS

Peng, Khaled and Ophir in [1] reinvestigate CDS
algorithms in [10][8][9], and [7] and establish an
approximation factor for one each of them. By using
their approach, we show that our proposed algorithm
has an approximation factor of n/4. When n is even,
we consider the instance illustrated in Fig.5 (a).
These nodes are evenly distributed over the the two
horizontal sides of a unit squares. Each node has
exactly m+1 neighbors, one in the opposite side and
m of them are in the same horizontal side. Peng,
Khaled and Ophir argues that, any MCDS consist of
a pair of nodes lying in the same vertical segment
[1]. For this to be true, they must assume nodes at the
same horizontal level are strongly connected. If we
consider only one of the horizontal sides, let’s say v
is selected to be a part of MCDS, then it means node
v is the DS of that horizontal side. If node v is the
DS by itself, then every other node at this horizontal
side must be connected to it. Therefore m=n/2-1.
Since every other node at the same horizontal side
has exactly m neighbors, nodes at the same horizontal
side are strongly connected.

Our algorithm, initially includes all nodes into
CDS, then starts eliminating at phase3. At first round,

1

2

3

4

10

9

8
7

6

5 11

12
13

14

15

16

17

18

19
20

22
21

23
24 25

27

26

1

2

3

4

10

9

8
7

6

5 11

12
13

14

15

16

17

18

19
20

22
21

23
24 25

27

26

1

2

3

4

10

9

8
7

6

5 11

12
13

14

15

16

17

18

19
20

22
21

23
24 25

27

26

1

2

3

4

10

9

8
7

6

5 11

12
13

14

15

16

17

18

19
20

22
21

23
24 25

27

26

1

2

3

4

10

9

8
7

6

5 11

12
13

14

15

16

17

18

19
20

22
21

23
24 25

27

26

(a) (b)

(d)(c)

(e)

Figure 4. An example of marking process

every node wants to witdraw. It’s obvious that nodes
at the same horizontal side are connected. Let’s say
node v and u are neighbors and they do not belong to
the same horizontal side. Clearly, every neighbor of
node u has an other neighbor on the other side which
are neighbors of v. Therefore, every neighbor of v is
connected to u by an other coordinator. Because of
strongly connected assumption of a horizontal side, at
a round only one node can withdraw. At the end of
round n/2, witdraw requests will cease with n/2 non-
coordinator nodes. Therefore, our algorithm has an
approximation factor of n/4. Similar argument is also
applicable when n is odd. For this case one should
consider the instance illustrated in Fig.5 (b).

7.1 EXAMPLE OF THE APPROXIMATION FAC-
TOR

Fig.6(a) shows a similar graph argued above. In
Fig.6(a), node 1 decides to become a coordinator since
node 7 and 1 are not connected, and marks itself. Sim-

u

(a) (b)

Figure 5. Instance for which the MCDS is 2

ilarly all nodes mark themselves. At the second phase
none of the nodes withdraw as shown in Fig.6(b) and
Fig.6(c). However, at phase 3 round 1, every node
wants to withdraw, but node 0 will win assuming iden-
tical energy levels. Fig.6(d) shows the result of round
1. At round 2, still all coordinator nodes want to with-
draw but node 2 will win. Fig.6(e) and (f) shows the
result of round 2 and 3 consecutively. At round 4,
only node 5,6, and 7 decide to withdraw and node 5
will win. At the end of round 4, no node wants to
withdraw, and CDS is formed as shown in Fig.6(g).

7.2 APPROXIMATION FACTOR FOR PENG’S AL-
GORITHM

Peng, Khaled and Ophir in [1] show that their
algorithm has an approximation factor of 8. However,
using the same example above, we will show that their
approximation factor is also n/4 in 3D environment.

Assuming that node 0 starts the leader election
algorithm, Fig.7(a) shows a possible spanning tree. If
we apply the rules, node 0 will mark itself black and
will send DOMINATORmessage to node 1,2,3 and 7 as
in Fig.. (b). After receiving a DOMINATOR message
node 1 marks itself gray, and broadcasts DOMINATEE
message. The result of this phase is shown in Fig.7(c).
After receiving DOMINATEE messages from all its
low-ranked neighbors, node 4,5, and 6 marks itself
black, and broadcasts a DOMINATOR message as
shown in Fig.7(d). Receiving a DOMINATORmessage
from its child, nodes 1,2, and 3 mark themselves black
and broadcast a DOMINATOR message. Fig.7(e) and
(f) shows the resultant spanning tree according to their
algorithm, since all black nodes will check if they
have a higher rank than all their neighbors and all its
neighbors are black, it remarks itself gray. However,
there is no such node at Fig.7(e). Therefore, their ap-

3

6

4 5

2

1
0

7

3

6

4 5

2

1
0

7

0

3

6
7

4 5

2

1
0

3

6
7

4 5

2

1

0

3

6
7

4 5

2

1
0

3

6
7

4 5

2

1

(a) (b)

(c) (d)

(e) (f)

(g)

3

6

4 5

2

1
0

7

Figure 6. An example of marking process

proximation is (n-1)/2 for this case. If we improve
their algorithm by relaxing their last rule by chang-
ing it as follows; If a black node’s rank is greater or
equal to all its neighbors and one of its lower ranked
neighbors is black, it marks itself gray and broad-
casts DOMINATEE message. With this improvement,
Fig.7(g) is obtained as a final configuration which has
n/4 as an approximation factor. We show that for the
above case, n can be any even number. For the con-
figuration in Fig.5 (a), a spanning tree in Fig.8 is pos-
sible. Applying the same argument above, it is clear
that it has an approximation factor of n/4, or O(n).

7

0

1237

4 5 6

0

0

1237

4 5 6

1237

4 5 6

0

1237

4 5 6

0

1237

4 5 6

(a) (b)

(c) (d)

(e) (f)

1

0

23

4 5 6

1237

4 5 6

(g)

Figure 7. An example for color marking algorithm of
Peng

8 VARIABLE SLEEPING TIME BASED ON HIS-
TORY

Our approach is based on Span’s NATIM success,
however, it furthers its effect by taking packet delivery
history into account. We assume a virtual backbone
is formed by coordinator nodes, and non-coordinator
nodes are allowed to turn off their radio receivers. In
Span’s design NATIM is constant. To increase the
power saving, we propose this value to be variable
with an upper bound. The second improvement is
non-coordinator nodes should use a two bit history
for sleeping time. When a node observes two con-
secutive beacons without any packet advertisement, it
decides to sleep through the next beaconing period.
Fig.9 shows its transition graph.

Whenever a coordinator does not get a reply
back after two consecutive ATIM windows, it removes
the neighbor node from its neighbor table and clear

n-1 m+2 m+1

m m-1

0

12

Figure 8. Color marking approximation with n nodes

1

00 01

11

1
0

0

0

1

Figure 9. The state transition graph.

its buffer. This process is the same for an immediate
neighbor node, except it sends the packet through a
coordinator.

8.1 SIMULATION

For the aforementioned approach, we simulate the al-
gorithm for the topology in Fig. 10.

0

1

2 3

4

5

6

Sender

Receiver

Coordinator

Figure 10. Ad hoc network toplology for simulation.

Node 0 sends packets to node 1 and node 5,
while node 4 sends packets to node 1 and node 5.
nodes 2, 3 and 6 are coordinators, and they buffer

the packets if their neighbors are sleeping. Sender
neighbors send directly to receiver neighbors if
they are not sleeping, otherwise they send through
their coordinators. We use the same beacon, ATIM
and NATIM values given to be optimal in Span
simulations [4]. A packet is fixed to 128 bytes, and
number of packets per beacon period is limited to
100. The simulator randomly selects when the node
receives the packets in the NATIM window. When
the node receives the last packet destined to it, it gets
into sleeping state without waiting the end of NATIM
window. For power consumption, we use the values
as shown in Table 1.[4].

Table 1: Power consumption of the Cabletron 802.11
network card in the Tx (tansmit), Rx (receive), Idle,
and sleeping modes [4].

Tx Rx Idle Sleeping
1400mW 1000mW 830mW 130mW

SPAN improves the power consumption of a
leaf node greatly, however, when the coordinator to
non-coordinator ratio increases, the improvement
decreases.

Given a dense network and low message prob-
ability, our algorithm gives slightly better results.
It improves the SPAN’s energy saving up to 16
percentage(see Fig. 11).

Figure 11. Energy consumption per node at different
packet delivery probabilities.

Receiver nodes are the ones that are affected

most from this approach. Sender nodes are somewhat
affected. Coordinator nodes are least affected, since
from their perspective nothing changes.
Therefore we simulate the Span, 802.11 PSM, and
our algorithm for only a receiver node with different
packet receiving probabilities. We also calculate the
possible minimum value, i.e. receiver is awake only
when there is a message transfer, which is the absolute
minimum power requirement.

Simulation results indicate that employing vari-
able NATIM window and sleeping time ameliorates
the power usage of a receiver Fig.12. It is a signif-
icant improvement over the 802.11 PSM, and a sen-
sible improvement over Span. The advantages of our
scheme are pronounced when the network a has high
node density and low packet arrival probabilities.

Figure 12. Comparison of energy consumption for a
receiver.

8.2 WORST CASE ANALYSIS OF THE ALGO-
RITHM

The worst case for our algorithm arises when a re-
ceiver has to stay awake till the end of the NATIM
window. In this section, we only compare our algo-
rithm with SPAN by calculating the expected sleep-
ing time of a receiver at a beaconing period. Here
we show that our algorithm’s performance is equal to
Span’s in the worst case.
Let’s first define the notation. At the nth beacon for a
receiver,

1. An represents the arrival of a packet,

2. Xn represents the sleeping time,

3. Sn represents the state, where state = sleep,
awake,

4. P [An = 1] = p and [P [An = 1] = 1− p, where
p is the probability that a packet arrives,

Then, sleeping time formula for our algorithm is
as follow;

Xn =

beacon-NATIM, if An = 1 ∧ Sn = awake;
beacon-ATIM, if An = 0 ∧ Sn = awake;;
beacon, otherwise;

The sleeping time formula for Span is as follow;

Xn =

{
beacon - NATIM, if An = 1
beacon - ATIM, otherwise;

Let’s update the state transition graph of our accord-
ing to the previous information. New state transition
graph makes it easier to estimate the sleeping time for
a given beacon period(see Fig.13).

0,
1

01
00

10
11

0

0

0

1

1

1

Figure 13. The detailed state transition diagram.

Let’s convert new state transition graph to state
transition diagram i.e. it includes the probabilities of
the transitions for a given p (see Fig.14).

From the above state transition graph, it is easy
to build the transition probability matrix P ;

00 01 10 11
00 p 1-p 0 0
01 p 0 1-p 0
10 0 0 0 1
11 p(1-p) 0 (1− p)2 0

Let Π = [π00, π01, π10, π11] be the vector of
long-run probabilities for the states. This vector can

1

01
00

10
11

(1
−p

)2

p(
2−

p)

p
1−

p

p
1−

p

Figure 14. The state transition graph.

be found for a given transition matrix P as the unique
stochastic vector solution to the eigenvector equation:

Π = Π.P

When we solve the above equetion, we get the follow-
ing state probabilities;

π00 =
p(2− p)

p3 − 2p + 2

π01 =
p(1− p)(2− p)

p3 − 2p + 2

π10 =
(1− p)2

p3 − 2p + 2

π10 =
(1− p)2

p3 − 2p + 2
(1)

It is easy to observe that the reciver node sleeps
the following amount of time during a beaconing pe-
riod;

beacon-NATIM if state is 00 (2)

beacon-ATIM if state is 01 or 10 (3)

beacon if state is 11 (4)

(5)

Hence for our algorithm the expected sleeping
time formula for a given packet arrival probability p
can be calculated as;

E[Xn] = beacon

− p(2− p)
p3 − 2p + 2

NATIM

− 2(1− p)2

p3 − 2p + 2
ATIM (6)

And, for Span the formula is;

E[Xn] = beacon− p.NATIM − (1− p)ATIM
(7)

Fig.15 shows the graph of expected sleeping
time of a receiver according to SPAN and our algo-
rithm for various packet arrival probabilities.

Figure 15. Comparison of expected sleeping time in a
beacon.

Sender nodes are affected by our algorithm, if

1. the immediate sender node cannot get an
”HELLO” message from the receiver node, and

2. it has a packet to the receiver.

Then the receiver has to wake up the following beacon
to check if the neighbor is still there. The overhead
of this process is the receiver has to spend at most
one more ATIM time. Let q be the probability that
sender node has a packet for its immediate receiver,
then the following formula gives the state probability
that sender has to spend an extra ATIM.

πmiss =
q (1−p)2

p3−2p+2

1 + q + q (1−p)2

p3−2p+2

, where q =< p

Then, we calculate the possible maximum value as
πmiss = 0.058, and the expected power usage value
of this overhead is 1.38 mW per beacon.

9 CONCLUSION

In this paper we have extended Span’s energy saving
mode by using history and variable NATIM time.

Although, using CDS improves both the network’s
and node’s life span, the gap between sleeping energy
consumption and idle mode need some more research.

Wu and Li [10] proposed a distributed algorithm
for approximating connected dominating sets in
ad hoc networks that also appears to preserve the
capacity. In a later paper with [7], they advance
their algorithm by adding new rules and refining
the existence ones. Our algorithm, however, elects
fewer coordinators because it actively checks the
redundancy locally whenever there’s a local topolog-
ical change. Therefore, in this paper, we also have
established a better CDS forming algorithm for ad
hoc networks, and proved it. Using a similar method
of [1], we established an approximation factor for our
algorithm.

A further research topic could be focusing on
more in-depth simulation under different settings to
see the effects of CDS construction algorithm in con-
junction with variable sleeping time.

REFERENCES

[1] P. Wan, K.M. Alzoubi, O. Frieder, “Distributed Con-
struction of Connected Dominating Set in in Wireless
Ad Hoc Networks”, in Proc. INFOCOM, 2002, pp.
1597-1604.

[2] Aleksi Penttinen, “Research On Ad Hoc Net-
working: Current Activity And Future Directions”,
http://keskus.hut.fi/opetus/s38030/k02/Papers/13-
Aleksi.pdf

[3] B. N. Clark, C. J. Colbourn, and D. S. Johnson, Umt
Disk Graphs, D F Crete Mrthemchc , X6: 165-177,
1990.

[4] B. Chen, K. Jamieson, H. Balakrishnan, R. Morris,
“Span: An energy-efficient coordination algorithm for
topology maintenance in ad hoc wireless networks”, in
Proc. ACM International Conference on Mobile Com-
puting and Networking, Italy, July 2001

[5] David B Johnson and David A Maltz, “Dynamic Source
Routing in Ad Hoc Wireless Networks”, Mobile Com-
puting, Kluwer Academic Publishers, 1996.

[6] C. Perkins, ”Ad Hoc On Demand Distance Vector
(AODV) Routing”, draft-ietf-manet-aodv-00.txt, No-
vember 1997.

[7] J. Wu, M. Gao, I. Stojmenovic, ”On calculating power-
aware connected dominating sets for efficient routing in
ad hoc wireless networks”, Journal of Communication
and Networks, March 2002.

[8] B. Das, V. Bharghavan, ”Routing in ad-hoc networks
using minimum connected dominating sets”, in IEEE In-
ternational Conference on Communications, Montreal,
Canada. June 1997.

[9] B. Das, E. Sivakumar, and V. Bhargavan, ”Routing
in ad-hoc networks using a spine”, in IEEE Interna-
tional Conferenceon Computer Communications and
Networks, Las Vegas, 1997.

[10] Wu, J., and Gao, M. ”On Calculating Power-Aware
Connected Dominating Sets for Efficient Routing in Ad
Hoc Wireless Networks”, in Proc. of the 30th Annual In-
ternational Conference On Parallel Processing,Valencia,
Spain. Sept. 2001.

[11] I. Stojmenovic, M. Seddigh, J. Zunic, ”Dominating
sets and neighbor elimination-based broadcasting algo-
rithms in wireless networks”, IEEE Transactions on Par-
allel and Distributed Systems, 2002, pp. 14-25.

[12] Y. Xu, J. Heidemann, and D. Estrin, ”Geography-
informed Energy Conservation for Ad Hoc Routing”, in
MobiCom’2001.

[13] George Kao, Thomas Fevens and Jaroslav Opatrny,
”Position-Based Routing on 3-D Geometric Graphs
in Mobile Ad Hoc Networks”, Proceedings of the
17th Canadian Conference on Computational Geometry
(CCCG’05), pp.88-91.

