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Abstract. Ideally, a model checking tool should be able to successfully tackle state space explosion for complete
validation of the system, while providing short counterexamples in case an error exists. Techniques such as partial
order (p.o.) reduction [1, 2] are very effective at tackling state space explosion, but do not concern themselves with
the production of short counterexamples. On the other hand, directed model checking [3, 4] techniques use heuristic
search strategies to find short counterexamples, but are not suited for exhaustive validation, because they are prone
to state space explosion in the absence of errors. To the best of our knowledge, there is currently no single technique
that meets both requirements. We present such a technique in this paper.
We identify a subset of CTL, which we call CETL (Crucial Event Temporal Logic), that exhibits some interest-
ing properties. Given any (Mazurkiewicz) trace of a program and any CETL formula, there exists a unique set of
events, called crucial events, whose execution is both necessary and sufficient to lead to a state satisfying the for-
mula. These crucial events can be executed in any order that is consistent with the dependency relation. Thus, for
exhaustive validation, it is sufficient to explore a single interleaving, consisting entirely of crucial events, per max-
imal trace of the program. This results in significant state space reduction, comparable to partial order techniques.
Additionally, by executing only crucial events, we narrow in on the error quickly, resulting in faster verification and
short counterexamples. We present an explicit-state model checking algorithm for CETL, and show how crucial
events can be identified.
We have implemented our algorithms as an extension to SPIN, called SPICED (Simple PROMELA Interpreter
with Crucial Event Detection). We present experimental results comparing our performance against that of SPIN
with p.o. reduction. The experimental results presented show that we consistently produce significantly shorter
error trails, often resulting in faster verification times, while achieving state space reduction similar to that of p.o.
reduction.

1 Introduction

The ability to tackle state space explosion is a fundamental requirement in a model checking tool. Partial order re-
duction [1, 2] has been particularly useful for state space reduction in concurrent and distributed systems, but tends to
produce lengthy error trails [3, 5]. The ability to produce error trails is one of the great strengths of model checking.
Shorter error trails greatly reduce debugging effort, because they are easier to comprehend. Additionally, the ability to
find errors at shorter depths can make it possible to verify larger models, by finding the error state before the model
checker runs out of available computational resources.

Recently, there has been much interest in the use of heuristic search techniques to produce short error trails [3, 4].
Heuristic search techniques calculate a cost function for each outgoing transition from the current state, then explore
these transitions in the order of increasing cost. Lower cost transitions are considered to be “closer” to the error state.
However, in the absence of errors, heuristic search techniques do nothing to reduce state space explosion, because they
simply change the order in which nodes are expanded, without reducing the number of nodes to be expanded. Thus,
these methods are not suitable for complete validation of the model.

There has been some effort to combine heuristic search techniques with state space reduction techniques [5, 6].
However, the combination can interfere with the efficiency of the individual techniques, either resulting in less re-
duction [6], or lengthier error trails [5]. To the best of our knowledge, there is currently no single technique that
achieves both objectives - state space reduction for complete validation, while narrowing down on error states quickly
to produce short error trails. We present such a technique in this paper.

Our approach is based on lattice theory. It has been shown that the set of reachable states in a (Mazurkiewicz) trace
[7] of a program forms a lattice [8, 9]. A lattice is a partial order in which every pair of elements has a unique meet
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(infimum) and join (supremum). A property to be verified is said to be meet-closed [10] in a trace if, whenever it holds
at any two states in the trace, it also holds at the state given by their lattice meet. It was shown in [10] that the class
of meet-closed properties is precisely the class for which, in each program trace, there exists a unique minimum set of
events whose execution is both necessary and sufficient to reach a state satisfying the property. We call these events
crucial events. Executing crucial events in any order consistent with the dependency relation of the trace results in the
same state [2]. Thus, for a single trace, it is sufficient to explore any one interleaving comprising entirely of crucial
events. We call such an interleaving a crucial path. If an error state exists, any crucial path will lead to it through the
fewest possible transitions. If the explored crucial path does not encounter an error state, then there is no error state in
the trace.

In this paper, we show that every formula in a subset of CTL, which we call Crucial Event Temporal Logic (CETL),
exhibits meet-closure. CETL includes the existential until and release operators of CTL, and allows conjunction.
Atomic propositions are limited to process-local variables. CETL does not allow negation, except at the level of
atomic propositions, nor does it allow disjunction. Despite these limitations, CETL can express many reachability,
safety, liveness and response properties. In fact, of the 131 properties in the BEEM database [11], which is a large
repository of benchmarks for explicit-state model checkers, 101 (77%) can be expressed in CETL.

We present an explicit-state model checking algorithm for CETL formulae, and show how crucial events can be
identified. While the problem of identifying a crucial event for a general CETL formula remains open, there are many
cases where we can identify crucial events.

We have implemented our approach as an extension to the popular model checker SPIN [12]. We call our tool
SPICED (Simple PROMELA Interpreter with Crucial Event Detection). We provide experimental results from a wide
range of examples from the BEEM database [11], as well as from the SPIN distribution [13]. We ran experiments on
75 different variations (with differences in problem sizes and the location of errors) of 15 different models from the
BEEM database. In 100% of our tests, the error trails produced by SPICED were at least as short as those produced
by SPIN. SPICED achieved trail reduction greater than 1x in 93% of the cases, greater than 10x in 55% of the cases,
and greater than 100x in 19% of the cases. We completed verification faster than SPIN (with p.o. reduction) in 44%
of the cases, with a 10x reduction in time in 9% of the cases. For 3 of the 15 models, we were able to verify problem
sizes for which SPIN ran out of resources. We also provide experimental results that show that we achieve state space
reduction comparable to p.o. reduction even in the absence of errors.

This paper is organized as follows. Section 2 introduces relevant concepts and notation. In Section 3, we prove
the meet-closure of some CTL operators, define the logic CETL, and present the notion of crucial events. Section 4
presents the basic CTL model checking algorithm that we use as the basis for our algorithm. We enhance this algorithm
to use crucial events for model checking CETL formulae within a single trace in Section 5, and then within a complete
program in Section 6. In Section 7, we show how crucial events are identified. Experimental results are presented in
Section 8, followed by concluding remarks in Section 9.

1.1 Related work

Lattice theory has previously been applied to the verification of finite execution traces of distributed programs, where
it has been shown to result in significant reduction in the time and memory required for verification. A survey of
these applications was presented in [14]. The concept of meet-closure of properties, and crucial events, was first
presented in [10], along with an algorithm for reachability detection of meet-closed properties on finite traces. In
[15], a logic called RCTL was defined, which included the CTL operators EG, AG and EF . RCTL formulae were
shown to be meet-closed, and an efficient verification algorithm for RCTL formulae was presented. However, all these
previous applications were limited to a single finite trace of a program. Also, they required a partial order (implicit)
representation of the state space. To the best of our knowledge, this paper is the first time these lattice theoretic concepts
have been applied to explicit-state model checking of an entire program.

2 Preliminaries

A finite-state program P is a triple (S, T, s0) where S is a finite set of states, T is a finite set of operations, and s0 ∈ S
is the initial state. The set of transitions that are executable from a given state s ∈ S is denoted by enabled(s). A
transition α ∈ enabled(s) transforms the state s into a unique state s′, denoted by s′ = α(s).

A state s is said to be reachable in a program P iff it can be reached from s0 by executing only enabled transitions
at each state. The full state space graph of P is a directed graph whose vertex set is exactly the set of reachable states



of P . An edge exists from vertex s to t iff ∃α ∈ enabled(s) such that t = α(s). A path through the full state space
graph consists of a (finite or infinite) sequence of states. Each path has a corresponding transition sequence, consisting
of the transitions executed along the path.

An independence relation [7, 1] I ⊆ T × T is a symmetric, antireflexive relation such that (α, β) ∈ I iff:

– Enabledness: If α ∈ enabled(s), then β ∈ enabled(s) if and only if β ∈ enabled(α(s)), and
– Commutativity: If α, β ∈ enabled(s), then (α(β(s)) = β(α(s))).

The enabledness condition states that execution of α does not affect the enabledness of β, and the commutativity
condition states that executing α and β in either order results in the same state. We say that α, β are independent iff
(α, β) ∈ I . The dependency relation, D, is the reflexive, symmetric relation given by D = (T × T ) \ I .

The independence relation I partitions the set of all transition sequences (correspondingly, paths) of a program P
into equivalence classes called traces [7]. Given two finite transition sequences u and v, we say that u and v are trace
equivalent, denoted u ≡ v, iff they have the same starting state, and v can be derived from u by repeatedly commuting
adjacent independent transitions.

Trace equivalence for infinite transition sequences is defined with the help of the relation �. Given two (finite or
infinite) transition sequences u and v, u � v iff for each finite prefix u′ of u, there exists a prefix v′ of v, and some w
such that v′ ≡ w, and u′ is a prefix of w. We have u ≡ v iff u � v and v � u.

Each occurrence of a transition in a transition sequence is called an event. For example, the transition sequence
αβαβ consists of four events. We say that two events are dependent (correspondingly, independent) iff their corre-
sponding transitions are dependent (independent). Every path of a trace starts from the same state, and consists of
the same set of events. We will use the notation σ = [s, v] to denote a trace with starting state s, and representative
transition sequence v. All paths of a trace have the same length, and the same final state [7, 1].

The concatenation of a finite trace σ1 = [s, v] with a finite or infinite trace σ2 = [t, w] is defined when t is also the
final state of σ1, and is given by σ1.σ2 = [s, vw]. We say that σ2 = [s, v] subsumes σ1 = [s, u], denoted σ1 v σ2, iff
u � v. If σ1 is finite, then σ1 v σ3 iff there exists σ2 such that σ3 = σ1.σ2. If σ v σ′, then the reachable states of σ is
a subset of the reachable states of σ′. We say that a trace of a program P is maximal iff no other trace of P subsumes
it. Clearly, the set of maximal traces of a program contains all its reachable states.

2.1 Traces, Posets and Lattices

It is well-known [8, 7] that a 1-1 correspondence exists between traces and partially ordered sets (posets). Let σ = [s, v]
be a trace, and E be the set of events in v. We can define a poset (E,→), where ∀e, f ∈ E : e→ f iff (e, f) ∈ D and
e occurs before f in v. The relation → expresses causal dependence. For instance, if an event e denotes the sending
of a message, and f the corresponding receive event, then e → f . Every transition sequence of σ is a linearization of
(E,→), and conversely every linearization of this poset is a valid transition sequence of σ. We will use the notation
σ = (E,→) for the poset corresponding to a trace σ.

The same state can be visited multiple times during the execution of a transition sequence, for example, in the
case of a cycle in the state space graph. However, each occurrence of the state corresponds to a unique prefix of the
transition sequence. If an event e is executed as part of a transition sequence, then the events that causally precede e
must have been executed before e. A subset G ⊆ E of a poset (E,→) is called a down-set if, whenever f ∈ G, e ∈ E
and e → f , we have e ∈ G. In a trace σ = (E,→), there exists a correspondence between occurrences of states, and
down-sets. That is, an occurrence of a state in σ corresponds to executing the set of events in some down-set of (E,→).
Conversely, every state in σ can be reached by executing the events in some down-set of (E,→). For simplicity of
presentation, in this paper we overload the term “down-set” to mean both a set of events, and an occurrence of a state.

Progress in a computation is measured by the execution of additional events from the current state. For down-sets
G and H of a trace (E,→), G ⊆ H iff H is reachable from G in the full state space graph.

From lattice theory [16], the set of all down-sets of (E,→) forms a lattice under the ⊆ relation, with the meet and
join operations given by set intersection and union, respectively. That is, if G and H are down-sets of (E,→), so are
(G ∩H) and (G ∪H). We will use L(σ) to denote the lattice of down-sets of a trace σ. Note that, while a vertex in
the full state space graph corresponds to a program state, a vertex in L(σ) corresponds to an occurrence of a state.
This view of occurrences of states as elements of a lattice was previously explored in [8, 9, 17], among others. Figure
1 illustrates the relationship between programs, traces, posets, and lattices.

We say that a formula (property) is meet-closed (correspondingly, join-closed) if, whenever any two states of a
trace σ satisfy the formula, the state corresponding to their meet (correspondingly, join) in L(σ) also satisfies it.
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Fig. 1. A program P with transitions T = {α1, α2, α3, β}. ∀i, j : (αi, β) ∈ I . P has one maximal trace: σ = [s0, β(α1α2α3)
ω]

(a) The full state space graph. (b) The poset corresponding to σ. (c) The down-set lattice L(σ). Two occurrences of the state t in
L(σ) are shown.

Definition 1. Meet-closed [10]: A formula φ is meet-closed iff, for every trace σ:

∀G,H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∩H) |= φ]

Definition 2. Join-closed: A formula φ is join-closed iff, for every trace σ:

∀G,H ∈ L(σ) : [(G |= φ) ∧ (H |= φ) ⇒ (G ∪H) |= φ]

Definition 3. Regular [17]: A formula φ is regular iff it is meet- and join- closed.

In the next section, we prove that some commonly-used CTL operators exhibit meet- and join-closure.

3 Meet- and join-closure of CTL operators

We consider concurrent systems, where the system is modeled as a set of processes. Each process Pi has a set of
transitions Ti, and a set of local variables Vi that can only be changed by transitions in Ti. All the transitions in Ti

are pairwise dependent, that is, if α, β ∈ Ti, then (α, β) ∈ D. A transition in Ti can also change the values of shared
(global) variables. A formula φ is called a process-local state formula iff its truth value is purely determined by the
current values of the local variables Vi of some process Pi.

Theorem 1. Process-local state formulae are regular.

Proof. Let σ = [s, v] be a trace, and φ a process-local state formula defined on the local variables of process Pj . Since
no two transitions from Pj are independent, no two transitions from Pj can commute with each other. So, the events
from Pj must occur in the same sequence in every path of σ.

Let vj be the restriction of v to events from Pj , i.e., vj is obtained from v by deleting all events from processes
other than Pj . LetG andH be any two down-sets of σ such thatG |= φ andH |= φ. Let u and w be any two transition
sequences leading, respectively, from s to G and s to H in L(σ). Then, both uj and wj (derived in a similar fashion
as vj from v) are prefixes of vj . Thus, either uj is a prefix of wj , or wj is a prefix of uj .

WLOG, say uj is a prefix of wj . Let u′ be any transition sequence from s to (G∩H) in L(σ). Clearly, u′j can only
contain events that are common to both uj and wj . Now, uj is a prefix of wj . Therefore, u′j contains the same events



as uj , and since all transitions from Pj must occur in the same sequence in all paths, u′j = uj . Since the truth value of
φ is determined purely by events from process Pj , and G |= φ, we have (G ∩H) |= φ.

Similarly, let w′ be some transition sequence from s to (G ∪H) in L(σ). By a similar argument as above, we can
show that w′j = wj , hence (G ∪H) |= φ. ut

The following theorem was proved in [17], using the properties of set union and intersection.

Theorem 2. If φ1 and φ2 are regular, then (φ1 ∧ φ2) is regular.

On the other hand, disjunction does not preserve meet-closure [17].
Let πi denote the ith state on the path π. The following CTL operators are considered in this paper:

– s |= EG(φ) iff there exists a path π starting from s such that ∀i : i ≥ 0 : πi |= φ.
– s |= E[φ1Uφ2] iff there exists a path π starting from s such that ∃j : j ≥ 0 : πj |= φ2, and ∀i : i < j : πi |= φ1.
– EF (φ) = E[true U φ]
– E[φ1Rφ2] = E[φ2U(φ1 ∧ φ2)] ∨ EG(φ2)
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Fig. 2. Illustrating the construction of λ and ν in Theorem 3. (a) Case 1: G,H |= E[φ1U(φ1 ∧ φ2)] (b) Case 2: G |= EG(φ1)

It can be shown that the existential until operator, E[φ1Uφ2], does not preserve meet-closure [18]. However, a
specific flavor of this operator does, as shown in the following theorem. In most cases, the system specification makes
it equally valid to check for E[φ1U(φ1 ∧ φ2)] instead of E[φ1Uφ2].

Theorem 3. The following temporal formulae are regular, if φ1 and φ2 are regular:

– E[φ2Rφ1]
– E[φ1U(φ1 ∧ φ2)]

Proof. We show that E[φ2Rφ1] is regular, for regular φ1 and φ2. Let G,H ∈ L(σ).

(G |= E[φ2Rφ1]) ∧ (H |= E[φ2Rφ1])
⇒ (G |= φ1) ∧ (H |= φ1) {definition of E[φ2Rφ1]}
⇒ (G ∩H) |= φ1 and (G ∪H) |= φ1 {meet- and join-closure of φ1}

Recall that E[φ2Rφ1] = E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1).

– Case 1: Both G and H satisfy E[φ1U(φ1 ∧ φ2)].
In the lattice L(σ), there exist finite paths π and ρ, starting from G and H respectively, such that πend |= φ2 and
ρend |= φ2, where πend and ρend are the final states on π and ρ, respectively. From the meet- and join-closure of
φ2, (πend ∩ ρend) |= φ2, and (πend ∪ ρend) |= φ2. We can construct a path λ starting from (G ∩H) as follows:

λ = G ∩H,G ∩ ρ1, G ∩ ρ2, ..., G ∩ ρend, π1 ∩ ρend, π2 ∩ ρend, ..., πend ∩ ρend



From the properties of set intersection, for each i, λi can either be the same as λi−1 or contain one additional
event. Eliminating consecutive identical down-sets, we get a valid path in which for each i, λi contains one event
more than λi−1. From the meet-closure of φ1, it follows that λ is a witness for E[φ1U(φ1 ∧ φ2)]. Similarly, we
can construct ν starting from (G ∪H):

ν = G ∪H,G ∪ ρ1, G ∪ ρ2, ..., G ∪ ρend, π1 ∪ ρend, π2 ∪ ρend, ..., πend ∪ ρend

From the properties of set union, for each i, either νi can be the same as νi−1, or contain one additional event.
Eliminating consecutive identical down-sets, one obtains a valid path. From the join-closure of φ1, it follows that
ν is a witness for E[φ1U(φ1 ∧ φ2)].

– Case 2: Either G or H satisfies EG(φ1).
WLOG, letG |= EG(φ1). Let π be a witness path starting fromG, and v be its corresponding transition sequence.
We first show that there exists a finite k ≥ 0 such that H ⊆ πk. Let s be the starting state of σ. Let u and w be
transition sequences leading, respectively, from s to G and s to H in L(σ). Since G |= EG(φ1), u.v is a maximal
transition sequence of σ, i.e., σ = [s, u.v]. Therefore, w � u.v. By the definition of �, there exists a finite prefix
u′ of u.v such that u′ ≡ w′ and w is a prefix of w′. Let K be the final state of the transition sequence u′. Recall
that H is the final state of the sequence w. Then, we have H ⊆ K. Now, K can occur either before or after G in
the path corresponding to u.v. In either case, K ⊆ πk for some finite k ≥ 0.
We use the above property to construct a path λ starting from (G ∩H):

λ = G ∩H,π1 ∩H,π2 ∩H, ...., (πk ∩H = H)

Eliminating consecutive identical down-sets, λ becomes a valid path. Since π is a witness forG |= EG(φ1), every
state along π satisfies φ1. Also, H |= φ1. Thus, by the meet-closure of φ1, every state on ρ satisfies φ1. Let ρ be
the witness path for E[φ2Rφ1] starting from H . Then, the required witness path for E[φ2Rφ1] from (G ∩H) is
given by λ.ρ.
To demonstrate join-closure, we construct the following path ν starting from (G ∪H):

ν = G ∪H,π1 ∪H,π2 ∪H, ....

Removing consecutive identical down-sets, ν becomes a valid path. From the join-closure of φ1, it follows that ν
is a witness path for (G ∪H) |= EG(φ1).

The proof that E[φ1U(φ1 ∧ φ2)] is regular is the same as Case 1 above. ut

As EF (φ1) = E[true U(true ∧ φ1)], and EG(φ1) = E[false R φ1], we have3:

Corollary 1. If φ1 is a regular formula, so are EF (φ1) and EG(φ1).

Definition 4. Crucial Event Temporal Logic (CETL) A CETL formula is one that can be generated from the fol-
lowing rules:

1. The trivial propositions true and false are CETL formulae.
2. Every process-local state formula is a CETL formula.
3. If φ1 and φ2 are CETL formulae, so are (φ1 ∧ φ2), E[φ2Rφ1], and E[φ1U(φ1 ∧ φ2)].

Definition 5. Let φ be a CETL formula. The set sub(φ) of subformulae of φ is defined as follows:

– If φ is a process-local state formula, or true or false, then sub(φ) = {φ}.
– If φ is φ1 ∧ φ2, E[φ2Rφ1] or E[φ1U(φ1 ∧ φ2)], then sub(φ) = {φ} ∪ sub(φ1) ∪ sub(φ2).

The length of a CETL formula φ is equal to the cardinality of sub(φ). We now explore the relation between meet-
closure and crucial events.

3 true and false are trivially meet- and join-closed.



3.1 Crucial events

Let G be any down-set of a trace σ = (E,→). Let φ be some meet-closed formula, and G 6|= φ. Let G be the set of all
φ-satisfying states that are reachable from G in σ. That is:

G = {H ∈ L(σ)|G ⊆ H ∧H |= φ}

Note that G can be an infinite set. Let H consist of all the elements of G that are minimal under ⊆. That is:

H = {H ∈ G|∀H ′ : H ⊂ H ′ ⇒ H ′ 6∈ H} (1)

H is necessarily finite for finite-state programs. We now define:

K =
⋂

H∈H
H

By the meet-closure of φ, K |= φ. Also, G ⊆ K. That is, K is the unique and well-defined φ-satisfying state that is
reachable from G by executing the fewest events. In other words, K \G gives us the minimum set of events that must
be executed along any path starting from G, in order to reach a φ-satisfying state from G in σ. The events in K \ G
are called crucial events [10].

Definition 6. Crucial event: In a trace σ, an event e is said to be crucial from a stateG with respect to a meet-closed
formula φ, denoted e ∈ crucial(G,φ, σ) iff:

∀H ∈ L(σ) : (G ⊆ H) ∧ (G 6|= φ) ∧ (H |= φ) ⇒ (e ∈ H \G)

In simple terms, a crucial event is one whose execution is necessary in order to reach a φ-satisfying state from G in σ.
A transition sequence starting fromG and comprising exactly of the events in crucial(G,φ, σ) gives us the shortest

path fromG to a φ-satisfying state in σ. Such a path is called a crucial path. A special case arises whenH = ∅. In this
case, we defineK = E (the set of all events), and any maximal path starting fromG in L(σ) constitutes a crucial path.
A crucial path is of particular interest in model checking, because it gives us the shortest witness path to a φ-satisfying
state. The proof for the following theorem is straightforward.

Theorem 4. Let H be as defined in (1). If H 6= ∅, then a crucial path for φ starting from G cannot contain a cycle.

Recall that a down-set is an occurrence of a state. Suppose the down-setG is an occurrence of the state s. Executing
the events in crucial(G,φ, σ) from s will lead to a φ-satisfying state in the full state space graph. The state s can
have multiple occurrences in σ (for example, in Figure 1(c), the state t occurs multiple times in σ2). Let G′ be
another down-set of σ that is also an occurrence of s. It is easy to see that crucial(G,φ, σ) = crucial(G′, φ, σ).
Thus, every occurrence of s in σ has the same set of crucial events w.r.t. φ. Based on this observation, we define

crucial(s, φ, σ)
def
≡ crucial(G,φ, σ), where G is any down-set of σ that is an occurrence of s.

The complexity of identifying the exact set of events that constitutes crucial(s, φ, σ) for a given CETL formula φ
is an open problem. However, we can identify a subset of crucial(s, φ, σ) in most cases, as we shall see in Section 7.

If G is a down-set of L(σ), and H is an immediate successor of G in L(σ), we denote this by G . H . Formally, if
G,H ∈ L(σ), and ∃e 6∈ G, and H = G ∪ {e}, then G . H . The notation G D H means (G . H) ∨ (G = H). The
following two lemmas are used in the proofs presented in Sections 5.1 and 5.2, and are from [19].

Lemma 1. [19] Given a trace σ, and states C,D,F ∈ L(σ), if C . F and D ⊆ F , then (C ∩D) DD.

Proof. From the definition of ., ∃e 6∈ C : C ∪ {e} = F . If e 6∈ D, then D ⊆ C, so (C ∩ D) = D. If e ∈ D, then
(C ∩D) = D \ {e}. That is, (C ∩D) . D. ut

Lemma 2. Given a trace σ, and down-sets C,D,F ∈ L(σ), if F . C and F ⊆ D, then D D (C ∪D).

Proof. Let C = F ∪ {e}. If e ∈ D, then C ⊆ D, so (C ∪ D) = D. If e 6∈ D, then C ∪ D = D ∪ F ∪ {e}. Since
F ⊆ D, (C ∪D) = D ∪ {e}, which implies D . (C ∪D). ut

We now show how the concepts presented so far can be used to prune the state space while model checking CETL
formulae. We will start by presenting a “baseline” model checking algorithm in Section 4, then enhance it with a
reduction technique that exploits lattice theory in Sections 5 and 6.



Procedure check CETL(s, φ)
pre : info(s, φ) is true, false or ?.
post: info(s, φ) 6= ?.
begin1

if info(s, φ) 6= ? then return2
if φ is a process-local state formula then3

if s |= φ then info(s, φ) := true4
else info(s, φ) := false5

endif6
if φ is (φ1 ∧ φ2) then7

check CETL(s, φ1)8
if info(s, φ1) = false then info(s, φ) := false9
else10

check CETL(s, φ2)11
info(s, φ) := info(s, φ2)12

endif13

endif14
if φ is E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1] then15

new stack(stk) /* Create a new stack, with stack id stk */16
push(s, stk)17
check EU ER(s, φ, stk)18
pop(stk)19

endif20

end21

4 Model checking CETL

Our baseline algorithm is a local model checking algorithm based on ALMC [20]. As in ALMC, we use a function
info(), which uses a hash table to implement the function info : S × sub(φ) 7→ {true, false, ?}.

info() keeps track of all the subformulae evaluated so far at any state s. If info(s, φ1) = ?, then we do not yet
know whether s |= φ1. If φ1 has already been evaluated at s, then info(s, φ1) = true if s |= φ1, and false otherwise.
Of course, initially info(s, φ1) = ? for all state-subformula pairs.

Procedure check CETL() is the main routine of our model checking algorithm, and is self-explanatory for
process-local state formulae (lines 3-6) and conjunctions (lines 7-14). For temporal subformulae, we offload the work
to Procedure check EU ER(), passing it a clean stack to use for its state space search (lines 15-20). Procedure
check EU ER(s, φ) performs a depth-first search starting from state s, with the stack stk maintaining the current
search path. The depth first search only explores the events returned by Procedure ample(s, φ) (line 15) from each
state s. We call the set of events returned by Procedure ample() an “ample set”, which is a term borrowed from Peled’s
p.o. reduction technique [1]. In the non-reduced (baseline) case, ample(s, φ) is equal to enabled(s).

We are interested in finding a witness for either E[φ1U(φ1 ∧ φ2)], or EG(φ1) (if φ = E[φ2Rφ1]). In either case,
every state of the witness path must satisfy φ, and also φ1. Consequently, we abandon the current search path (by
backtracking) if we encounter a state s′ that either does not satisfy φ (line 3), or does not satisfy φ1 (lines 5-8).

The search stops with success in one of three cases: (1) a state satisfying (φ1 ∧ φ2) is found (line 11), which is
the final state of a witness path for E[φ1U(φ1 ∧ φ2)], or (2) some state t satisfying φ is reached (line 3, 28-30), in
which case we can transitively deduce that s |= φ, or (3) if φ = E[φ2Rφ1], and a cycle is found consisting entirely of
φ1-satisfying states (lines 18-24). If a witness is found, then we use the fact that every state on the witness path also
satisfies φ to set info(s′, φ) = true for every state s′ on the current search path (lines 28-31).

Note that check EU ER(s, φ) not only evaluates whether s |= φ, but also evaluates the truth value of φ at every
state visited during the search. This gives our baseline model checking algorithm an asymptotic time complexity that
is linear in the length of the formula and the size of the full state space graph, similar to ALMC.

The baseline algorithm does not exploit any lattice-theoretic properties. We now show how we can use meet-
closure to select only a subset of the enabled events at each state as our ample set. We start with the narrower problem
of model-checking a CETL formula in a single trace of a program, then extend this approach to model checking the
entire program.



Procedure check EU ER(s, φ, stk)
begin1

/* φ = E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1] */2
if info(s, φ) 6= ? then return3
check CETL(s, φ1)4
if info(s, φ1) = false then5

info(s, φ) := false6
return7

endif8
check CETL(s, φ2)9
if info(s, φ2) = true then10

info(s, φ) := true /* s |= (φ1 ∧ φ2) */11
return12

endif13
/* s |= (φ1 ∧ ¬φ2) */14
working set := ample(s, φ)15
for each α ∈ working set do16

t := α(s)17
if on stack(t, stk) then18

/* Found a cycle */19
if φ is E[φ2Rφ1] then20

info(s, φ) := true /* Cycle demonstrates EG(φ1) */21
return22

endif23

else24
push(s, stk)25
check EU ER(t, φ)26
pop(stk)27
if info(t, φ) = true then28

info(s, φ) := true /* (s |= φ1) ∧ (t |= φ) ⇒ (s |= φ) */29
return30

endif31

endif32

endfor33
info(s, φ) := false /* No successors satisfy φ, backtrack */34
return35

end36

5 Model checking CETL formulae within a single trace

The following example highlights the basic principle of our approach. Let σ = [s, v] be some trace, and φ a meet-
closed formula. Suppose we are interested in finding out whether s |= EF (φ). If s |= φ, then we are done. If s 6|= φ,
then there exists a crucial path for φ in σ, starting from s. Starting from s, we simply need to choose an ample set that
consists of a single crucial event at each state in order to build this crucial path. This approach results in state space
reduction by choosing a singleton ample set, and the crucial path built is the shortest witness for s |= EF (φ). In this
section, we show how crucial paths can act as witnesses for the temporal operators in CETL.

5.1 E[φ1U(φ1 ∧ φ2)]

Let G0 be some down-set of σ that satisfies E[φ1U(φ1 ∧ φ2)]. Let π be the corresponding witness path with πl = H
as its final state. Then, ∀j : 0 ≤ j ≤ l : πj |= φ1, and H |= (φ1 ∧ φ2). Let J be the set of all down-sets of σ that are



reachable from G0, are minimal under ⊆4, and satisfy (φ1 ∧ φ2). Define:

G =
⋂

J∈J
J (2)

Since (φ1 ∧ φ2) is regular, G |= (φ1 ∧ φ2).

G0

π1

π2

π3

π4

π5

H = π6

λ1 = λ2 Å π4

G = λ3

λ2 = λ3 Å π5

: satisfies φ1

: satisfies φ Æ φ2

Fig. 3. Example illustrating the construction of Theorem 5

Theorem 5. There exists a path from G0 to G such that every state along the path satisfies φ1.

Proof. We will construct a path λ from G0 to G, consisting entirely of φ1-satisfying states. We construct this path
backwards, starting from λk = G, towards λ0 = G0. Figure 3 illustrates this construction through an example.

We show that, if λi |= φ1 for any 1 ≤ i ≤ k, there exists a G′ . λi such that G′ |= φ1. We can then extend λ with
λi−1 = G′, and proceed with our construction. For the base case, we have λk = G, and G |= φ1.

Let 1 ≤ j ≤ l be the least j such that λi ⊆ πj . First, we show that such a j must exist. Recall that πl = H , and
λi ⊆ G ⊆ H . Therefore, for some j ≤ l, λi ⊆ πj . Also, π0 = λ0 = G0, so ∀i : i ≥ 1 : λi 6⊆ π0. Therefore, j ≥ 1.
Since j is the least such, we have:

λi 6⊆ πj−1 (3)

So, we have πj−1.πj , and λi ⊆ πj . From Lemma 1, this implies (λi∩πj−1)Dλi. We cannot have (λi∩πj−1) = λi,
because this would imply λi ⊆ πj−1, which violates (3). Therefore, (λi ∩ πj−1) . λi. Set G′ = (λi ∩ πj−1). Since
λi |= φ1, and πj−1 |= φ1, by the meet-closure of φ1, G′ |= φ1. ut

Theorem 5 tells us that if G0 |= E[φ1U(φ1 ∧ φ2)], then a crucial path for (φ1 ∧ φ2) can act as a witness. Since
G0 |= φ1, and every state along the witness path satisfies φ1, it is easy to see that crucial(G0, (φ1 ∧ φ2), σ) =
crucial(G0, φ2, σ). The following theorem shows how we can construct this path “forward”, that is, starting from G0.

Theorem 6. We can construct the path of Theorem 5 as follows. Starting fromG0, at each stateH we execute a single
enabled event α that satisfies the following two conditions:

– α ∈ crucial(H,φ2, σ), and
– H ∪ {α} |= φ1.

Proof. Let G be as in (2). From Theorem 5, there exists some path λ such that λ0 = G0, λk = G, and ∀j : 0 ≤ j ≤
k : λj |= φ1. We need to show that we can construct such a path by choosing, at each state, any crucial event that leads
to a φ1-satisfying successor.

Clearly, if every event along our path is crucial for φ2, then our path will lead to G. It remains to be shown that,
at any state H along our constructed path, there exists a successor J such that J |= φ1. To begin with, H = G0. Of
course, our construction ends when H = G, so any H for which a successor needs to be found must be a strict subset
of G.

4 This ensures that J is finite



Let 0 ≤ i < k be the greatest i such that λi ⊆ H . We first show that such an i exists. Note that λ0 = G0 ⊆ H .
Thus, for some i ≥ 0 : λi ⊆ H . Also, λk = G, and H ⊂ G. Therefore, λk 6⊆ H , so i < k. Since i is the greatest such,
we have:

λi+1 6⊆ H (4)

Now, λi . λi+1, and λi ⊆ H . By Lemma 2, H D (λi+1 ∪H). If H = (λi+1 ∪H), then λi+1 ⊆ H , which violates
(4). Therefore, H . (λi+1 ∪H). Also, H |= φ1, and λi+1 |= φ1, so by the join-closure of φ1, λi+1 ∪H |= φ1. Hence,
J = λi+1 ∪H is the required successor for H . ut

5.2 E[φ2Rφ1]

Recall that E[φ2Rφ1]
def
≡ E[φ1U(φ1 ∧ φ2)] ∨ EG(φ1). Theorem 6 showed how to construct a witness for G0 |=

E[φ1U(φ1 ∧ φ2)]. The following theorem shows how to construct a witness for G0 |= EG(φ1).

Theorem 7. Let G0 ∈ L(σ) such that G0 |= EG(φ1) in σ. We can construct a witness path as follows. Starting from
G0, at each state H , we execute a single enabled event α such that H ∪ {α} |= φ1.

Proof. We simply need to show that, for every state H on the constructed path, there exists a φ1-satisfying successor
state. The proof for this is exactly the same as shown in Theorem 6. ut

Procedure ample trace(s, φ)
begin1

/* φ is E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1] */2
working set := find crucial(s, φ2, σ)3
for each α ∈ working set do4

t := α(s)5
check CETL(t, φ1)6
if info(t, φ1) = true then return {α}7

endfor8
return enabled(s)9

end10

Procedure ample trace() constructs an ample set in accordance with Theorems 6 and 7. We assume the ex-
istence of a black-box function find crucial(s, φ2, σ), which returns a (possibly empty) subset of enabled(s) ∩
crucial(s, φ2, σ). The implementation of this function is deferred till Section 7. In lines 4-8, we try to find some α
such that α ∈ crucial(s, φ2, σ) and α(s) |= φ1. If such an event is found, then it satisfies the requirements of both
Theorems 6 and 7, so our ample set is a singleton consisting of this event. If such an event is not found, then we explore
all enabled events (line 9). The following theorem is straightforward.

Theorem 8. Procedure ample trace() returns an ample set that is sufficient for model-checking CETL formulae in a
single trace of a program.

We now extend our approach beyond a single trace, to model checking a program.

6 Model checking CETL formulae in a program

For model checking CETL in a single trace, we simply needed to explore a single crucial path for the formula through
the trace. We achieved this by exploring a crucial successor event at each state during our depth first search. To model
check CETL in a program, we need to explore a crucial path in each maximal trace of the program. That is, at each
state s encountered during DFS, our ample set must contain a crucial event for every trace that starts from s.

Let ample(s, φ) denote the ample set at state s, for the CETL formula φ. In [1], it was shown that if ample(s, φ)
satisfies the following condition (C1), then it generates a successor in each maximal trace starting from s.

(C1) Along every path starting from s in the full state space graph, a transition that is dependent on a transition
from ample(s, φ) cannot be executed without a transition from ample(s, φ) occurring first.



Theorem 9. [1] If ample(s, φ) satisfies condition (C1), then for every maximal trace σ starting from s, there exists
some α ∈ ample(s, φ) such that [s, α] v σ.

If ample(s, φ) satisfies (C1), then it contains a successor event for each trace starting from s. A single event
α ∈ ample(s, φ) can be a successor in multiple traces starting from s. For example, executing α may enable β and γ,
where (β, γ) ∈ D. Thus, α is a successor in both [s, αβ] and [s, αγ]. In order to construct a crucial path per maximal
trace, α must be crucial in every trace in which it is a successor:

Definition 7. Universally crucial event: An event α is said to be universally crucial from a state s for a meet-closed
formula φ2, denoted α ∈ ucrucial(s, φ2), iff for every trace σ such that [s, α] v σ, α ∈ crucial(s, φ2, σ).

Recall that Procedure check EU ER(s, φ, stk) calls Procedure ample(s, φ), passing it a formula φ of the form
E[φ1U(φ1∧φ2)] orE[φ2Rφ1]. Procedure ample(s, φ) tries to construct an ample set that satisfies the following three
conditions: (1) If α ∈ ample(s, φ), then α ∈ ucrucial(s, φ2) (line 3), (2) If α ∈ ample(s, φ), then α(s) |= φ1 (lines
4-8), and (3) ample(s, φ) satisfies condition (C1) (line 9). If any of these conditions is violated, then ample(s, φ) =
enabled(s) (lines 7, 10). We discuss the implementation of find ucrucial() in the next section. For now, it suffices
to say that find ucrucial(s, φ2) returns a (possibly empty) subset of enabled(s) ∩ ucrucial(s, φ2). The function
satisfies C1() is the same as that used in the implementation of p.o. reduction in SPIN [12].

Procedure ample(s, φ)
begin1

/* φ is E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1] */2
candidate := find ucrucial(s, φ2)3
for each α ∈ candidate do4

t := α(s)5
check CETL(t, φ1)6
if info(t, φ1) = false then return enabled(s)7

endfor8
if (candidate = ∅) or (¬satisfies C1(candidate)) then return enabled(s)9
else return candidate10

end11

Theorem 10. Procedure ample() returns an ample set that is sufficient for model-checking CETL in a program.

Proof. It is straightforward to see that if check EU ER(s, φ, stk) finds a witness path, then s |= φ. We show the
other direction. Assume s |= φ, where φ is E[φ1U(φ1 ∧ φ2)] or E[φ2Rφ1]. Then, either s |= E[φ1U(φ1 ∧ φ2)], or
s |= EG(φ1).

– Case 1: s |= E[φ1U(φ1 ∧ φ2)]. Let σ be the maximal program trace to which the witness path belongs. By
Theorem 5, there exists a crucial witness path for s |= φ in σ. We will construct a crucial witness path using only
transitions in ample(s, φ).
Let u denote the transition sequence of the witness path constructed so far, and s′ be the final state reached after
executing u from s. In our construction, we will maintain the invariant that every event in u is in crucial(s, φ2, σ),
and for every state s′ in the path, s′ |= φ1. By Theorem 6, these two invariants ensure that at each state s′ along the
constructed path, there exists some α ∈ enabled(s′) such that α ∈ crucial(s′, φ2, σ), and α(s′) |= φ1. We will
show that ample(s′, φ) contains such an event α. Initially, u := ε (the empty string), and s′ := s. Since s |= φ,
we know that s |= φ1.
• Case 1.1: The candidate set picked in line 3 of Procedure ample() does not satisfy (C1) or is empty. Then,
ample(s′, φ) = enabled(s′) (line 9). As discussed in the previous paragraph, enabled(s′) must contain an
event α that satisfies the two conditions of Theorem 6, so we set u := u.α, and continue construction.

• Case 1.2: The candidate set picked in line 3 is non-empty and satisfies (C1). We can express σ as the
concatenation [s, u].σ′, for some σ′. By Theorem 9, there exists some α ∈ ample(s′, φ) such that [s′, α] v σ′.
That is, [s, u.α] v σ. Since α is in ucrucial(s′, φ2) ∩ enabled(s′) (line 3), we have α ∈ crucial(s′, φ2, σ),
and α(s′) |= φ1, thus satisfying the conditions of Theorem 6. We set u := u.α, and continue construction.



– Case 2: s 6|= E[φ1U(φ1 ∧ φ2)] and s |= EG(φ1). Again, let σ be the maximal program trace containing
the witness path in the full state space graph. Using arguments identical to those in Case 1, we can show that
ample(s′, φ) always contains an event from σ that satisfies the conditions of Theorem 7. Thus, we can construct
a witness path using the technique of Theorem 7, with only the transitions returned by Procedure ample().

ut

Next, we provide an implementation for the function find ucrucial(), which is used by Procedure ample().

7 Finding universally crucial events

In this section, we identify some sufficient conditions for an event to be universally crucial. Procedure find ucrucial()
takes as input a state s and a CETL formula φ2, and returns a subset of ucrucial(s, φ2) ∩ enabled(s).

First, note that find ucrucial(s, φ2) is called by our model checking routine only when s 6|= φ2. This assertion can
be verified by navigating the procedure call chain of our model checking algorithm. Procedure check EU ER(s, φ)
calls Procedure ample(s, φ) (line 22), where φ isE[φ1U(φ1∧φ2)] orE[φ2Rφ1]. The call to ample(s, φ) is only made
after verifying that s 6|= φ2 (line 16). Procedure ample(s, φ) then calls find ucrucial(s, φ2) (line 3). The following
theorem both explains Procedure find ucrucial() and shows its correctness.

Procedure find ucrucial(s, φ2)

input : State s and CETL formula φ2, where s 6|= φ2.
output: A subset of ucrucial(s, φ2) ∩ enabled(s).
begin1

if φ2 is a process-local state formula on process Pi then2
return enabled(s) ∩ Ti /* Ti is the set of transitions of Pi */3

endif4
if φ2 is (ψ1 ∧ ψ2) then5

check CETL(s, ψ1)6
if info(s, ψ1) = false then return find ucrucial(s, ψ1)7
else return find ucrucial(s, ψ2)8

endif9
if φ2 is E[ψ1U(ψ1 ∧ ψ2)] or E[ψ2Rψ1] then10

check CETL(s, ψ1)11
if info(s, ψ1) = false then return find ucrucial(s, ψ1)12
else13

if ¬ψ1 is meet-closed then return find ucrucial(s,¬ψ1)14
else return ∅15

endif16

endif17

end18

Theorem 11. Procedure find ucrucial(s, φ2) returns a subset of ucrucial(s, φ2) ∩ enabled(s).

Proof. We show that Procedure find ucrucial() returns only enabled, universally crucial events for each formula
type.

– (Lines 2-4): φ2 is a process-local state formula on process Pi.
Only transitions from Ti can change the truth value of φ2. Since s 6|= φ2, in order to reach a φ2-satisfying state
from s, we must execute some transition from Ti∩enabled(s). Now, for any α, β ∈ Ti∩enabled(s), (α, β) ∈ D.
Further, execution of α disables β and vice-versa. Therefore, each α ∈ Ti ∩ enabled(s) is a crucial event in any
trace that subsumes [s, α]. Thus, Ti ∩ enabled(s) ⊆ ucrucial(s, φ2) ∩ enabled(s).

– (Lines 5-9): φ2 = ψ1 ∧ ψ2.
This case is straightforward. If s 6|= ψ1, then clearly we first need to get to a state that satisfies ψ1. Similarly for
ψ2. Therefore, if s 6|= ψ1 then ucrucial(s, ψ1) ⊆ ucrucial(s, φ2), else ucrucial(s, ψ2) ⊆ ucrucial(s, φ2).



– (Lines 10-17): φ2 = E[ψ1U(ψ1 ∧ ψ2)] or φ2 = E[ψ2Rψ1].
• (Line 12): s 6|= ψ1. Clearly, any state that satisfies φ2 must satisfy ψ1. Therefore, ucrucial(s, ψ1) ⊆
ucrucial(s, φ2).

• (Lines 13-16): s |= ψ1. Let t be some state reachable from s such that t |= φ2. Let w be a witness for
t |= φ2. Since s 6|= φ2, along every path v from s to t, there must exist some state s′ such that s′ 6|= ψ1

(otherwise, v.w would be a witness for s |= φ2). That is, we must first reach a state that satisfies ¬ψ1 in
order to reach any state that satisfies φ2. If ¬ψ1 is meet-closed, then there exist crucial events for ¬ψ1, so
ucrucial(s,¬ψ1) ⊆ ucrucial(s, φ2).

ut

8 Experimental Results

We have implemented our approach as an extension to the SPIN model checker [12, 13], called SPICED (Simple
PROMELA Interpreter with Crucial Event Detection). Our implementation of SPICED, along with detailed experi-
mental results, is available at: http://maple.ece.utexas.edu/spiced.

We ran SPICED against a large set of examples from the BEEM database [11]. The BEEM database is a large
collection of benchmarks for explicit-state model checkers. The database includes PROMELA5 models with errors
injected into them, and lists the properties to be verified on these models. Of the 131 properties included in the BEEM
database for verification, 101 (77%) can be expressed in CETL. All experiments were performed on a single-cpu 2.8
GHz Intel Pentium 4 machine with 512 MB of memory, running Red Hat Enterprise Linux WS Release 4.

Table 1 shows the results for the largest problem sizes, for each of the verified models. Table 1 only lists a subset
of our results, due to space limitations. Altogether, we have performed experiments on over 80 instances of various
models, with 75 of these instances containing errors. These results are available from our website:
http://maple.ece.utexas.edu/spiced. Over all our experiments, SPICED produced error trails that were
at least as short as SPIN’s in 100% of the cases, were at least 10x shorter in 55% of the cases, and at least 100x
shorter in 19% of the cases. For 44% of the cases, SPICED completed verification faster than SPIN, with at least a 10x
reduction in time in 9% of the cases. Although CETL is a branching-time logic, in these examples, the properties were
in LTL ∩ CETL, so the error trails were non-branching. The error trails were produced in the same format as those of
SPIN’s, and can be examined using SPIN’s guided simulation feature.

For SPIN, never claims were used for the verification of LTL properties, and simple assert() statements were used
for reachability detection. For SPICED, the CETL formulae were specified a separate file, and fed directly as input to
our model checking algorithm. Note that SPICED consistently achieves dramatic reductions in the size of the produced
error trail, compared to SPIN with p.o. reduction. In many instances, this also results in a significant reduction in the
number of states visited during verification, which in turn resulted in less memory consumption and faster run times.

Table 2 shows the state space reduction achieved by SPICED, compared to SPIN with p.o. reduction, in the absence
of errors. The examples in Table 2 are from the SPIN distribution [13], and have previously been used to showcase the
effectiveness of p.o. reduction [21]. For SPIN, no LTL properties were specified during verification, which is optimal
for maximizing the effectiveness of p.o. reduction. Since our algorithm is based on choosing crucial events, it requires
the specification of a property. For each example, we chose a property that is never satisfied in the program, and forces
exhaustive validation. As the results show, we achieve state space reduction comparable to p.o. reduction.

9 Conclusions and future work

In this paper, we have presented a model checking technique that produces short error trails, while simultaneously
achieving state space reduction, for the exhaustive validation of programs. Experimental results confirm that our ap-
proach can significantly outperform SPIN in the presence of errors, while providing state space reduction comparable
to partial order techniques. The effectiveness of our approach is highly dependent on the ability to identify crucial
events during state space exploration. We have shown how crucial events can be identified in many cases, but the
problem of finding crucial events for a general CETL formula remains open. This is a direction for future research. We
also intend to apply our approach to the verification of a larger, more diverse set of models to find further opportunities
for improvement.

5 PROMELA is the input language for SPIN.



Model Tool Time (sec) States Memory
(MB)

Formula Trail length Trail reduction factor

phils.7
SPICED 0.01 15 3.15 EF (P0.req ∧ EG(!P0.grant)) 6

N/A
SPIN **Could not complete** ¬�(req0 ⇒ ♦grant0) -

szymanski.9
SPICED 0.02 256 3.15 EF (P0.wait ∧ EG(!P0.cs)) 43

N/A
SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

fischer.18
SPICED 0.02 28 3.15 EF (P0.wait ∧ EG(!P0.cs)) 19

N/A
SPIN **Could not complete** ¬�(wait0 ⇒ ♦cs0) -

mcs.5
SPICED 0.09 30227 4.89 EF (P0.wait ∧ EG(!P0.cs)) 14

403.29
SPIN 0.03 2821 2.72 ¬�(wait0 ⇒ ♦cs0) 5646

anderson.7
SPICED 0.03 65387 7.03 EF (P0.wait ∧ EG(!P0.cs)) 82

382.79
SPIN 0.13 15692 6.63 ¬�(wait0 ⇒ ♦cs0) 31389

peterson.7
SPICED 0.09 29080 4.89 EF (P0.wait ∧ EG(!P0.cs)) 159

125.69
SPIN 0.1 9992 9.93 ¬�(wait0 ⇒ ♦cs0) 19984

lamport.7
SPICED 0.06 6850 3.45 EF (P0.wait ∧ EG(!P0.cs)) 30

44.33
SPIN 0.02 665 2.62 ¬�(wait0 ⇒ ♦cs0) 1330

at.7
SPICED 0.02 19 3.15 EF (P0.wait ∧ EG(!P0.cs)) 11

33.64
SPIN 0.01 182 2.62 ¬�(wait0 ⇒ ♦cs0) 370

bakery.6
SPICED 0.01 69 3.15 EF (P0.wait ∧ EG(!P0.cs)) 46

18.61
SPIN 0.02 896 2.62 ¬�(wait0 ⇒ ♦cs0) 856

gear.2
SPICED 0.03 4185 3.13 EF (Clutch.err open) 5056

3.84
SPIN 0.13 22386 5.5 local assert() 19396

needham.4
SPICED 0.01 27 2.72 EF (init0.fin ∧ resp0.fin) 15

3.47
SPIN 0.04 4003 3.03 ¬♦(init fin ∧ resp fin) 52

msmie.2
SPICED 0.02 83 2.72 EF (P0.wait ∧ EG(!P0.cs)) 63

3.4
SPIN 0.01 370 2.62 ¬Box(wait0 ⇒ ♦cs0) 214

loyd.2
SPICED 0.19 50931 9.24 EF (Check.done) 52597

1.6
SPIN 0.63 166133 17.61 local assert() 84418

driving phils.4
SPICED 0.01 212 3.15 EF (P0.req ∧ EG(!P0.grant)) 123

1.38
SPIN 0.01 85 2.62 ¬�(req0 ⇒ ♦grant0) 170

frogs.3
SPICED 0.41 190318 16.45 EF (Check.done) 261

1
SPIN 0.38 190315 13.99 local assert() 261

Table 1. Trail reduction with SPICED, compared to SPIN with p.o. reduction.
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