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Abstract

Results from lattice theory have successfully been applied by several researchers, e.g. [1, 7, 9, 10], to reduce the
complexity of verification of distributed computations. The set of all reachable states of a distributed computation
forms a lattice under a certain partial order relation. A property is said to exhibit meet-closure if the set of reachable
states satisfying it is closed under the lattice meet operation, and join-closure if the set is closed under the lattice
join operation. Techniques that apply lattice-theoretic concepts to the verification of distributed computations have
largely leveraged the principles of meet- and join-closure of the properties to be verified. It has been shown [7, 10]
that exploiting such closure properties allows for the development of verification algorithms that have time and space
complexity that is polynomial in the number of events in the computation. Since the number of reachable states in
a computation is usually exponential in the number of events, these algorithms significantly alleviate the problem of
state space explosion in formal verification.

The temporal logic CTL [2] is popularly used to specify the properties to be verified on a distributed computation.
It is thus desirable to study whether various CTL operators preserve the properties of meet- and join-closure. Some
CTL operators were previously studied in [10]. In this paper, we extend on the work in [10], and identify additional
CTL operators that preserve these closure properties. We also revisit some of the operators which were shown not to
preserve meet-closure in [10], and identify some conditions under which they do preserve meet-closure.

1 Introduction
An execution of a distributed program is called a (distributed) computation. In a seminal paper, Lamport [4] noted
that, in the absence of a global clock, it is impossible to derive the exact sequential order in which events from different
processes occur. He argued that the events that occur in a distributed computation are best viewed as a partial order,
in which two events are related only if one of them causally precedes the other. For example, the send of a message
causally precedes its receive. A reachable (global) state of the computation is any state that can be reached by executing
events in a manner consistent with the partial order relation. A state is thus the culmination of the execution of some
events. Consequently, we can view a state as a set of events.

In [5], it was shown that the set of reachable states of a computation forms a lattice. The application of lattice
theoretic concepts to the verification of distributed computations was pioneered in [1], where the class of meet-closed
predicates was introduced. It was shown that, under certain conditions, a polynomial time algorithm exists for solving
reachability for meet-closed predicates. In [7], the class of regular predicates was introduced. A predicate is regular
iff it is both meet- and join-closed. A polynomial-time algorithm was also given in [7] for extracting all the states of
the computation that satisfy a given regular predicate.

Since meet-closed and regular predicates admit efficient verification algorithms, it is desirable to determine which
commonly-verified properties are meet-closed or regular. The Computation Tree Logic, or CTL [2], is widely used to
specify properties to be verified on computations. In [10], it was shown that several CTL operators, such as EF , EG

1



and AG, preserve both meet- and join-closure. Thus, these temporal operators could be used to construct properties
that could then be efficiently verified using the algorithms developed in [1, 7, 9, 10].

In this paper, we consider the “until” and “release” operators from CTL, and show the circumstances under which
these operators preserve meet- and join-closure. In [10], it was shown that the AF operator does not preserve meet-
closure. In this paper, we show that AF preserves a stronger property, called biregularity.

The paper is organized as follows. In Section 2, we present some background material and introduce notations.
Section 3 presents our results on the closure properties preserved by various CTL operators. Finally, some concluding
remarks are presented in Section 4.

2 Background and Notation
A distributed computation can be viewed as a partially ordered set of events [4, 11, 6], where the partial order relation
is an indication of causality. Lamport called this the “happened-before” relation [4], and denoted it by→. For instance,
if an event e denotes the sending of a message, and f the corresponding receive event, then e → f .

Let E be the set of events that occur during an execution of a distributed program. The poset (E,→) is called
a trace, and is denoted by σ. Any linearization of (E,→) is a valid sequence of execution for the events in E.
Conversely, every valid execution sequence of these events gives us a linearization of the poset E(,→).

A subset G ⊆ E of a poset (E,→) is called a down-set if, whenever f ∈ G, e ∈ E and e → f , we have e ∈ G.
There is a 1-1 correspondence between the program states that can be encountered in any valid execution sequence of
σ, and down-sets of (E,→). Executing the events in G in an order that is consistent with → leads to a valid state of
σ. Conversely, every state in σ can be reached by executing the events in some down-set in accordance with the →
relation. For simplicity of presentation, in this paper we overload the term “down-set” to mean both a subset of events,
and a state of σ.

Progress in a computation is measured by the execution of additional events from the current state. For down-sets
G and H of a trace (E,→), G ⊆ H iff H is reachable from G in the full state space graph.

Let D be the set of all down-sets of a poset (E,→). From lattice theory [3], the poset (D,⊆) is a lattice1, in which
the meet and join operations are given by set intersection and union, respectively. That is, if G and H are down-sets
of (E,→), so are (G ∩ H) and (G ∪ H). The lattice of down-sets of a trace σ will be denoted by L(σ). This view
of the states of a trace as elements of a lattice was previously explored in [11, 5, 7], among others. Figure 1 illustrates
the relationship between the poset representation of a trace and the down-set lattice.

3 Lattice properties of CTL formulae
Let σ be a trace, and p be a formula.

Definition 1. Meet-closed [1]: p is meet-closed iff:

∀G, H ∈ L(σ) : [(G |= p) ∧ (H |= p) ⇒ (G ∩H) |= p]

Definition 2. Join-closed: p is join-closed iff:

∀G, H ∈ L(σ) : [(G |= p) ∧ (H |= p) ⇒ (G ∪H) |= p]

Definition 3. Regular [7]: p is regular iff it is meet- and join- closed.

Definition 4. Biregular: p is biregular iff both p and ¬p are regular.

There are ten CTL operators: EX , AX , EG, AG, EF , AF , EU , AU , ER, and AR. In this paper, we do not
consider the next-time operators, EX and AX . The remaining operators can be expressed in terms of EU and EG.
Denote the ith state on a path π by πi.

• s |= EG(p) iff there exists a path π starting from s such that ∀i ≥ 0 : πi |= p.

• s |= E[pUq] iff there exists a path π starting from s such that for some j ≥ 0 : πj |= q, and ∀i < j : πi |= p.

1A lattice is a poset in which every finite subset of elements has a supremum (least upper bound) and infimum (greatest lower bound).
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Figure 1: (a) The poset representation of a trace σ. (e) The lattice of down-sets L(σ).

• EF (p) = E[true U p]

• E[pRq] = E[qU(p ∧ q)] ∨ EG(q)

• AG(p) = ¬EF (¬p)

• AF (p) = ¬EG(¬p)

• A[pUq] = ¬E[¬pR¬q]

• A[pRq] = ¬E[¬pU¬q]

In the rest of this paper, we present the closure properties exhibited by various CTL operators. We first explore
the strongest closure property, biregularity. We consider concurrent systems, where the system is modeled as a set
of processes. Each process Pi has a set of transitions Ti, and a set of local variables Vi that can only be changed by
transitions in Ti. All the transitions in Ti are pairwise dependent, that is, if α, β ∈ Ti, then (α, β) ∈ D. A transition
in Ti can also change the values of shared (global) variables. A formula φ is called a process-local state formula iff its
truth value is purely determined by the current values of the variables Vi of some process Pi.

Theorem 1. Process-local state formulae are biregular.

Proof. Let σ be a trace, and p a process-local state formula defined on the local variables of process Pj . Since no two
transitions from Pj are independent, no two transitions from Pj can commute with each other. So, the events from Pj

must occur in the same sequence in every path of σ.
Let s be the starting state of σ, and v be a maximal path of L(σ). Let vj be the restriction of v to events from Pj ,

i.e., vj is obtained from v by deleting all events from processes other than Pj . Let G and H be any two down-sets of
σ such that G |= p and H |= p. Let u and w be any two paths in L(σ), leading, respectively, from s to G and s to H .
Then, both uj and wj (derived in a similar fashion as vj from v) are prefixes of vj . Thus, either uj is a prefix of wj ,
or wj is a prefix of uj . WLOG, say uj is a prefix of wj .

Now, let u′ be any path from s to (G∩H) in L(σ). Then, u′
j = uj . Since the truth value of p is determined purely

by events from process Pj , and G |= p, we have (G ∩H) |= p. Similarly, let w′ be some path from s to (G ∪H) in
L(σ). Then, w′

j = wj , hence (G ∪H) |= p.
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Finally, the negation of a process-local state formula is also a process-local state formula. Thus, ¬p is also regular,
which implies that p is biregular.

In [10], it was shown that if p is regular, then so are EF (p) and AG(p). This leads to the following theorem:

Theorem 2. [10] If p is biregular, then EF (p) and AG(p) are biregular.

Proof. Since p is (bi)regular, from [10], we know that EF (p) and AG(p) are regular. Now, we need to show that
¬EF (p) and ¬AG(p) are regular.

G |= ¬EF (p) and H |= ¬EF (p)
⇒ G |= AG(¬p) and H |= AG(¬p) {¬EF (p) = AG(¬p)}
⇒ (G ∩H) |= AG(¬p) and (G ∪H) |= AG(¬p) {¬p is regular, so AG(¬p) is regular}
⇒ (G ∩H) |= ¬EF (p) and (G ∪H) |= ¬EF (p)

Similarly:

G |= ¬AG(p) and H |= ¬AG(p)
⇒ G |= EF (¬p) and H |= EF (¬p) {¬AG(p) = EF (¬p)}
⇒ (G ∩H) |= EF (¬p) and (G ∪H) |= EF (¬p) {¬p is regular, so EF (¬p) is regular}
⇒ (G ∩H) |= ¬AG(p) and (G ∪H) |= ¬AG(p)

In [10], it was also shown that EG(p) is regular when p is regular. In [8], it was shown that AF (p) is join-closed
for regular p, but was not meet-closed for regular p. Here, we show that AF (p) is meet-closed when p is biregular.

Lemma 3. AF (p) is meet-closed for biregular p.

Proof. Assume, for contradiction, that G |= AF (p) and H |= AF (p), but (G ∩H) |= ¬AF (p).

(G ∩H) |= ¬AF (p)
⇒ (G ∩H) |= EG(¬p)
⇒ (G ∩H) |= ¬p

⇒ (G |= ¬p) ∨ (H |= ¬p) {Since ¬p is biregular}

WLOG, let G |= ¬p. Since (G∩H) |= EG(¬p), there exists a path π starting from (G∩H) such that ∀i : πi |= ¬p.
Then, we can construct the following path ρ, starting from G, as follows:

ρ = G ∪ π0, G ∪ π1, G ∪ π2, ....

Since G |= ¬p, and ∀i : πi |= ¬p, by the join-closedness of ¬p, every state of ρ satisfies ¬p. Thus, ρ is a witness path
for G |= EG(¬p), which implies G |= ¬AF (p), which contradicts our initial assumption that G |= AF (p).

Theorem 4. If p is biregular, then AF (p) and EG(p) are biregular.

Proof. Given p is biregular. Then, from [10], EG(p) is regular. Also, from [8], AF (p) is join-closed. From Lemma
3, AF (p) is meet-closed. Hence, AF (p) is regular. Now, we need to show that ¬AF (p) and ¬EG(p) are regular.

G |= ¬AF (p) and H |= ¬AF (p)
⇒ G |= EG(¬p) and H |= EG(¬p) {¬AF (p) = EG(¬p)}
⇒ (G ∩H) |= EG(¬p) and (G ∪H) |= EG(¬p) {¬p is regular, so EG(¬p) is regular}
⇒ (G ∩H) |= ¬AF (p) and (G ∪H) |= ¬AF (p)
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Similarly:

G |= ¬EG(p) and H |= ¬EG(p)
⇒ G |= AF (¬p) and H |= AF (¬p) {¬EG(p) = AF (¬p)}
⇒ (G ∩H) |= AF (¬p) and (G ∪H) |= AF (¬p) {¬p is regular, so AF (¬p) is regular}
⇒ (G ∩H) |= ¬EG(p) and (G ∪H) |= ¬EG(p)

We now explore which temporal operators preserve the weaker property of regularity.

Theorem 5. If p and q are regular, then (p ∧ q) is regular.

Proof.

G |= (p ∧ q) and H |= (p ∧ q)
⇒ (G |= p) ∧ (G |= q) and (H |= p) ∧ (H |= q)
⇒ [(G ∩H) |= p] ∧ [(G ∩H) |= q] and [(G ∪H) |= p] ∧ [(G ∪H) |= q] {p and q are regular}
⇒ (G ∩H) |= (p ∧ q) and (G ∪H) |= (p ∧ q)

Theorem 6. The following temporal formulae are regular, if p and q are regular:

• E[qRp]

• E[pU(p ∧ q)]

Proof. We show that E[qRp] is regular, for regular p and q. Let G, H ∈ L(σ) such that G |= p and H |= p. We have:

(G |= E[qRp]) ∧ (H |= E[qRp])
⇒ (G |= p) ∧ (H |= p) {definition of E[qRp]}
⇒ (G ∩H) |= p {meet-closure of p}

and (G ∪H) |= p {join-closure of p}

Recall that E[qRp] = E[pU(p ∧ q)] ∨ EG(p).

• Case 1: Both G and H satisfy E[pU(p ∧ q)].

In the lattice L(σ), there exist finite paths π and ρ, starting from G and H respectively, such that πend |= q and
ρend |= q, where πend and ρend are the final states on π and ρ, respectively. We can construct a path λ starting
from (G ∩H) as follows:

λ = G ∩H,G ∩ ρ1, G ∩ ρ2, ..., G ∩ ρend,

π1 ∩ ρend, π2 ∩ ρend, ..., πend ∩ ρend

From the meet-closure of p and q, it follows that λ is a witness for E[pU(p ∧ q)]. Similarly, we can construct ν
starting from (G ∪H):

ν = G ∪H,G ∪ ρ1, G ∪ ρ2, ..., G ∪ ρend,

π1 ∪ ρend, π2 ∪ ρend, ..., πend ∪ ρend

From the join-closure of p and q, it follows that ν is a witness for E[pU(p ∧ q)].
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Figure 2: (a) H |= ¬E[pU(p ∧ q], and I |= ¬E[pU(p ∧ q], but G = (H ∩ I) |= E[pU(p ∧ q]. Also, H |= ¬E[pRq],
and I |= ¬E[pRq], but G = (H ∩ I) |= E[pRq]. (b) H and I satisfy E[pUq] and A[pUq]. G = (H ∩ I) satisfies
neither. (c) G and H satisfy A[pUq], while I = (G ∩H) does not.

• Case 2: Either G or H satisfies EG(p).

WLOG, let G |= EG(p). Let π be a witness path starting from G. We first show that there exists a k ≥ 0 such
that H ⊆ πk.

The witness path π is maximal, i.e., it will eventually contain all the events in E. Since H ⊆ E, there exists
some state on π that contains all the events in H . Thus, there exists a k ≥ 0 such that H ⊆ πk.

We use the above property to construct a path λ starting from (G ∪H):

λ = G ∩H,π1 ∩H,π2 ∩H, ...., (πk ∩H = H)

Let ρ be the witness path for E[qRp] starting from H . Then, the required witness path for E[qRp] from (G∩H)
is given by λ.ρ.

To demonstrate join-closure, we construct the following path ν starting from (G ∪H):

ν = (G ∪H), (G ∪H) ∪ π1, (G ∪H) ∪ π2, .....

From the join-closure of p, it follows that ν is a witness path for (G ∪H) |= EG(p).

The proof that E[pU(p ∧ q)] is regular is the same as Case 1 above.

As EF (p) = E[true U(true ∧ p)], and EG(p) = E[false R p], we have2:

Corollary 7. If p is a regular formula, so are EF (p) and EG(p).

The operators E[qRp] and E[pU(p∧q)] are, however, not biregular. Figure 2(a) depicts provides a counterexample.
We now explore operators that are not regular.

Theorem 8. The following temporal operators are not meet-closed, for regular (even biregular) p and q:

• E[pUq]

• A[pUq]

2true and false are trivially meet- and join-closed.
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• A[pRq]

Proof. • E[pUq], A[pUq]: Counter-example in Figure 2(b).

• A[pRq]: Counter-example in Figure 2(c).

4 Conclusion and Future Work
We have examined CTL operators in addition to those studied in [10]. We showed that the operator ER and a variation
of the operator EU preserve regularity. We also showed that the AF operator preserves biregularity. The results here
extend the family of formulae that are known to preserve meet- and join-closure.

In future work, we intend to extend our family of verification algorithms ([1, 7, 9, 10]) to include algorithms for
detecting formulae constructed using the EU , ER, and AF operators.
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