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Abstract

Given a set of n different deterministic finite state machines (DFSMs) modeling a dis-
tributed system, we examine the problem of tolerating f crash or Byzantine faults in such a
system. The traditional approach to this problem involves replication and requires n · f backup
DFSMs for crash faults and 2 · n · f backup DFSMs for Byzantine faults. For example, to tol-
erate two crash faults in three DFSMs, a replication based technique needs two copies of each
of the given DFSMs, resulting in a system with six backup DFSMs. In this paper, we question
the optimality of such an approach and present a generic approach called ( f ,m)-fusion that
permits lesser number of backups than the replication based approaches. Given n different
DFSMs, we examine the problem of tolerating f faults using just m additional DFSMs. We
introduce the theory of fusion machines and provide an algorithm to generate backup DFSMs
for both crash and Byzantine faults. Further, we have implemented these algorithms and tested
them for various examples.

1 Introduction
A distributed or parallel system can often be modeled as a collection of distinct and independent
deterministic finite state machines or DFSMs (also referred to as machines). In this paper, we
look at the problem of tolerating faults in these machines. Most commonly occurring faults can
be categorized as crash (or fail stop) faults [11] and Byzantine faults [8]. In the case of crash
faults, there is a loss in the execution state of the machine. In the case of Byzantine faults, the
faulty machines can lie or reflect an incorrect execution state. In order to build reliable systems,
it is important to detect these faults and recover the correct state of the system. As a motivating
example, consider a small sensor network with three different sensors running DFSMs measuring
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the average heat, light and humidity in the environment over a fixed period of time, say a month.
During execution, one of these sensors might fail, resulting either in the loss of its state (crash
faults) or an inconsistency in the state (Byzantine faults). At the end of the month we need to
determine the correct execution state of the system, i.e., the final states of each of the sensors.

Traditional approaches to tolerating f faults in n different DFSMs require some form of repli-
cation. In the case of crash faults, we need to maintain f extra copies of each DFSM, resulting in a
total of n · f backup DFSMs [7, 10, 14, 12]. In the case of Byzantine faults, since any f machines
can lie about their current state, we need to obtain a majority on the current state of any failed
DFSM. Hence, we need to maintain 2 · f copies of each DFSM, resulting in a total of 2 · n · f
backup DFSMs [12].

In this paper, we explore an alternate idea for fault tolerance that requires fewer backup ma-
chines than replication based approaches. Consider the DFSMs shown in Fig. 1(i) and 1(ii). These
machines model mod-3 counters counting 0s and 1s respectively. We denote the number of 0s seen
by the counters as n0 and the number of 1s as n1. A crash fault in one these machines will result
in the loss of it’s current state. In case of such a failure, we would like to recover the state of the
failed machine.

Another way of looking at replication in DFSMs is by constructing a backup machine that is the
reachable cross product (formally defined in section 2) of the original machines. As shown in Fig.
1 (iii), each state corresponding to this machine is a tuple, in which the first element corresponds
to the state of A, and the second element corresponds to the state of B. We would need one such
machine to tolerate a single fault. However, the reachable cross product could have a large number
of states and would be equivalent to maintaining one copy each of the original DFSMs in terms
of complexity. In the example shown in Fig. 1(i) and 1(ii), we can intuitively see that a machine
which computes {n0 + n1} mod 3 (or {n0 − n1} mod 3) could be used to tolerate a single fault in
the system. If machine A that counts n0 mod 3 fails, then by using machine B (n1 mod 3) and the
machine F1 ({n0 + n1} mod 3) we can compute the current state of the failed machine A. Note that,
in this case F1 is much smaller (number of states) than the reachable cross product (Fig. 1(iii))
with respect to the number of states.

In the previous example, it was easy to deduce the backup machine purely by observation.
For any general set of DFSMs, it is not straightforward to generate such backup machines (for
example, consider machines A and B in Fig. 2). The main objective of this paper is to automate
the generation of efficient backup machines like F1 for any given set of machines and formalize
the underlying theory. Some of the questions that need to be answered are:

• Given a set of machines, are there backup machines with fewer states than the reachable
cross product?

• What is the minimum number of backup machines required to tolerate f crash faults?
• Can these machines tolerate Byzantine faults? (For example, in Fig. 1, DFSMs A and B

along with F1 and F2 can tolerate one Byzantine fault). What is the number of Byzantine
faults that can be tolerated ?

• Is it possible to compute such backup machines efficiently?
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Figure 1: Mod 3 Counters

In this paper, we explore the idea of a fault graph and use that to define the minimum Hamming
distance for a set of machines. Based on this, we introduce an approach called ( f ,m)-fusion that
addresses the questions posed. Given n different DFSMs, we examine the problem of tolerating f
faults using just m additional machines. For systems where two or more DFSMs need to be backed
up, our approach always results in lesser number of backup machines than the replication based
approaches.

We call the backup machines, fusions corresponding to the given set of machines. We assume a
system model that has either crash faults or Byzantine faults. Note that, the technique discussed in
this paper deals with determining the current state of the failed machines and not the entire DFSM
(which is usually stored on some form of failure-resistant permanent storage medium).

Our work in [1] introduces the concept of the fusion of finite state machines. The main focus of
the paper was to define the theory and algorithms for the special case where the number of backup
machines is equal to the number of faults that need to be tolerated among a given a set of machines,
i.e. (k, k)-fusion. The previous work outlined an exponential-time algorithm to generate a (1, 1)-
fusion. The system model in that paper only allowed crash faults. In this paper, we generalize the
notion of fusion to ( f ,m)-fusion. where f faults can be tolerated using m additional machines.

The work presented in [2] introduces the idea of fusible data structures. The authors have
shown that commonly used data structures such as arrays, hash tables, stacks and queues can be
fused into a single fusible structure, smaller than the combined size of the original structures.
Our idea is similar to this approach in the sense that we generate a fused state machine that can
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enable recovery of any state machine that has crashed. The work presented in this paper effectively
presents an algorithm to compute a fusion operation given a set of specific input machines.

Extensive work has been done [6, 5] on the minimization of completely specified DFSMs. In
these approaches, the basic idea is to create equivalence classes of the state space of the DFSM and
then combine them based on the transition functions. Even though our approach is also focussed
on reducing the reachable cross product corresponding to a given set of machines, it is important
to note that the machines we generate need not be equivalent to the combined DFSM. In fact,
we implicitly assume that the input machines to our algorithm are reduced a priori using these
techniques.

In the following sections, we look at the underlying theory behind this approach and also
present an efficient algorithm for generating the minimum number of backup machines required to
tolerate f faults. Note that, in some cases the smallest fusion could be the reachable cross product
machine. However, our experiments suggest that there exist smaller fusions for many of the prac-
tical DFSMs in use. This can result in enormous savings in space, especially when a large number
of machines need to be backed up. For example, consider a sensor network with 100 sensors, each
running a mod-3 counter counting changes to different environmental parameters like temperature,
pressure, humidity and so on. To tolerate a crash fault in such a system, replication based ap-
proaches would demand 100 new sensors for backup. Fusion, on the other hand, could possibly
tolerate a fault by using only one new backup sensor with exactly three states. To summarize:

• We introduce the concept of ( f ,m)-fusion and explore the theory of such machines.
• Using this theory, we present separate algorithms to generate backup machines and recover

from Byzantine or crash failures.
• We have implemented the algorithms in Java and have tested it with real world DFSMs.
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2 Model and Notation
We now discuss the system model, followed by the notation used in the remainder of this paper.
Our system consists of a set of independent servers, which include the original machines and
the backups, each running a distinct DFSM with no shared state and no communication during a
fault-free run. The events on the DFSMs originate from the environment and are applied to all
the machines. For example, one or more client machines (the environment) could send ordered
requests (events) which are applied on all the servers. If a received event does not belong to the
event set of a server DFSM, then the event is ignored. Note that, synchronous operation is not
essential to the underlying theory during normal conditions. The only requirement is that when
there are failures, all DFSMs have acted on the same sequence of inputs before the state of the
failed DFSM is recovered.

The machines in the system may undergo crash faults or Byzantine faults. We assume that
the faults only impact the current state of the faulty machines, but the underlying DFSMs remains
intact. When a fault occurs, no requests are sent by the clients till the execution state of the faulty
machines have been recovered and the machines resume normal operation. In the case of crash
faults, there is a loss of the execution state of the machines. In the case of Byzantine faults, the
machines can enter an incorrect state on the application of an event.

Definition 1 (DFSM) A DFSM, denoted by A, is a quadruple, (Xa,Σa, αa, a0), where,

• Xa is the finite set of states corresponding to A.
• Σa is the finite set of events corresponding to A.
• αa : Xa × Σa → Xa, is the transition function corresponding to A. If the current state of A is

s, and an event σ ∈ Σa is applied on it, the next state can be uniquely determined as αa(s, σ).
• a0 is the initial state corresponding to A.

The size of a machine A, is the number of states in Xa, and is denoted by |A|.
A state, s ∈ Xa, is reachable iff there exists a sequence of events, which, when applied on the

initial state a0, takes the machine to state s. This is denoted by s = αk(a0), where αk denotes a
sequence of k operations, α1, . . . , αk applied to the initial state a0. Our model assumes that all the
states corresponding to the machines are reachable.

Consider any two machines, A (Xa, Σa, αa, a0) and B (Xb, Σb, αb, b0). Now construct another
machine which consists of all the states in the product set of Xa and Xb with the transition function
α′({a, b}, σ) = {αa(a, σ), αb(b, σ)} for all {a, b} ∈ Xa × Xb and σ ∈ Σa ∪ Σb. This machine (Xa ×
Xb, Σa ∪ Σb, α

′, {a0, b0}) may have states that are not reachable from the initial state {a0, b0}. If
all such unreachable states are pruned, we get the reachable cross product of A and B, denoted
R({A, B}). In the example shown in Fig. 2, R({A, B}) is the reachable cross product of A and B.

In the following subsection, we define a closed partition lattice corresponding to a given set of
machines.
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2.1 Closed Partition Lattice
A partition P, on the state set Xa of a DFSM, A (Xa,Σa, αa, a0) is the set {B1, . . . , Bk}, of disjoint
subsets of the state set Xa, such that

⋃k
i=1 Bi = Xa and Bi ∩ B j = φ for i , j [9]. An element Bi of a

partition is called a block.
A partition, P, is said to be closed if each event, σ ∈ Σ, maps a block of P into another block. A

closed partition P, corresponds to a distinct machine. Each state s of such a machine corresponds
to a set of states in machine A. For example in Fig. 2, M1 corresponds to a closed partition of the
set of states of R({A, B}). M1 has 3 states, {r0, r2}, {r1} and {r3}, which we also refer to as the blocks
of M1. The closed partitions described here are also referred to as substitution property partitions
or SP partitions in other literature [4].

A partition P1 is less than or equal to another partition P2 (P1 ≤ P2) if each block of P2 is
contained in a block of P1. If DFSMs X1 and X2 correspond to partitions P1 and P2 respectively,
then machine X1 is less than or equal to machine X2 (X1 ≤ X2) iff P1 ≤ P2. In Fig 2, each block of
R({A, B}) is contained in a block of M1 and hence, M1 ≤ R({A, B}). Two machines X1 and X2 are
said to be incomparable iff X1 � X2 and X2 � X1.

Consider two machines X1 and X2 such that X1 ≤ X2. It is clear that given the state of X2 we
can determine the state of X1. For example, in Fig 2, M1 ≤ R({A, B}). When R({A, B}) is in state
r1, M1 is in state m1.

Given a set of n machines, A = {A1, . . . , An}, their reachable cross product is denoted by
R(A). Every machine in A is less than or equal to R(A). Hence, given the state of R(A), we can
determine the state of any of the machines inA.

It can be seen that the set of all closed partitions corresponding to a machine, form a lattice
under the ≤ relation[4]. In this paper, we consider the lattice of all closed partitions corresponding
to R(A). Fig. 3 shows the closed partition lattice corresponding to R({A, B}) (denoted >), shown
in Fig. 2(iii). An arrow from one machine to another indicates that the former is less than the latter.
Both A (Fig. 2(i)) and B (Fig. 2(ii)) are contained in the lattice. The bottom element (denoted ⊥) is
always a single block partition containing all the states of >. Henceforth, we use>(X>,Σ, α>, t0) or
top to denote the reachable cross product of the given set of machines in our system. It is important
to note that we never have to create the entire closed partition lattice for a given set of machines
during implementation.

We now define the lower cover of a machine, a concept used later in section 5.

Definition 2 (Lower Cover) The lower cover of any machine A(Xa, Σa, αa, a0), is the set of ma-
chines corresponding to the maximal partitions of Xa that are less than A.

For example, in Fig. 3, the lower cover of machine A consist of machines M3 and M4.
The lower cover of machine A(Xa, Σa, αa, a0) consists of all the incomparable machines ob-

tained by combining two states of Xa into a block and computing the new largest closed partition
which is less than this new (possibly not closed) partition.

In our closed partition lattice, the lower cover of > is called the basis of the lattice. In the
lattice shown in Fig. 3, the machines A, B, M1 and M2 constitute the basis.
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3 Fault Tolerance of Machines
In this section, we introduce concepts that enable us to answer fundamental questions about the
fault tolerance in a given set of machines.

We begin with the idea of a fault graph of a set of machines M, for a machine T , where all
machines inM are less than or equal to T . This is a weighted graph and is denoted by G(T,M).

The fault graph is an indicator of the capability of the set of machines inM to correctly identify
the current state of T . As described in the previous section, since all the machines inM are less
than or equal to T , the set of states of any machine inM corresponds to a closed partition of the
set of states of T . Considering the lattice shown in Fig. 3, we construct the fault graph G(>, {A}).
The machine A has three states, {t0, t3}, {t1} and {t2}. Given just the current state of machine A, it is
possible to determine if > is in state t1(exact) or t2 (exact) or one of t0 and t3(ambiguity). Hence,
A distinguishes between all pairs of states of > except (t0, t3). This information is captured by the
fault graph.

Every state of T corresponds to a node of the fault graph G(T,M) and the graph is totally
connected. The weight of the edge between nodes corresponding to states ti and t j of the fault
graph is the number of machines in M that have states ti and t j in distinct blocks. Hence, in the

7



fault graph G(>, {A}), shown in Fig. 4(i), the edge (t0, t3) has weight 0 and all other edges have
weight 1.

Definition 3 (Fault Graph) Given a set of machinesM and a machine T = (XT ,Σ, α, t0) such that
∀M ∈ M : M ≤ T, the fault graph G(T,M) is a weighted graph with |XT | nodes such that

• Every node of the graph corresponds to a state in XT

• The graph is completely connected
• The weight of the edge between two nodes (corresponding to any two states ti and t j in XT )

of the fault graph is the number of machines inM that have states ti and t j in distinct blocks

Given the states of |M| − x machines in |M|, it is always possible to determine if T is in state
ti or t j iff the weight of the edge (ti, t j) is greater than x. Consider the graph shown in Fig. 4(ii).
Given the state of just any one machine in {A, B}, we can determine if > is in state t0 or t1, since the
weight of that edge is greater than 1, but cannot do the same for the edge (t0, t3), since the weight
of the edge is only 1.

To understand the idea of fault graphs and their significance to tolerating faults in state ma-
chines, we draw an analogy between fault tolerance in DFSMs and fault tolerance in a block of
bits using erasure codes [13]. Consider the fault graph G(T,M), where T = R(M) is the reachable
cross product ofM. The state of all the machines inM can be represented by exactly one of the
states in T i.e., the machine T lists all the valid states of the systemM. The weights of the edges
in the graph G(T,M) are in indicator of the how easy it is to distinguish between those states.

The set of states of T = R(M) is equivalent to the set of all valid code words in an erasure
code. The weight of the edge separating the states is the Hamming distance [3] between the valid
code words. In this case, instead of conventional bit errors, the states of the machines in M are
either incorrect (Byzantine) or unavailable (crash). To tolerate bit errors, erasure coding involves
adding redundant bits to the data bits. Similarly, in this case we add more machines to the system.
These new machines are less than T , the cross product of the original machines. When faults
occur, the cross product the states of machines in the system may be an incorrect state of the T
machine. However, if the system is fault-tolerant, this recovered cross product state will be closest
in distance to the correct state in T .

There is one important difference between erasure codes involving bits and the state machines
problem. In erasure codes, the value of the redundant bits depend on the data bits. In case of state
machines, it is not feasible to transmit the state of all machines after each event has happened to
calculate the state of the backup machines. Hence, the backup machines have to be designed to act
on the same inputs as the original machines and independently transition to suitable states. This
implies that instead of designing a erasure code once and reusing it for on different inputs, for
state machines we need to re-design the set of backup machines for every distinct set of original
machines.

The distance between any two states (or nodes in the fault graph) is the weight of the edge
between those nodes in the fault graph.

Definition 4 (distance) Given a set of machinesM and their reachable cross product T (XT ,Σ, α, t0),
the distance between any two states ti, t j ∈ XT , denoted d(ti, t j) is the weight of the edge between
the nodes corresponding to ti and t j in the fault graph G(T,M).
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Given a fault graph, G(T,M), the smallest distance between the nodes in the fault graph gives
us an idea of the fault tolerance capability of the setM. Consider the graph, G(>, {A, B, M1,M2}),
shown in Fig. 4 (iii). Since the smallest distance in the graph is 3, we can remove any two
machines from {A, B, M1, M2} and still regenerate the current state of >. As seen before, given the
state of >, we can determine the state of any machine less than >. Therefore, the set of machines
{A, B, M1, M2} can tolerate two crash faults.

The least distance in G(T,M) is denoted dmin(T,M).
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Figure 4: Fault Graphs, G(>,M), for sets of machines shown in Fig. 3

Theorem 1 A set of machinesM, can tolerate up to f crash faults iff dmin(T,M) > f , where T is
the reachable cross-product of all machines inM.

Proof:⇒Given that dmin(T,M) > f , we show that anyM− f machines fromM can accurately
determine the current state of T . It is obvious that the current state of any DFSM in M can be
determined if the state of T is known. The distance between any two nodes in fault graph G(T,M)
is greater than f since dmin(T,M) > f . i.e., f + 1 or more machines separate any two states in the
fault graph. Hence, for any pair of states ti, t j in T , after f crash failures inM, there will always
be at least one machine remaining that can distinguish between ti and t j. This implies that it is
possible to accurately determine the current state of T by using anyM− f machines fromM.
⇐We now show that the system cannot tolerate f crash faults when dmin(T,M) ≤ f . dmin(T,M) ≤

f implies that there exists states ti and t j in G(T,M) separated by distance k, where k ≤ f . Hence
there exist exactly k machines (say the setM′ ⊂ ofM inM) that can distinguish between states
(ti, t j) in T . Assume that all these k machines crash (since k ≤ f ) when T is in either ti or t j. Using
the states of the remaining machines inM, it is not possible to determine whether T was in state
ti or t j. Therefore, it is not possible to exactly regenerate the state of any machine inM using the
remaining machines.
�
Byzantine faults may include machines which lie about their state. Similar to erasure coding

theory, the number of Byzantine faults that can be tolerated by the system of DFSMs is dmin/2.
Consider the machines {A, B, M1,M2} shown in Fig. 3. As shown before, these machines can
tolerate two crash faults. Let us consider the case where > is in state t3 and two of the machines,
say B and M1, lie about their state. Let the states of the machines A, B, M1 and M2 be {t0, t3},
{t0}, {t0, t2} and {t3} respectively. Since, we do not know which machines are lying, in this case
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we cannot determine the state of > correctly. If we pick the state which appears the most number
of times among these sets, we will determine the state of > as t0, which we know is incorrect.
Hence, these set of machines cannot tolerate two Byzantine faults. Assuming that only one of the
machines, say B, lies about it’s state, let the states of the machines A, B, M1 and M2 are {t0, t3},
{t0}, {t3} and {t3} respectively. Here, we can determine correctly, that the state of > is t3, since the
majority of machines distinguish between all pairs of states. Hence, since dmin(>, {A, B, M1, M2})
is three, these set of machines can tolerate only one Byzantine fault.

Theorem 2 A set of machinesM, can tolerate up to f Byzantine faults iff dmin(T,M) > 2 f , where
T is the reachable cross-product of all machines inM.

Proof: ⇒ Given that dmin(T,M) > 2 f , we show that any M − f correct machines from M
can accurately determine the current state of T in spite of f incorrect inputs. It is obvious that the
current state of any DFSM inM can be determined if the state of T is known. The distance between
any two nodes in fault graph G(T,M) is greater than 2 f since dmin(T,M) > 2 f . i.e., 2 f + 1 or
more machines separate any two states in the fault graph. Hence, for any pair of states ti, t j in T ,
after f Byzantine failures inM, there will always be at least f + 1 correct machine remaining that
can distinguish between ti and t j. This implies that it is possible to accurately determine the current
state of T by simply taking a majority vote.
⇐ We now show that the system cannot tolerate f crash faults when dmin(T,M) ≤ 2 f f .

dmin(T,M) ≤ 2 f implies that there exists states ti and t j in G(T,M) separated by distance k,
where k ≤ 2 f . If all f machines from this k machines lie about their correct state, we have only
k − f correct machines remaining. Hence it is not possible to discount the current states of the f
lying machines (since k− f ≤ f ). Therefore, it is not possible to exactly regenerate the state of any
machine inM using the remaining machines.
�
Henceforth, we only consider machines less than or equal to the top element of the closed

partition lattice (>) corresponding to the input set of machinesA. So, for notational convenience,
we use G(M) instead of G(>,M) and dmin(M) instead of dmin(>,M). From theorems 1 and 2, it
is clear that we can determine the inherent fault tolerance in a given set of machinesA, simply by
finding dmin(A).
Observation 1 Given a set of n machinesA, the system can tolerate up to dmin(A)−1 crash faults
and (dmin(A) − 1)/2 Byzantine faults.

4 Theory of Fusion Machines
To tolerate faults in a given set of machines, we need to add backup machines so that the fault
tolerance of the system (original set of machines along with the backups) increases to the desired
value. To simplify the discussion, in the remainder of this paper, unless specified otherwise, we
mean crash faults when we simply say faults. As seen in theorem 2, the discussion for crash faults
also applies to Byzantine faults (where f /2 Byzantine faults can be tolerated instead of f crash
faults).
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Given a set of n machinesA, we add m backup machines F , each less than or equal to the top,
such that the set of machines in A∪ F can tolerate f faults. We call the set of m machines in F ,
an ( f ,m)-fusion ofA. From theorem 1, we know that, dmin(A∪ F ) > f .

Definition 5 (Fusion) Given a set of n machines A, we call the set of m machines F , an ( f ,m)-
fusion ofA, if dmin(A∪ F ) > f .

Any machine belonging to m is referred to as a fusion machine or just a fusion. Note that, the top
is also a fusion. Consider the set of machines, A = {A, B}, shown in Fig. 3. From Fig. 4(ii),
dmin({A, B}) = 1. Hence the set of machines, {A, B}, cannot tolerate even a single fault.

Let us assume that we want to generate a set of machines F , such that, A∪ F can tolerate 2
faults. It can been seen from Fig. 4(iii) that dmin({A, B, M1, M2}) = 3, and hence the set of machines
{A, B, M1, M2} can tolerate up to 2 faults. In this case, the set {M1,M2} forms a (2, 2)-fusion of
{A, B}.

Based on the values of f and m, we discuss three cases of ( f ,m)-fusion:

• f = m: In this case, the number of fusion machines equals the number of faults. The set of
machines in {M1, M2}, shown in Fig. 3, form a (2, 2)-fusion corresponding to {A, B}.

• f < m: The traditional approach of replication is the simplest example for this case. To
tolerate two faults in any two machines {A, B}, replication will require two additional copies
each of A and B. Hence, {A, A, B, B} is a (2, 4)-fusion of {A, B}.

• f > m: From observation 1, if a system is inherently fault tolerant, then no additional
machines may be needed to tolerate faults. In the example shown in Fig. 3, let us assume
that the original set of machines are {A, B,M1}. Since, dmin({A, B, M1}) = 2, these machines
can tolerate one fault without any additional machine.

As we have seen before, dmin({A, B, M1, M2}) > 2. Any machine in the set {A, B,M1, M2} can
at most contribute 1 to the weight of any edge in the graph G({A, B, M1, M2}). Hence, even if we
remove one of the machines, say M2, from this set, dmin({A, B, M1}) will still be greater than 1. This
implies that {M1} is a (1, 1)-fusion of {A, B}. Similarly, {M2} is also a (1, 1)-fusion of {A, B}. This
property is generalized in the following theorem.

Theorem 3 (Subset of a Fusion) Given a set of n machinesA, and an ( f ,m)-fusionF , correspond-
ing to it, any subset F ′ ⊆ F such that |F ′| = m − t is a ( f − t,m − t)-fusion when t ≤ min( f ,m).

Proof: Since, F is an ( f ,m)-fusion ofA, according to the definition of ( f ,m)-fusion, dmin(A∪ F ) >
f .

Any machine, F ∈ F , can at most contribute a value of 1 to the weight of any edge of the
graph, G(A∪ F ). Similarly, t machines in the set F can contribute a value of at most t to the
weight of any edge of the graph, G(A∪ F ). Therefore, even if we remove t machines from the set
of machines in F , dmin(A∪ F ) > f − t.

Hence, for any subset F ′ ⊆ F , of size m − t, dmin(A∪ F ′) > f − t. This implies that F ′ is an
( f − t,m − t)-fusion ofA.
�
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It is important to note that the converse of this theorem is not true. For example, consider the
machines M1 and M6 shown in Fig. 3. Even though both {M1} and {M6} are (1, 1)-fusions of {A, B},
since dmin({A, B, M1, M6}) = 2, {M1,M6} is not a (2, 2)-fusion of {A, B}.

We now consider the existence of an ( f ,m)-fusion for a given set of machines A. The top
machine distinguishes between all the states of X>. So the basic intuition is that, if the union of
m top machines along with A cannot tolerate f faults, then there cannot exist an ( f ,m)-fusion for
A. Let us consider the existence of a (2, 1)-fusion for the set of machines {A, B}, shown in Fig. 3.
From Fig. 4(ii), dmin({A, B}) = 1. We need exactly one machine F, such that, dmin({A, B, F}) > 2.
Even if F was the top machine, dmin({A, B,>}) = 2. Hence, there cannot exist a (2, 1)-fusion for
{A, B}. We formalize this in the following theorem.

Theorem 4 (Existence of an ( f ,m)-fusion) Given a set of n machines A, there exists an ( f ,m)-
fusion ofA, iff, m + dmin(A) > f .

Proof: ⇒
Assume that there exists an ( f ,m)-fusion F for the given set of machinesA. We will show that

m + dmin(A) > f .
Since, F is an ( f ,m)-fusion fusion ofA, dmin(A∪ F ) > f . The m machines in F , can at most

contribute a value of m to the weight of each edge in G(A∪ F ). Hence, m + dmin(A) has to be
greater than f .
⇐
Assume that m + dmin(A) > f . We will show that there exists an ( f ,m)-fusion for the set of

machinesA.
Consider a set of m machines F , containing m replicas of the top. These m top machines,

will contribute exactly m to the weight of each edge in G(A∪ F ). Since, m + dmin(A) > f ,
dmin(A∪ F ) > f . Hence, F is an ( f ,m)-fusion ofA.
�
From this theorem, given a set of n machines A and an ( f ,m)-fusion F , corresponding to

it, |F | ≥ f − dmin(A). Given a set of machines, we now define an order among ( f ,m)-fusions
corresponding to them.

Definition 6 (Order among ( f ,m)-fusions) Given a set of n machines A, an ( f ,m)-fusion F =

{F1, ..Fm}, is less than another ( f ,m)-fusion G (F < G) iff the machines in G can be ordered as
{G1,G2, ..Gm} such that ∀1 ≤ i ≤ m : (Fi ≤ Gi) ∧ (∃ j : F j < G j).

An ( f ,m)-fusion F is minimal, if there exists no ( f ,m)-fusion F ′, such that, F ′ < F . From
Fig. 4(iv), dmin({A, B, M1,>}) = 3, and hence, F ′ = {M1,>} is a (2, 2)-fusion of {A, B}. We have
seen that F = {M1, M2}, is a (2, 2)-fusion of {A, B}. Since F < F ′, F ′ is not a minimal (2, 2)-
fusion. In the lattice shown in Fig. 3, {M3, M4, M5, M6} are a set of minimal machines. It can
be seen that dmin({A, B, M3, M4,M5, M6}) > 2 and {M3,M4, M5,M6} is a minimal (2, 4)-fusion of
{A, B}.

Using the analogy of Hamming distances presented in section 3, it is easy to see that the idea of
fusions and crash fault tolerance can be extended to Byzantine faults. An ( f ,m)-fusion can tolerate
f crash faults and f /2 Byzantine faults.
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5 Algorithms
In this section, we present algorithms to generate backup machines, detect faults and recover from
them. We first briefly discuss the notation used for representing machines in the algorithms. We
are given a set A of n machines. The following algorithms assume that all state machines are
expressed with respect to the reachable cross product ofA, denoted >.

t0, t3

t3

t2t1t0

1

1

0 1 1

0

0

0

t1 t2

0

1

1

0

0

>

1

A

a0 a1 a2

Figure 5: Set Representation of States

All the states in machines less than or equal to > can be represented as a set consisting of states
belonging to >. For example in Fig. 3, the states in all the machines are expressed in this notation.

Algorithm 1 Generate set representation

Input: T = (Xt,Σ, αt, t0), A = (Xa,Σa, αa, a0) : A ≤ T
Output: S = {s0,. . . , s|Xa |}: the set corresponding to states in Xa where si cor-

responds to the state ai in Xa

1: for all σ ∈ Σ do
2: X ← Xt

3: i, j← 0
4: while t j ∈ X do
5: si ← si

⋃{t j}
6: X ← X/{t j} // remove t j from X
7: ai ← αa(σ, ai), t j ← αt(σ, t j) // determine next transitions to

update i, j
8: return S

Given machines T and A, algorithm 1 outlines the procedure to map the elements of the bigger
machine to the smaller machine and hence, generate the set representation for states in A. Every
state in machine T is a set containing exactly one element.

For example, in Fig. 5, consider the machines > and A. Since A ≤ >, the states of A can be
represented as a set of states of >. Firstly, the initial state of > is mapped to the initial state of A.
On the application of event 0 to the initial states of both machines, > transitions from t0 → t1 and
a0 → a1. Hence t1 is mapped to a1. Similarly, on the application of event 1 to t0 and a0 respectively,
> transitions from t0 → t3 and a0 → a0. Hence t3 is mapped to a0. Continuing this procedure for
all the states and events corresponding to the machines, we get the set representation for the states
in A. States a0, a1 and a2 can be represented by the sets {t0, t3}, {t1} and {t2} respectively.
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5.1 Generation of Backup Machines
In this section, we present an algorithm to generate the minimum set of machines required to
tolerate f crash faults among a given set of n machines, with a time complexity polynomial in
the size of the top machine. From theorem 2, it is clear that this set of machines can tolerate f /2
Byzantine faults.

Given a set of n machinesA, algorithm 2 generates the smallest set of machines F , such that,
the set of machines in A∪ F can tolerate f faults. The outer while loop terminates when the
required set of machines is generated, i.e., when the dmin(A∪ F ) is equal to (or exceeds) f .

The > machine is always a valid fusion. Hence, we start with the >, which clearly increases
dmin by 1. We then try to find such a machine in the lower cover of the >, and continue traversing
down the lattice, until we encounter the bottom machine or till the lower cover does not contain
such a machine. In the inner loop, the algorithm successively iterates to find out other DFSMs that
are less than the previous guess. The inner loop terminates when there is no machine in the lower
cover whose addition results in the required fault tolerance i.e., the loop continues as long as it
finds at least one machine in the lower cover which increases the minimum weight of the system.
(line 6 of the algorithm).

Consider the example shown in Fig. 3, with A = {A, B}, and f = 2. We need to find a set of
machines F such that dmin(A∪ F ) > 2. Since F is empty to begin with, G(A∪ F ) = G({A, B}),
shown in Fig. 4(ii). The addition of machine M1, belonging to the lower cover of >, increases dmin

of the system by 1. (i.e. dmin(A) < dmin(A⋃{M1})). Similarly, machine M6 in the lower cover of
M1 satisfies this property, while machine M3 does not. Hence, M6 is chosen by the algorithm for
its next iteration. Since no machine less than M6 increases dmin, M6 is added to the fusion set.

Algorithm 2 Generate Fusion

Input: A : given set of machines, f : number of crash faults to be tolerated
Output: F : set of fusion machines

1: F ← φ ;
2: while dmin(A∪ F ) ≤ f do
3: M ← >
4: while M , ⊥ do
5: C ← lower cover(M)
6: if ∃F ∈ C : dmin(F

⋃A⋃F ) > dmin(A⋃F ) then
7: M ← F
8: else
9: break

F ← {M}⋃F
10: return F

Given a set of n machines A, algorithm 2 returns the smallest set of machines F , such that F
is a minimal ( f , |F |)-fusion ofA. There maybe other solutions which have more machines, where
each of the machines is less than the machines returned by this algorithm.

We now proceed to prove the correctness of the algorithm 2. If a machine M has the states ti
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and t j in distinct blocks, we say that M covers the edge (ti, t j). Also the least distance in the fault
graph G(T,M) is denoted dmin(T,M) and the edges with this value are called the weakest edges of
G(T,M). It can be seen from the algorithm that every machine added, covers a set of edges. This
set of edges (the input to algorithm 2) is called the edge set of that machine. The edge set of F j is
denoted by E j.

Lemma 1 Given a set of n machinesA, and the set F returned by algorithm 2, let Fi ∈ F be the
machine returned in the ith iteration. Then, ∀Fi, F j ∈ F : i < j⇒ Ei ⊆ E j.

Proof: If F ′ ⊆ F is the current fusion set during the execution of algorithm 2, then the edge
set for the next iteration consists of the minimal edges of the fault graph G(A⋃F ′). Every time
a machine is added to F ′, the weights of the edges in G(A⋃F ′) can increase by at most one and
the weight of every minimal edge is incremented by exactly one. Hence, after every iteration the
edge set for the next iteration can not decrease in size. This implies ∀Fi, F j ∈ F : i < j⇒ Ei ⊆ E j.
�

Theorem 5 Given a set of n machinesA, algorithm 2 returns the smallest set of machines F , such
that F is a minimal ( f , |F |)-fusion ofA.

Proof:

1. F is a fusion with the minimum number of elements.

We show that F is an ( f , |F |)-fusion ofA where, |F | = f − dmin(A). As seen in the previous
section, this is the minimum number of machines in any ( f ,m)-fusion ofA.

The addition of any machine, F ≤ >, to the set of machines in A∪ F , can increase
dmin(A∪ F ) by at most 1. In each iteration of the loop in algorithm 2, we find a machine
covering the weakest edges in G(A∪ F ) and add it to F . Hence, in each iteration of the
while loop we increase dmin(A∪ F ) exactly by 1 adding exactly one extra machine.

Initially, since F = φ, dmin(A∪ F ) = dmin(A), and finally, dmin(A∪ F ) = f . Therefore, the
number of machines added to F is f − dmin(A). Since, dmin(A∪ F ) > f , F is a ( f , |F |)-
fusion ofA.

2. F is a minimal fusion.

Lemma 1 implies that if an edge e occurs in the edge set of any machine in F and there are
k machines in F that cover e, then in any valid ( f , |F |)-fusion there are at least k machines
that cover edge e.

Let there be an ( f ,m)-fusion G = {G1, ..Gm}, such that G is less than ( f ,m)-fusion F (F =

{F1, F2, ..., Fm}). Hence ∀ j : G j ≤ F j.

Let Gi < Fi and let Ei be the set of edges that needed to be covered by Fi. It follows from
algorithm 2, that Gi does not cover at least one edge say e in Ei (otherwise algorithm 2 would
have returned Gi instead of Fi). If e is covered by k DFSMs in F , then e has to be covered
by k machines in G.
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We know that there is a pair of machines Fi,Gi such that Fi covers e and Gi does not cover
e. For all other pairs F j,G j if G j covers e then F j covers e (since G j ≤ F j). Hence e can be
covered by no more than k − 1 in G. This implies that G is not a valid fusion.

�
We now consider the time complexity for algorithm 2. Let us assume that |>| = N. The

time complexity to generate the lower cover of any machine R, less than the top, is O(N2 · |Σ|)
[9]. While generating a machine in the lower cover, we can determine if adding that machine
increases dmin without any additional time. Since the number of machines in the lower cover is
O(N2), each iteration of the inner while loop requires O(N2 · |Σ|) + O(N2) = O(N2 · |Σ|) time. As
we traverse down the lattice, we combine at least two blocks of F. Thus the inner while loop in
algorithm 2 is executed at most N times. Hence, the time complexity of inner loop of algorithm 2
is O(N2 · |Σ|) ∗ O(N) = O(N3 · |Σ|).

In each iteration of the outer loop, we add a new machine to the fusion set. Hence there can be
at most f f iterations of the loop. Since the time complexity for each iteration of the outer loop
is O(N3 · |Σ|) + O(N2) = O(N3 · |Σ|) the time complexity of algorithm is O(N3 · |Σ| · f ). Therefore,
algorithm 2 generates the set of fusion machines with a time complexity polynomial in the size of
the top machine.

5.2 Recovering from Faults
Given a set of n machines A, and a corresponding ( f ,m)-fusion F , we present an algorithm to
recover from f crash faults or f /2 Byzantine faults.

As mentioned earlier, we use the set representation for all states of the machines in our system.
Given the current state of all the machines in our system, algorithm 3 returns the correct state

of the top machine from which the state of all the individual machines can be determined. The
algorithm iterates through the current states of all the machines in the system and picks the state,
tc ∈ X>, which appears the most number of times in these states.

Algorithm 3 Recover

Input: S : set of current states of the machines inA∪ F ,
count : vector of size N initialized to 0

Output: tc : the correct state of the top machine.
1: for all s ∈ S do
2: for all ti ∈ s do
3: + + count[i]
4: return tc : 1 ≤ c ≤ N and count[c] is the maximal element in count

Consider the machines A, B, M1 and M2 shown in Fig. 3. As shown before, this system of
machines can tolerate two crash faults and one Byzantine fault. Let us consider the case of crash
faults, where both machines B and M1 have crashed and the machines A and M2 are in states {t0, t3}
and {t3} respectively. Algorithm 3 will return t3 since the count corresponding to t3, count[3] = 2,
which is greater than the count corresponding to t0 (count[0] = 1), t1 (count[1] = 0) and t2

(count[2] = 0).
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Now let us assume that machines A, B and M2 are in states in {t0, t3}, {t0}, {t0}. Assume that
M1 has a Byzantine failure reflecting an incorrect state {t1, t2, t3}. Algorithm 3 will return t0 since
the count corresponding to t0, count[0] = 3, which is greater than the count corresponding to t1

(count[1] = 1), t2 (count[2] = 1) and t3 (count[3] = 2).
We now proceed to prove the correctness of algorithm 3.

Theorem 6 Given a set of n machines A and a corresponding ( f ,m)-fusion F , the algorithm
shown in Fig. 3 can recover the correct state of all the machines in the system in the event of f
crash faults or f /2 Byzantine faults.

Proof: We first consider the case of crash faults. Since F is an ( f ,m)-fusion of A, the set of
machines inA∪ F can tolerate f crash faults. Let us denoted the correct state of the top machine
as tc. Given the current state of any n + m − f machines in this set (in the tuple set representation),
we can uniquely determine the state of the top machine as tc. Hence, tc will be present in each and
every state of these n + m − f machines and no other ti ∈ X> will be present in all of these states.
Therefore, count[c] will be the maximum and algorithm 3 will return tc.

We now consider the case of Byzantine faults. Let any f /2 machine lie about their state. Since
tc is the correct state of the top machine, it will be present in the current states of all of the non-faulty
machines. Hence count[c] ≥ n + m − f /2. If an adversary wants to put the system in an incorrect
state, say tz, then the count associated with tnc has to be greater than the count associated with tc.
Hence, count[z] has to be greater than n + m − f /2. In a worst case scenario, all the Byzantine
machines contribute to the count of tz. Even then, there must be at least n+m− f /2− f /2 = n+m− f
machines which have tz present in the them. Now if any f machines not in this set undergo a crash
fault, the algorithm will not be able to determine the unique state of the top, since count[z] will
be equal to count[c] which is n + m − f . This is in contradiction to the definition of the system as
f - crash fault tolerant. Hence algorithm 3 can recover the state of the system from f /2 Byzantine
faults.
�
Let us consider the time complexity of algorithm 3. If the size of the top is N, the number of

elements in the current state s of any machine is O(N). The time complexity for the inner loop
which updates the count vector is O(N). Since there are n + m machines in the system, the outer
loop executes O(n + m) times. The time complexity of algorithm 3 is O((n + m).N).

6 Implementation and Results
We have implemented the algorithm specified in section 5 in Java (JDK 6.0) on a machine with an
Intel Core Duo processor with 1.83 GHz clock frequency and 1 GB RAM. We tested the algorithms
for many practical DFSMs including TCP and the MESI cache coherency protocol along with the
examples shown in Fig. 2 (denoted A and B in the results table). In this section we present our
results for crash faults.

In the results table, along with the original machines, we have tabulated the number of crash
faults tolerated ( f ), the size of the top (|>|) and the sizes of the backup fusion machines gener-
ated by algorithm 2 (|Backup Machines|), the state space required for a replication based solution
(|Replication|) and the state space required for our fusion based solution (|Fusion|).
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Given a set of n machines, M = {M1, M2, . . . Mn}, in order to tolerate f crash faults among
them, replication will require f copies of each machine. Hence the state space for replication
is calculated as (

∏i=n
i=1 |Mi|) f . If the set of backup machines generated by algorithm 2 is, F =

{F1, F2, . . . Fm}, the state space for fusion is simply calculated as
∏i=m

i=1 |Fi|.

Original Machines f |>| |Backup Machines| |Replication| |Fusion|
MESI, 1-Counter, 0-Counter,
Shift Register

2 87 [39 39] 82944 1521

Even Parity , Odd Parity
Checker, Toggle Switch, Pat-
tern Generator, MESI

3 64 [32 32 32] 2097152 32768

1-Counter, 0-Counter, Di-
vider, A, B

2 82 [18 28] 59049 504

MESI, TCP, A, B 1 131 [85] 396 85
Pattern Generator, TCP, A, B 2 56 [44 56] 156816 2464

The results indicate that there are many practical examples for which our algorithm yields huge
savings in state space compared to replication based approaches. Since the largest running time for
the execution of our program was only 13.2 minutes, our algorithm can be used to generate backup
machines for larger, more complex machines within a feasible time frame.

7 Conclusion and Future Work
In this paper, we develop the theory for ( f ,m)-fusion and present a polynomial time algorithm to
generate the minimum set of machines required to tolerate both crash and Byzantine faults among
a given set of machines. We have also implemented and tested this algorithm for real world DFSM
models such as TCP and MESI.

The concept of ( f ,m)-fusion gives us a wide spectrum of choices for fault-tolerance. Repli-
cation is just a special case of ( f ,m)-fusion. Our approach shows that there are many cases for
which we can do better. Hence, if we want to tolerate 5 crash faults among 1000 machines, repli-
cation will require 5000 extra machines. Using our algorithm we may achieve this with just 5 extra
machines.

In this paper, we only consider machines belonging to the closed partition lattice of >. It is
possible that machines outside the lattice may provide more efficient solutions. Also, our algo-
rithm returns the minimum number of backup machines required to tolerate faults in a given set of
machines. We may be able to generate smaller machines if the system under consideration permits
a larger number of backup machines.
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