
State space reduction using Predicate Filters

Sujatha Kashyap and Vijay K. Garg ?

Parallel and Distributed Systems Lab.
ECE Department

University of Texas at Austin
Austin, TX 78712, USA

{kashyap, garg}@ece.utexas.edu

Abstract. In a previous paper, we presented a technique called finite
trace covers, in which a program is represented by a set of partial orders.
We also presented classes of reachability properties that could be checked
in time that is polynomial in the size of the trace cover. A deficiency of
this approach was that it did not reduce the complexity of checking
properties that did not belong to an efficient class.
In this paper, we present a technique called predicate filtering, which
can be used as a state space reduction technique to reduce the complexity
of checking general reachability properties. To verify a property φ that
does not belong to one of our efficient property classes, the user can
first specify a weaker property ψ, which belongs to an efficient class.
The program is filtered through the property ψ. The result is a set of
partial orders, which can be represented as programs, and contain all the
states that satisfy ψ, while eliminating most of the states that do not.
Traditional model checking techniques can then be used to verify φ on
the reduced program.
In experiments, we verified a leader election protocol by constructing
only one-third as many states as constructed by SPIN using partial order
reduction.

1 Introduction

The modelling of concurrency by partial orders has been advocated by many
researchers as a means of controlling state space explosion in the verification of
concurrent asynchronous systems. The partial order nature of concurrency has
been used to guide the construction of a reduced (explicit) state transition graph
[1–3]. This approach has been dubbed “partial order reduction”, and is used
with widespread success in the popular model checker SPIN.

The effectiveness of a state space reduction technique depends on how much
less memory it uses, compared to generating the full state space graph. For p.o.
reduction techniques, such as those proposed by Valmari [2], Godefroid [3], Peled
[1], and others, the amount of reduction achieved depends on two factors: (1) the

? supported in part by the NSF Grants CNS-0509024 and an Engineering Foundation
Fellowship

amount of concurrency in the program, and (2) the proportion of invisible events
in the program. Given a program and a formula being checked, an event is said
to be invisible if executing it has no effect on the truth value of any proposition
in the formula. As observed in [4], the effectiveness of p.o. reduction techniques
diminishes rapidly with an increase in the number of visible events.

In [5], we proposed a partial order representation of the state space, called
the finite trace cover, which is a finite set of (Mazurkiewicz) traces[6], each of
finite length, which encodes the reachable state space of the program. Each trace
is represented by a partial order on the set of its constituent events. The set of
all order ideals of this partial order exactly corresponds to the set of reachable
states of the trace. Every finite state program has a finite trace cover.

The trace cover representation avoids state space explosion due to concur-
rency by avoiding explicit construction of the states. The amount of reduction
achieved depends only on the amount of concurrency in the program. As our
experimental results in [5] show, p.o. reduction (as implemented by SPIN) used
10 times as much memory as our finite trace cover approach in the verification
of a distributed mutual exclusion protocol.

Unfortunately, CTL model checking is NP-complete in the size of the finite
trace cover [7, 8]. In [5], we presented some tractable classes of properties for
which model checking can be performed in time that is polynomial in the size
of the trace cover. But what of properties that do not belong to any of these
tractable classes? This paper addresses that question.

In this paper, we present a powerful technique called predicate filtering. In
this technique, we first take a program and convert it into its finite trace cover
representation. Then, we filter each trace in the cover with respect to a (user-
specified) predicate φ. The filtrate is, in a sense to be defined later, the “smallest”
program that contains all the states of the trace that satisfy φ, while eliminating
states that do not satisfy φ1. The filtrate of a trace can be computed in polyno-
mial time if and only if the specified predicate can be detected in polynomial time
on the trace. Predicate filtering was first introduced in the context of distributed
computations in [9].

For program verification, a user can specify a predicate belonging to a tractable
class, that is weaker than the actual property to be verified. We can filter the pro-
gram through this weaker, efficient predicate, and then verify the actual property
on the smaller filtrate program. In our experiments, we could verify a leader elec-
tion protocol using predicate filtering, by constructing only one-third as many
states as constructed by SPIN using p.o. reduction.

This paper is organized as follows. Section 2 presents necessary background
material and notations. Section 3 explains the relation between traces and lat-
tices, laying the theoretical groundwork for predicate filtering. Section 4 defines
finite trace covers, and presents tractable classes of predicates. Section 5 intro-
duces the theory behind predicate filters, and presents an algorithm for com-
puting the filtrate directly from the poset representation of a trace. Section 6

1 As we will see in Section 5, depending on the predicate φ, the filtering process may
not eliminate all the states that do not satisfy φ.

discusses how predicate filters can be used for state space reduction, and presents
a case study, with experimental data.

2 Preliminaries

A program P is a triple (S, T, s0), where S is a finite set of states, T is a finite set
of operations, and s0 ∈ S is the initial state2. The set of all operations that can
be executed from a state s is denoted by enabled(s). An operation t ∈ enabled(s)
transforms the state s into a unique state s′ ∈ S. Each occurrence (execution)
of an operation is called an event. We denote the unique state s′ reached upon
executing the event α from the state s by s′ := α(s).

An interleaving sequence of a program P = (S, T, s0) is any finite or infinite
path, starting from s0, in the full state transition graph. For an interleaving
sequence w, the set of states it visits is denoted by states(w). If w is finite, the
final state reached is denoted by finw.

Definition 1. [6] An independence relation I ⊆ T × T is an irreflexive,
symmetric relation such that (α, β) ∈ I iff ∀s ∈ S:

– Enabledness: α ∈ enabled(s) ⇒ (β ∈ enabled(s) ⇔ β ∈ enabled(α(s)),
and

– Commutativity: (α, β ∈ enabled(s)) ⇒ (α(β(s)) = β(α(s))).

The enabledness condition states that execution of α does not affect the enabled-
ness of β, and the commutativity condition states that executing α and β in ei-
ther order results in the same state. The dependency relation D = (T×T)\I.

Let v, w ∈ T ∗ be two sequences of operations. We say v ≡D w iff there exists
a sequence of strings u0, u1, ..., un, such that v = u0, w = vn, and for 1 ≤ i < n,
ui = ναβω and ui+1 = νβαω, for some ν, ω ∈ T ∗ and α, β ∈ T , such that
(α, β) ∈ I. Informally, v ≡D w iff v can be transformed into w by repeatedly
commuting adjacent independent operations. Note that if v is an interleaving
sequence of a program P, then so is w.

This definition was extended to infinite sequences in [10]. Let Pref(v) denote
the set of all finite prefixes of a (finite or infinite) sequence v. We say that v �D w
iff ∀u ∈ Pref(v) : ∃y ∈ Pref(w) such that y ≡D z and u ∈ Pref(z). We say
v ≡D w iff v � w and w � v.

It is easy to verify that ≡D is an equivalence relation over all interleaving
sequences of a program P. Therefore, it partitions the interleaving sequences of
P into equivalence classes called traces. Thus, we can denote a trace σ by [v],
where v is any member sequence of σ.

We define States(σ)
def
≡

⋃
v∈σ states(v). Informally, States(σ) includes all

the states visited by any interleaving sequence of σ. Note that every interleaving
sequence of a trace consists of the same events. The notation σE will denote a

2 Alternatively, a set of initial states may be considered.

trace with E as its set of events. For finite v and w, if v ≡D w, then finv = finw.
So, every finite trace σ has a unique final state, finσ.

Mazurkiewicz [6] showed that every trace corresponds to a partial order,
such that every linearization of the partial order is an interleaving sequence of
the trace and vice-versa. The partially-ordered set (poset) corresponding to a
trace σE is given by (E,→), where the relation → corresponds to Lamport’s
happened-before (causality) relation [11]:

Definition 2. The happened-before relation → on a trace σE = [w] is the small-
est transitive relation that satisfies:

(α, β) ∈ D ∧ (w = uαvβw′) ⇒ α→ β

where α, β ∈ E, and u, v ∈ T ∗, w′ ∈ T ∗ ∪ Tω.

In the rest of this paper, the term “trace” will be used to denote the correspond-
ing partial order. An ideal of a trace σE is any downward-closed subset of the
poset (E,→). Formally, any set G ⊆ E is an ideal of σE if for any e, f ∈ E,
(f ∈ G) ∧ (e → f) ⇒ (e ∈ G). We denote the set of all ideals of σ by I(σ). An
ideal G of a trace σE is itself a trace: σG = (G,→). It is well-known [11] that
every state in States(σE) corresponds to finσG

for some order ideal G of σE ,
and vice-versa.

3 Traces and Lattices

A well-known result in lattice theory [12] states that the set of all ideals of a
poset forms a distributive lattice under the subset relation. For finite traces, the
corresponding lattice of ideals is also finite.

Definition 3 (Join-Irreducible Element). An element x ∈ L is join-irreducible
if:

1. x 6= 0, and
2. ∀ a, b ∈ L : x = a t b =⇒ (x = a) ∨ (x = b).

Here, u is the meet operator, t is the join operator, and 0 refers to the zero
element of L. Pictorially, in a finite lattice, an element is join-irreducible iff
it has exactly one incoming edge. Let J(L) denote the set of join-irreducible
elements of a lattice L.

Predicate filtering is based upon the following theorem by Birkhoff [12]:

Theorem 1. [Birkhoff’s Representation Theorem for Finite Distribu-
tive Lattices] Let L be a finite distributive lattice. Then, the map f : L →
I(J(L)) defined by

f(a) = {x ∈ J(L)|x ≤ a}
is an isomorphism of L onto I(J(L)). Dually, let P be a finite poset. Then the
map g : P → J(I(P)) defined by

g(a) = {x ∈ P |x ≤ a}

is an isomorphism of P onto J(I(P)).

Informally, a finite distributive lattice L is isomorphic to the lattice of ideals of
J(L). Conversely, a poset P is isomorphic to the join-irreducible elements of the
lattice I(P).

From the above discussion, it is clear that a trace σE is just a compact
representation of the finite distributive lattice I(σE). We say compact because the
number of join-irreducible elements of a lattice is usually exponentially smaller
than the total number of elements in the lattice. For a finite distributive lattice,
the number of join-irreducible elements is exactly equal to the length of the
longest chain in the lattice [12], which in this case is bounded by |E|. The total
number of elements in the lattice itself is bounded by 2|E|.

4 Finite trace covers

Clearly, any program can be decomposed into a set of traces, which together
cover the entire reachable state space of the program. We call such a set of
traces a “trace cover”.

Definition 4. A set of traces ∆ of a program P = (S, T, s0) is called a trace
cover iff for every reachable state s ∈ S, there exists a trace σ ∈ ∆ such that
s ∈ States(σ).

Every finite-state program can be represented by a finite trace cover, that is, a
trace cover that consists of a finite set of traces (posets), each of finite length.
In [5], we presented an algorithm for constructing such a finite trace cover.

Given a general non-temporal predicate ψ and a trace σE , the problem of
determining whether any state of σE satisfies ψ is NP-complete in |E|[8], hence
NP-complete for finite trace covers. In [5], we identified two classes of predicates
for which reachability could be determined in polynomial time in the size of the
finite trace cover.

4.1 Linear predicates

Linear predicates were first introduced in [8], along with a polynomial time
algorithm to detect them on a trace. Observe that, if G and H are two ideals of
a trace, then so is G ∩H.

Definition 5. A predicate ψ is said to be meet-closed in a trace σE iff for
every pair of ideals G and H of σE:

(finσG
|= ψ ∧ finσH

|= ψ) ⇒ (finσG∩H
|= ψ)

A local predicate is a predicate that is defined using only local variables from
a single process, e. g., x < 5, where x is a local variable on some process. Local
predicates are meet-closed. If ψ1 and ψ2 are meet-closed, then so is ψ1 ∧ ψ2.

Definition 6. Let G be an ideal of σE such that finσG
6|= ψ. We say that an

event e is crucial w.r.t. ψ at G if and only if, for all ideals H of σE:

(G ⊆ H) ∧ (finσH
|= ψ) ⇒ e ∈ H \G

That is, any state H that can be reached from G cannot satisfy ψ unless a
crucial event e has been executed along the path from G to H. The following
theorem is proved in [8, 5].

Theorem 2. Let G be any ideal of σE, and ψ be a predicate such that finσG
6|=

ψ. If ψ is meet-closed in σE, then there exists a crucial event w.r.t. psi at G.

Definition 7. A predicate ψ is linear in a trace σE iff ψ is meet-closed in σE,
and a crucial event can be identified in O(|E|k) time, for some constant k ≥ 0.

As shown in [5], for a linear predicate ψ, EF (ψ) can be detected for a trace
σE in O(C.|E|) time, where C is the time taken to determine the crucial event.
A conjunction of local predicates, l1 ∧ l2 ∧ ...∧ ln, is linear, because at each state
in which the predicate is not satisfied, there exists at least one conjunct, say li
that evaluates to false. Clearly, if li is a local variable on process Pi, then the
event from Pi in enabled(G) is a crucial event.

4.2 Bounded-sum predicates

Another useful class of predicates are those of the form x1 + x2 ++ xn > k,
where the xi are local variables that can only take a value of either 0 or 1, and k
is a constant. We call such predicates bounded-sum predicates. Bounded-sum
predicates can be used to detect mutual exclusion violation (EF (

∑
i incsi > 1)),

or to detect if there are more than k copies of a k-licensed software in use at
once (EF (

∑
i in usei > k)). The problem of detecting EF (ϕ) on a trace σE , for

a bounded-sum predicate ϕ, can be reduced to the problem of computing the
width of a poset[5].

5 Predicate filters

Predicate filters are best introduced through an example. Figures 1(a) and (b),
respectively, show a trace σ and its corresponding lattice of ideals, I(σ). The
label of each element in the lattice is a set containing the maximal event from
each process contained in the corresponding ideal. For example, the label of the
ideal {e1, f1, f2, g1} is {e1, f2, g1}.

Let φ be a given predicate. The shaded elements of the lattice I(σ) corre-
spond to the states that satisfy φ. Figure 1(c) shows the smallest sublattice of
I(σ) that contains all the shaded elements. We denote this sublattice by Lφ.
Note that, in order to make Lφ a sublattice of I(σ), we need to include some
non-shaded elements (i.e., states that do not satisfy φ). Now, every sublattice
of a distributive lattice is also distributive [12], so we can apply Birkhoff’s Rep-
resentation Theorem (Theorem 1) to Lφ. Figure 1(d) shows the poset induced
by the join-irreducible elements of Lφ. We call this poset the filtrate of σ with
respect to φ.

As seen in Figure 1(d), the filtrate is a poset in which each element is a
subset of the events of the original trace. This reflects the fact that any state

e1

e2

f1

f2

g1

g2

(a)

{e2,f1}

{e2}

{e2,f2}

{e2,f2,g1}

{e2,f2,g2}

{e1,f2}

{e1,f1}

{e2,f1,g1}

{e1}

{e2,g1}

{e1,g1}

{e1,f2,g1}

{e1,f1,g1}

{g1}

{}

{e1,f2,g2}

(b)

{e2,f2,g2}

{e1,f2,g2}

{e1,f1,g1}

{g1}

{}

{e1,f1}

{e2,f1}

{e2,f1,g1}

(c)

{e1,f1} {g1}

{f2,g2} {e2}

(d)

: Ideal : Ideal satisfying φ : Join-irreducible element

Fig. 1. Predicate filters. (a) A trace, σ, (b) its lattice of ideals, I(σ), (c) the sublattice
Lφ induced by the states that satisfy φ, and (d) the filtrate of σ w.r.t. φ.

that satisfies the given predicate φ either contains all the events corresponding
to a subset, or none of them. Thus, these events are merged into a single atomic
event in the filtrate.

Definition 8. The filtrate of a trace σ w.r.t. a predicate φ is the trace σ′ such
that I(σ′) is the smallest sublattice of I(σ) that contains all the ideals of σ that
satisfy φ.

The intersection of any two sublattices of a lattice L is also a sublattice of L
[12]. Consequently, the smallest sublattice Lφ is unique and well-defined.

Theorem 3. The filtrate of any trace σ w.r.t. any predicate φ is unique and
well-defined.

In order to avoid state space explosion while deriving the filtrate of a trace,
one has to avoid construction of the lattices L and Lφ, because they could be
prohibitively large. Thus, we need a way to directly compute the filtrate from
the poset representation of a trace.

5.1 Constructing the filtrate

A poset is usually represented by a Hasse diagram [12], which is essentially a
directed acyclic graph (DAG). In this section, we will find it useful to view a
poset as a directed graph.

The notion of ideals can be extended to directed graphs in a straightforward
manner. A subset of vertices, H, of a directed graph P is an ideal if whenever H
contains a vertex v and (u, v) is an edge in the graph P , then H also contains
u. Observe that an ideal of P either contains all vertices in a strongly connected

component, or none of them. Let I(P) denote the set of ideals of a directed
graph P . The following theorem is a slight generalization of the result in lattice
theory that the set of ideals of a poset forms a distributive lattice [12].

Theorem 4. [9] Given a directed graph P , I(P) forms a distributive lattice
under the subset relation.

Observe that the empty set and the set of all vertices trivially belong to
I(P). We call them trivial ideals. We can construct a graph P corresponding to
a trace σ such that there is one-to-one correspondence between all ideals of σ
and all nontrivial ideals of P . To construct P , we add two additional vertices
to the Hasse diagram representation of σ, ⊥ and >, where ⊥ is the “smallest”
vertex and > is the “largest” vertex (i.e., there is a path from ⊥ to every vertex
and a path from every vertex to >). An example of such a transformation is
shown in Figure 2.

Clearly, any nontrivial ideal of P will contain ⊥ and not contain >. As a
result, every ideal of σ is a nontrivial ideal of P and vice versa.

a b

c d

(a)

a b

c d

z

S

(b)

Fig. 2. (a) A trace σ, and (b) its corresponding directed graph, P .

It is obvious that adding edges to a directed graph P can only reduce the
number of its ideals. Thus, any directed graph P ′ obtained by adding edges to P
will produce a sublattice I(P ′) of I(P). The following theorem, from [13], states
that every sublattice of I(P) can be derived by adding edges to P .

Theorem 5. Let L be the finite distributive lattice of ideals generated by the
graph P . Let L′ be any sublattice of L. Then, there exists a graph P ′ that can be
obtained by adding edges to P that generates L′.

The algorithm shown in Figure 3 [13] computes the filtrate directly from the
directed graph representation of a trace. It takes as input a directed graph P ,
derived from a trace σ, and a predicate φ. The algorithm constructs the filtrate
by adding edges to the graph P . In line (3), a graph R in initialized to P . In rest
of the function, edges are added to R, which is finally returned. The filtrate
of P with respect to φ is simply the poset (DAG) obtained by collapsing the
strongly-connected components of R into a single node.

(1) graph function computeFiltrate(φ: predicate, P : directed graph)
(2) var
(3) R: directed graph initialized to P ;
(4) begin
(5) for every pair of vertices e, f in P do
(6) Q := P with the additional edges (f,⊥) and (>, e);
(7) if detect(Q,φ) is false
(8) add edge (e, f) to R;
(9) endfor
(10) return R;
(11)end;

Fig. 3. Algorithm to compute the filtrate with respect to a predicate φ

For each pair of vertices e and f in the graph P , the algorithm constructs
a graph Q from P by adding two additional edges: one from f to ⊥, and the
other from > to e (line (6)). Any non-trivial ideal of Q cannot contain >, so it
cannot contain e. On the other hand, it must contain ⊥, hence must contain f .
Therefore, every non-trivial ideal of Q must contain f , but must not contain e.
The algorithm detect(Q,φ) checks whether there exists any non-trivial ideal of
Q that satisfies φ.

If detect(Q,φ) returns false, that means no satisfying ideal of the trace σ
contains f but not e. Therefore, adding an edge from e to f in P will not eliminate
any satisfying ideals, while it will create a sublattice of I(σ). We continue this
procedure for all pairs of vertices. With each added edge, we produce an even
smaller sublattice of I(σ), all the time retaining every satisfying ideal of I(σ).

Theorem 6. [13] Let P be a directed graph. Let R be the directed graph output
by the algorithm in Figure 3 for a predicate φ. Then R is the filtrate of P w.r.t.
φ.

Proof. Let I(P, φ) denote the set of ideals of P that satisfy φ. We first show
that I(R) ⊇ I(P, φ). Adding an edge (e, f) in R eliminates only those ideals
of P that contain f but do not contain e. But, all those ideals do not satisfy φ
because the edge (e, f) is added only when detect(Q,φ) is false. Thus, all the
ideals of P that satisfy φ are also the ideals of R.

Next, we show that I(R) is the smallest sublattice of I(P) that includes
I(P, φ). Let M be a graph such that I(M) ⊇ I(P, φ). Assume, if possible, I(M)
is strictly smaller than I(R). This implies that there exists two vertices e and
f such that there is an edge from e to f in M but not in R. Since R is output
by the algorithm, detect(Q,φ) is true in line (7); otherwise, an edge would have
been added from e to f . But, this means that there exists an ideal in P which
includes f , does not include e, and satisfies φ. This ideal cannot be in I(M) due
to the edge from e to f , contradicting our assumption that I(P, φ) ⊆ I(M). ut

e1

e2
f1

f2

g1

g2

Strongly connected components

{e1,f1} {g1}

{f2,g2} {e2}

Collapse SCCs

(a) (b)

Fig. 4. Directed graph returned by computeF iltrate() for the example in Figure 1.

Figure 4 shows the directed graph R returned by computeF iltrate() for the
example in Figure 1. By collapsing the strongly-connected components of the
graph in Figure 4, we obtain the filtrate shown in Figure 1(d).

Assuming detect(Q,φ) takes O(t) time, the function computeF iltrate() has
a time complexity of O(t.|E|2). Thus, if φ can be detected in polynomial time
on a trace, then the filtrate w.r.t. φ can be computed in polynomial time.

The converse is also true. That is, if we can compute the filtrate of a trace
with respect to a predicate in polynomial time, then we can also detect the
predicate in polynomial time on the trace. To see why this is true, observe that
if the lattice of ideals of a trace contains no states that satisfy a predicate φ, then
the smallest sublattice that includes all satisfying states is the empty sublattice.
That is, the corresponding filtrate will contain no non-trivial ideals. In this case,
computeF iltrate() would return a graph R with exactly one strongly connected
component, which contains all the events of P . The following theorem is formally
proved in [14]:

Theorem 7. The filtrate of a trace σ with respect to a predicate φ can be com-
puted in polynomial time if and only if there exists a polynomial time algorithm
to determine whether there exists a state of σ that satisfies φ.

A filtrate is said to be pure if each of its ideals satisfies φ. Clearly, if the ideals
of σ that satisfy φ themselves form a sublattice of I(σ), then the corresponding
filtrate will be pure. If a predicate φ is both meet- and join-closed in a trace,
then the filtrate w.r.t. φ will be pure [9].

6 State space reduction using predicate filters

Figure 5 demonstrates that the filtrate of a trace can be represented by a pro-
gram. The figure shows the filtrate as a PROMELA program. PROMELA is the
specification language for the model checker SPIN [15].

Let ψ be a non-temporal predicate of the form ψ = ψ1∧ψ2, where ψ1 belongs
to one of the efficient predicate classes presented in Section 4, and ψ2 does not

init {
byte e1f1 done = 0, g1 done = 0, e2 done = 0, f2g2 done = 0;
byte start = 1;
do

:: atomic { (start && !e1f1 done) → e1; f1; e1f1 done = 1}
:: atomic { (start && !g1 done) → g1; g1 done = 1}
:: atomic {(e1f1 done && !e2 done) → e2; e2 done = 1 }
:: atomic {(e1f1 done && g1 done && !f2g2 done) → f2; g2}
:: else → break

od
}

Fig. 5. Equivalent PROMELA program for the filtrate in Figure 1(d)

belong to any known efficient class. We are required to determine whether any
reachable state of a given program P satisfies ψ. We can use predicate filtering
to make this task easier, as follows.

First, we construct a finite trace cover for P, using the algorithm in [5]. Let
∆ be the set of traces in the cover. For each trace σ ∈ ∆, we compute the
filtrate of σ w.r.t. ψ1. This can be done in polynomial time in the size of the
trace cover, as ψ1 belongs to an efficient predicate class. Some of these filtrates
may be empty, that is, no state of the corresponding trace may satisfy ψ1. Then,
we can check for ψ2 in each non-empty filtrate by using other model checking
approaches, such as explicit state construction. For example, if each non-empty
filtrate is represented by a PROMELA program, such as the one shown in Figure
5, then we can invoke SPIN to detect ψ2. Note that ψ1 is a weaker predicate
than ψ, so the filtrate will contain all the states that satisfy ψ.

6.1 Case Study: Leader Election Protocol

We implemented our algorithms from [5], and the filtering algorithms presented
here, by modifying SPIN. Our implementation, called TC-SPIN (“trace cover”
SPIN) takes an input PROMELA program, uses SPIN’s parser and dependency
relation calculations to convert the input program into a finite trace cover.
Then, we filter each trace with respect to a user-specified predicate and out-
put a PROMELA program for each non-empty filtrate.

For our experiments, we used a PROMELA specification of Dolev, Klawe and
Rodeh’s [16] leader election protocol, with random initialization of processes.
This PROMELA specification is part of the standard SPIN distribution. We
added two local variables to each process: know leader, which is set to 1 when
the process knows the identity of the leader, and leader id, which is set to the
process id of the leader. The property being validated is that, once a leader is
elected, every process is in agreement about the leader’s identity:

¬EF ((
∧
i

know leaderi) ∧ (6 ∃j : leader idj 6= leader id(j+1)%N))

In the SPIN verification run, the property is specified by means of an assert
statement in a separate monitor process.

TC-SPIN executes in two passes - in Pass 1, it creates the finite trace cover
and computes the filtrate of each trace w.r.t. the predicate

∧
i know leaderi. This

predicate is linear (a conjunction of local variables), and hence the filtrate can
be computed efficiently. Each non-empty filtrate is written out as a PROMELA
program. In Pass 2, SPIN is called on each filtrate. The property being verified
in Pass 2 is AG(∀i : leaderi == leader(i+1)%N). This property is specified by
means of an assert statement in a separate monitor process. Table 1 shows the
number of states constructed (stored) by SPIN vs. TC-SPIN during verification.
For TC-SPIN, the number of states in Pass 2 is the sum of all the states gen-
erated during verification of all the filtrates. In this example, the filtrates only
created about 15 states each. The number of filtrates itself increased with the
value of N , because the amount of non-deterministic choice in the program was
directly proportional to N . The number of states in Pass 1 is the total number
of states generated (stored) during construction of the finite trace cover and the
filtrate computation. Further details of the experiment can be obtained from:
http://maple.ece.utexas.edu.

SPIN, P.O. reduction TC-SPIN - # states

processes Total # states Pass 1 Pass 2 Total

4 3985 2465 345 2810

5 47727 16721 1785 18506

6 408091 125755 9630 135385
Table 1. Number of states constructed during verification of the leader election pro-
tocol.

The time taken by SPIN vs. TC-SPIN was comparable for these examples.
However, our focus in these experiments was on the amount of state space re-
duction achieved, because memory consumption is usually the larger concern
during verification.

7 Concluding Remarks

Predicate filtering is a useful state space reduction tool. In addition, it can be
used as a debugging aid. For example, consider a classic deadlock problem in
which each process is waiting on another process in a circular dependency loop.
A programmer can use the filter

∧
i waitingi, to isolate all the states in which

every process is in the waiting state. Incidentally, this predicate is meet- and
join-closed, so the filtrate is pure. Filtering allows the programmer to develop a
better understanding of the sequence of events that leads to error states. Note
that the filtration process captures every error state, whereas a traditional model
checker only reports one error state in its counterexample trace.

In our future work, we hope to study the usefulness of predicate filtering as
a debugging aid. Another direction of research is to include the ability to verify
temporal properties using predicate filtering.

References

1. Peled, D.: All from One, One for All: on Model Checking Using Representatives.
Volume 697 of Lecture Notes in Computer Science. Springer-Verlag (1993)

2. Valmari, A.: Stubborn Sets for Reduced State Space Generation. Volume 483 of
Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany (1990)

3. Godefroid, P.: Partial-order methods for the verification of concurrent systems: an
approach to the state-explosion problem. Volume 1032. Springer-Verlag Inc., New
York, NY, USA (1996)

4. Gerth, R., Kuiper, R., Peled, D., Penczek, W.: A partial order approach to branch-
ing time logic model checking. In: Proceedings of the Third Israel Symposium on
the Theory of Computing and Systems (ISTCS’95), Tel Aviv, Israel, January 4-6,
1995. (1995)

5. Kashyap, S., Garg, V.K.: Exploiting predicate structure for efficient reachability
detection. In: ASE ’05: Proceedings of the 20th IEEE/ACM International Con-
ference on Automated Software Engineering, New York, NY, USA, ACM Press
(2005) 4–13

6. Mazurkiewicz, A.W.: Basic notions of trace theory. In: Linear Time, Branching
Time and Partial Order in Logics and Models for Concurrency, School/Workshop,
London, UK, Springer-Verlag (1989) 285–363

7. Howell, R.R., Rosier, L.E.: Completeness results for conflict-free vector replace-
ment systems. J. Comput. Syst. Sci. 37(3) (1988) 349–366

8. Chase, C.M., Garg, V.K.: Efficient detection of restricted classes of global pred-
icates. In: WDAG ’95: Proceedings of the 9th International Workshop on Dis-
tributed Algorithms, London, UK, Springer-Verlag (1995) 303–317

9. Mittal, N., Garg, V.K.: Computation slicing: Techniques and theory. In: DISC
’01: Proceedings of the 15th International Conference on Distributed Computing,
London, UK, Springer-Verlag (2001) 78–92

10. Kwiatkowska, M.Z.: Event fairness and non-interleaving concurrency. Formal
Aspects of Computing 1 (1989) 213–228

11. Lamport, L.: Time, clock and the ordering of events in a distributed system.
Communications of the ACM (CACM) 21(7) (1978) 558–565

12. Davey, B., Priestly, H.: Introduction to Lattices and Order. Cambridge University
Press, Cambridge (1990)

13. Garg, V.K.: Algorithmic combinatorics based on slicing posets. In: FSTTCS ’02:
Proceedings of the 22nd Conference Kanpur on Foundations of Software Tech-
nology and Theoretical Computer Science, London, UK, Springer-Verlag (2002)
169–181

14. Mittal, N., Sen, A., Garg, V.K., Atreya, R.: Finding satisfying global states: All for
one and one for all. In: IPDPS 2004: Proceedings of the 18th International Parallel
and Distributed Processing Symposium, Santa Fe, New Mexico, USA (2004)

15. Holzmann, G.J.: The SPIN Model Checker: Primer and Reference Manual.
Addison-Wesley (2003)

16. Dolev, D., Klawe, M., Rodeh, M.: An O(n logn) unidirectional distributed algo-
rithm for extrema finding in a circle. Journal of Algorithms 3 (1982) 245–260

