All-to-All Gradecast using Coding with
Byzantine Failures

John F. Bridgman, IIT* and Vijay K. Garg™

Parallel and Distributed Systems Lab
Electrical and Computer Engineering
The University of Texas at Austin
Austin, TX USA
johnfbiii@utexas.edu, gargQece.utexas.edu

Abstract. This paper presents a method that uses forward error cor-
rection codes to minimize the message bit complexity when acquiring
consistent global information in the presence of faulty processes. We
show a modification to the gradecast algorithm that implements our
method. Gradecast, first proposed by Feldman and Micali, is a broad-
cast algorithm for distributed systems that can handle Byzantine fail-
ures. It can be used as a basic building block to solve many important
problems in distributed computing in the presence of Byzantine failures,
such as agreement, clock synchronization, and approximate agreement.
Many of these problems require a step where all processes need to send
information to all other processes. We refer to the version of gradecast
where all processes broadcast to all other processes as all-to-all grade-
cast. In a distributed system with n processes, n instances of the original
gradecast algorithm to perform all-to-all gradecast has a message bit
complexity of O(mn?®), where m is the length of the message. In this
paper, we present an all-to-all gradecast algorithm that takes O(mtn?)
message bits, where ¢ is the maximum number of faulty processes. This
is a significant reduction in message bit complexity in real systems where
t << n. Our all-to-all gradecast algorithm uses coding theory to mask
Byzantine failures and has wide applicability in distributed systems. For
example, by replacing the original gradecast in the byzantine agreement
algorithm proposed by Ben-Or, Dolev and Hoch with O(mtn®) mes-
sage bit complexity, we get a new byzantine agreement algorithm with
O(mt2n2) message bit complexity. Also, this algorithm can be used with
their approximate agreement algorithm to get O(kn?t) instead of O(kn>)
message bit complexity.

1 Introduction

Many distributed algorithms require a step in which every participating process
needs a value from every other process. For example, in a clock synchronization

* This research was supported in part by the Virginia and Ernest Cockrel, Jr. Fellow-
ship in Engineering.
** This research was supported in part by the NSF Grants CNS-0718990, CNS-1115808,
Cullen Trust for Higher Education Endowed Professorship.

algorithm, every process may collect the values of clocks of all other processes.
In a sensor network, a group of sensors may collect values from each other to
compute the average value, or some other global function such as the minimum,
the maximum or the sum of all the values. In a system that requires a uniform
action, the processes may collect proposals from all other processes to determine
an action. This paper addresses these problems in the presence of Byzantine fail-
ures. Many fault tolerant algorithms need to have information about what other
processes know about other processes. We call this second-order information. In
order to perform a fault tolerant broadcast, second-order knowledge is required.
The usual method to acquire second-order information is for every process to
broadcast the information that they have; then, every process rebroadcasts what
they receive. But, rebroadcasting the information is inefficient when it is known
that the number of faulty processes is bounded. The technique described in this
paper uses a forward error correction (FEC) code to minimize the size of the mes-
sages that are rebroadcast. As an example, we apply the technique to gradecast.
Gradecast can be used as a basic building block for many distributed algorithms
that handle Byzantine failures.

The gradecast algorithm, first proposed by Feldman and Micali[1], is a broad-
cast algorithm that gives the receivers a confidence level in the value received.
Let value;[k] be the value that process P; outputs for process Py, con fidence;[k]
be the confidence value process P; outputs for process Py, and vy be the initial
input value to the algorithm for process Pj. The confidence level returned is
from the set {0, 1,2} and the confidence value gives information about the state
of the other processes. The gradecast algorithm provides three main properties
of the confidence level that allow a process to reason about the knowledge of
other processes.

1. For all non-faulty process P;, and non-faulty process P;, and any process Py,
if confidence;[k] > 0 and con fidence;[k] > 0; then, value;[k] = value;[k].

2. For any non-faulty process P;, and non-faulty process P;, and any process
Py, |confidence;[k] — confidence;[k]| < 1.

3. If Py is non-faulty, then for all non-faulty processes P;, confidence;[k] = 2
and value; [k] = vg.

The original one-to-all gradecast algorithm broadcasts a value from one process
to all the other processes. We define message bit complexity as the total number
of bits sent by all non-faulty processes in one invocation of the algorithm. The
one-to-all gradecast algorithm has a message bit complexity of O(mn?), where
m is the length of the message and n is the number of processes. The properties
of gradecast make it a useful primitive in distributed systems.

Consider the case where all processes wish to broadcast a value to all other
processes using gradecast. We call this all-to-all gradecast and it is used in many
applications such as Byzantine agreement, approximate agreement, and multi-
consensus([2]. The standard implementation of all-to-all gradecast, where n in-
stances of the one-to-all gradecast algorithm are used, has O(mn?®) message bit
complexity. We show a method, using coding, that gives an all-to-all gradecast
algorithm with only O(mtn?) message bit complexity, where ¢ is the specified

maximum number of faulty processes. This is a significant reduction in mes-
sage bit complexity when t is much smaller than n, which is usually the case.
Gradecast requires ¢ < n/3 for correctness.

Our all-to-all gradecast algorithm uses error correction codes[3] to mask
Byzantine failures and has wide applicability in distributed systems. For ex-
ample, by replacing the original gradecast in the byzantine agreement algorithm
proposed by Ben-Or, Dolev and Hoch[2] with O(mtn?) message bit complexity,
a new byzantine agreement algorithm with O(mt?n?) message bit complexity
results. If the number of actual failures is f < ¢, then, the algorithm by Ben-Or,
Dolev and Hoch will take min(f +2, ¢+ 1) rounds. This property is often referred
to as early stopping. The bit complexity of approximate agreement algorithm [4,
5,2] is reduced from O(kn3) to O(kn?t), where k is the number of rounds used in
the approximate algorithm. Algorithms that have better message bit complexity
exist; but, they sacrifice round complexity or reduce the maximum number of
faulty processes tolerated. The example byzantine agreement algorithms in this
paper are given because of the simplicity of their implementation on top of an
all-to-all gradecast algorithm. There exist algorithms with better message bit
complexity. For example, the algorithm by Coan and Welch[6] has message bit
complexity of O(t? +nt) to agree on a single bit. This algorithm does not posses
an early stopping property.

Error correction codes can be viewed as a projection from a smaller space
to a larger space with good separation. Because the points in the larger space
are separated, small perturbations in the point in the larger space are still close
to the original mapped point and the point in the original smaller space can
be recovered. Generally, the spaces are high dimensional vector spaces over fi-
nite fields and the measure of distance between two elements of the space is
the number of coordinates that have a different value. Systematic codes can be
constructed that encode a vector as the original vector concatenated with an
error correction vector. Our method relies on the observation that every process
is sending a value to every other process and only the faulty processes will send
conflicting data. So, the vector built at each process will differ in at most ¢ loca-
tions. This can be viewed as transmitting the vector and each process receiving
a corrupted version. Then, only the error correction part of the encoded vector
can be sent between processes to correct these “errors”. The original vector is
not actually transmitted. In a traditional application of error correction codes,
an input block is encoded and then the whole output codeword is transmitted.
We are not transmitting the whole codeword. Only a portion of the codeword
is transmitted. A proper selection of the code allows an error correction vector
that can correct ¢ errors to be no longer than 2t + 1.

This method of using coding is also applicable to other types of broadcast
algorithms. Srikanth and Toueg|[7] give a broadcast algorithm to simulate authen-
ticated broadcasts that has the important properties of authenticated messages.
These are as follows: If a correct process P; broadcasts a message; then, all
other correct processes receive that message and if a correct process P; does not
broadcast a message; then, no correct process receives a message from P;. The

message bit complexity of a consistent broadcast is O(mn?) and therefore, the
message bit complexity of all-to-all consistent broadcast is O(mn?3). By using
our method, the bit complexity of all-to-all consistent broadcast can be reduced
to O(mtn?).

All-to-all gradecast can also be used to implement an interactive consistency
algorithm. Interactive consistency|[8,9] is the problem in which each process has
a vector with an entry that needs to be filled from every other process and all
vectors should be the same at the end of the algorithm. Interactive consistency
is at least as difficult as Byzantine agreement.

There are earlier works that use error correcting codes for Byzantine broad-
cast algorithms. Liang and Vaidya[l0] give an algorithm that achieves com-
munication complexity of O(mn) bits for broadcast with Byzantine failures if
m = 2(n®). This is quite useful in situations where the message being broadcast
is a very long stream of bits. An example of such messages is all the samples
from a sensor in a long running system. However, for small message size, m, the
communication complexity is O(nm 4+ n*m!/2 4+ n5). Our work is useful when
every process is doing a broadcast and the message size may not be large. Fried-
man, Mostéfaoui, Rajsbaum and Raynal [11] show a mapping from a distributed
agreement problem to a coding problem. Our approach is to use coding to reduce
the size of the messages being sent. The work by Krol[12] gives a set of algorithms
that use coding to perform Byzantine consensus. Essentially, Krol[12] replaces
broadcast with encoding, and decision making with decoding. These algorithms
are based on the original algorithm by Pease, Shostak and Lamport[13] and have
exponential message complexity.

The remainder of this paper is organized in the following manner. First, an
overview of the original algorithm is given in section 2. The algorithm is described
in section 3. Next, proofs of its correctness are in section 4. Then, in section
5, applications of an all-to-all gradecast algorithm are discussed. Concluding
remarks are in section 6.

Table 1. Notation

n number of processes
t maximum number of faulty processes
i,7,k process 1Ds

u,v,w, T, Y,z |scalar values

U,V,W, XY, Z|non-scalar values

confidence;[j] |confidence value P; has in P;’s value
value;[j] value process P; received from process P;
G set of all non-faulty processes

2 One-to-All Gradecast

2.1 Execution Model

The execution model used in this paper is the standard reliable synchronous
message passing model. Processes can only communicate by passing messages.
Processes are assumed to be fully connected. Message passing is assumed to be
such that a process knows the identity of who sent the message. Only determin-
istic algorithms are considered. The algorithm assumes that only ¢ out of the
n processes in the system may fail; but, they may be Byzantine, that is to say,
faulty in arbitrary ways. For algorithm correctness, we require that n — 2t > ¢
which simplifies to ¢ < n/3. This bound is optimal because a Byzantine agree-
ment algorithm can be build on top of gradecast that has the same requirements
on t as the underlying gradecast algorithm. It has been proven that no Byzantine
agreement algorithm exists for ¢ > n/3. This model assumes that authenticated
messages are not available; otherwise, the broadcast problem becomes trivial.
Authenticated messages allow a process to verify the message’s contents and
source.

2.2 Overview of original one-to-all gradecast

This section gives a quick overview of the original algorithm presented by Feld-
man and Micali[l]. This algorithm broadcasts a value from one process to all
other processes. This can be modified to an all-to-all gradecast algorithm by
vectorizing. Pseudo-code for the algorithm is in Fig. 1. It assumes that the val-
ues n, t, and h are common knowledge to all processes, where n is the number of
processes, t is the maximum number of faulty processes, and h is the broadcasting
process. The algorithm proceeds in four steps. In the first step, the broadcaster
h sends out its value to all processes. After this step, the algorithm is symmetric.
In the second step, all process rebroadcast the value received from h to all other
processes. Then, in the third step, each process looks at the values received from
Step 2. If there is a common value that has been received at least n — t times;
then, it broadcasts that value. Otherwise, the process broadcasts no value. Fi-
nally, in Step 4, the received values from Step 3 are examined. Let = be the value
that appears the most in Z;. If there is a tie between two values, some common
agreed upon tie breaking strategy must be performed. For example, if values
are real numbers, we can always take the minimum. If x appears at least 2t + 1
times; then, P; outputs x with confidence 2. If & appears less than 2¢ + 1 and
more than ¢ times; then, P; outputs x with confidence 1. Otherwise, P; outputs
1 with confidence 0.

This algorithm has message bit complexity O(mn?) and when replicated to
perform all-to-all gradecast, will have O(mn?) message bit complexity. The next
section gives a vectorized modification to this algorithm that reduces the all-to-
all gradecast message bit complexity to O(mtn?).

Inputs to Py:
vp, : input value for broadcaster
Common Knowledge:
n : number of processes
t : maximum number of faulty processes
h : broadcaster
Variables:
u; : value process P; receives in Step 2
Xi[1..n] : vector of values received in Step 3
Z;i[1..n] : vector of values received in Step 4

// Step 1
if i = h then
for j: 1 ton do P;.send(Pj,vp); end
end
// Step 2
u; = Py.receive(Pr);
for j: 1 ton do P;.send(Pj,u;); end
// Step 3
for j: 1 ton do X;[j] = P;.receive(P;); end
if 3z such that |[{k : X;[k] = z}| > n —t then
for j: 1 to n do P,.send(P;,z); end
end
// Step 4
for j:1tondo
if P; sent a message then
Zi[j] = Ps.receive(P;);
else Z;[i] =L; end
end
if max, [{k : Z;i[k] = z}| > 2t + 1 then
value; = argmax, [{k : Z;[k] = z};
confidence; = 2;
elseif max, |{k : Z;[k] = z}| > ¢ then
value; = argmax, [{k : Z;[k] = z};
confidence; = 1;
else
value; =1; confidence; = 0;
end
Output value; and con fidence;.

Fig. 1. Original one-to-all gradecast algorithm

3 Algorithm For All-To-All Gradecast

This section gives our all-to-all gradecast algorithm that has O(mtn?) message
bit complexity. This algorithm is based on vectorizing the gradecast algorithm

presented by Feldman and Micali[1]. As before, each process P; has an input value
v; and the algorithm produces two vectors value; and con fidence; which are the
received values and the confidence level respectively. The algorithm assumes that
the set of all messages can be encoded as members of a finite field, with one field
member reserved to represent “no message” which we will denote as L . This
assumption only requires that there exists a mapping between the messages and
the field elements such that every message has a unique field element assigned
to it with at least one field element unassigned.

There is a standard technique, called interleaving, to apply a small code to
larger blocks without increasing the code length. The tool Parity Archive Volume
Set[14] uses this technique. Our usage of this technique relies on the fact that
only t blocks may be corrupt. It is very similar to breaking up the message to
be transmitted into blocks and running each block through the code, except
it is broken into interleaved blocks. What this means for the problem here, is
that, if a code that uses octets as the basic unit and one message is ten octets;
then, the first block will be the first octet from each message in the vector of
messages, the second block will be the second octet from each message, and so
on. Note, for the purposes here, the blocks are only interleaved in this manner
for the encoding and decoding process. For example, if the vector to encode
is [[a, b], [c, d], [e, f]]; then, [a, ¢,] would be run through the encoder to produce
[a,c, e, g,h] and [b, d, f] to produce [b, d, f, 1, j] and the final output of the encoder
is then [[a,b], [c, d], [e, f], [9,1], [h, j]], which is then used in our algorithm. With
this method, messages longer than the field size can be used.

Pseudo-code for the algorithm is provided in Fig. 2. This algorithm proceeds
in four steps. The following description is from the point of view of process P;,
because the algorithm is symmetric. First, in Step 1, P; broadcasts its value to
every other process. Step 2 starts to differ from the original gradecast algorithm.
The original algorithm rebroadcasts the values received from Step 1. Because
of the messaging system reliability, VP;, P;, P, € G : Vi[k| = Vj[k], where G
is the set of all non-faulty processes. This implies that VP, P; € G : [{k :
Vilk] # V;[k]}| < t. This means that at least n — ¢ values between non-faulty
processes are identical; so, sending the whole vector, V;, is inefficient. Therefore,
our algorithm uses coding techniques to send at most 2¢ + 1 values, which can
be used in conjunction with the knowledge that the receiving process possesses
to recover everything the sender knows. To finish Step 2, P; sends the error
correction vector of V;.

In Step 3, P; receives the encoded message from all other processes and uses
its current knowledge to construct matrix X; of all the values that every process
claims that every other process possesses as their input value. The value X;[j][k]
is the value that j claims k sent to it. The reliability of the messaging system
and how the coding process works implies that VP;, P; € G,Vk : X;[j][k] = V;[k].
Now an array Y; is constructed from X; in the following manner. For each P;,
if there is a value that appears at least n — ¢ times in the column X;[-][j]; then,
set Y;[j] to that value, otherwise, set Y;[j] to L . Then, an encoding of Y; is sent
to all processes.

Finally, in Step 4, Z; is constructed in the same manner as X; in Step 3. P;
uses its knowledge of Y; and the encoded value sent to it from each other process
Jj to recover Y; and then places that value in the row Z;[j][-]. That gives the
property VP;, P; € G,Vk : Z;[j][k] = Yj[k]. Then, P; looks at columns of Z;[-][j]
for each P; to decide its output. If max, [{k : Z;[k][j] = z}| > 2t + 1; then,
P; sets value;[j] = = and confidence;[j] = 2. If 2¢ + 1 > max, |[{k : Z;[K][j] =
x}| > t; then, P; sets value;[j] = x and confidence;[j] = 1. Otherwise, P; sets
value;[j] =L and con fidence;[j] = 0. Notice that the reduction in message bit
complexity comes from taking advantage of the knowledge that is known to be
common across processes, because of the constraint that at most ¢ processes can
be faulty. The processes also do not know which of the ¢ values are not common.
This is why they must exchange information in Step 2 and 3. But, coding is used
to ensure that the amount of information exchanged is small.

3.1 Example

The following example shows how the algorithm works. For this example, n =
4 and t = 1. The possible messages are the non-zero values over the finite
field GF(2%) and the zero value is reserved to represent no message. Let Py
be the faulty process and let the initial value for the non-faulty processes be
{241, 86,35}. For the encoder, we will use a Reed Solomon[15] code with a code
length of 28 that can correct one error. The error correction terms are calcu-
lated by taking the remainder of the values to encode as a polynomial with the
generator polynomial 102+ 164z + 22 over the finite field GF(28). For example,
[241, 86, 35, 35] is encoded as the polynomial 3522°! + 352252 4 8622°3 + 2412254,
The remainder is taken, which gives us the polynomial 78 4 39x, which corre-
sponds to the values [39,78]. Note that all the arithmetic operations are done
over the finite field GF(2®). Decoding is much more involved and we recommend
the reader consult the literature on the subject[3, 15]. The Schifra[16] library was
used to compute these values.

For Step 1, all processes send their values to all other processes. For this
example, the received values for each process are:

Vi = (241,86, 35, 35]
Vo = [241, 86, 35, 35] (1)
Vs = [241, 86, 35, 40]

Encoding these we get:

[Vi, Vecer] = [241, 86,35, 35, 39, 78]
[Va, Veces] = [241,86,35, 35, 39, 78] (2)
[Vs, Veces] = [241, 86,35, 40, 82, 30]

Then, each process sends the Vecc; values which are of length two.
Next, for Step 3, all processes receive the values sent in Step 2. Since Py
is faulty, it will send [22,77] to Py, [0,136] to P> and [121,159] to Ps. For this

P
Inputs:
v; : Input value for P;
Common knowledge:
n : The number of processes
t : Maximum number of faulty processes
Variables:
Vi[1..n] : Vector received in Step 2, initially L
Vece;[1..2t + 1] : error correction vector for V;
X;[1..n][1..n] : Matrix of decoded values in Step 3
Y;[1..n] : Vector of values computed in Step 3
Yece;[1..2t 4+ 1] : Error correction vector for Y;
Z;[1..n][1..n] : Matrix of decoded values in Step 4
value;[1..n] : Vector of output values
confidence;[1..n] : Vector of confidence levels

// Step 1
for j: 1 ton do P;.send(Pj,v;); end
// Step 2
for j : 1 to n do Vi[j] = P;.receive(P;); end
Vece; = encode(V;);
for j: 1 ton do P;.send(Pj, Vece;); end
// Step 3
for j: 1 ton do X;[j] = decode(V;, P;.receive(F;)); end
vy let Yi[j] = = if 3z s.t. |[{k : Xi[k][j] = x}| > n — t otherwise Y;[j] =L
Yece; = encode(Y;);
for j:1ton do P;.send(Pj,Yecc;); end
// Step 4
for j : 1 to n do Z;[j] = decode(Y;, P;.receive(P;)); end
for j:1tondo
if max, [{k : Z;[k][j] = x}| > 2t + 1 then
value;[j] = argmax, [{k : Z;[k][j] = z}|;
con fidence;[j] = 2;
elseif max, |{k : Z;[k][j] = z}| > ¢ then
value;[j] = arg max, [{k : Z;[k][j] = z}|;
confidence;[j] = 1;
else value;[j] =L; confidence;[j] = 0;
end
end
Output value; and con fidence;.

Fig. 2. All-to-all gradecast algorithm

example, the processes then receive:

Py .receive(Py) = [39, 78]
Py .receive(Py) = [39, 78]
P .receive(Ps) = [82, 30]
Py .receive(Py) = [22,77]

Py.receive(Py) = [39, 78]
Py.receive(Py) = [39, 78] (1)
Py.receive(Ps) = [82, 30]
Py.receive(Py) = [0, 136]
Ps.receive(Py) = [39, 78]
Ps.receive(Py) = [39, 78] (5)
Ps.receive(Ps) = [82, 30]

Ps.receive(Py) = [121,159]

Each process concatenates the received value to the end of its V; vector and runs
this through the decoder to get:

241, 86, 35, 35
241, 86, 35, 35
X1 = 241, 86, 35, 40 (6)

241,49, 35,35

241, 86, 35, 35
241, 86,35, 35
241, 86, 35, 40
241, 86,129, 35

Xo

I
—~
EN|
~—

241, 86, 35, 35
241, 86, 35, 35
Xs = 241, 86, 35, 40 (8)

157,86, 35,40
Following the instructions for building Y; in Step 3 we get:

Y1 = [241, 86, 35, 35]
Yy = [241, 86, 35, 35] (9)
Yy = [241, 86, 35, 0]

Then building Yecc; gets:

Y1, Yecer] = [241,86, 35, 35, 39, 78]
[Ya, Yeces] = [241,86,35, 35, 39, 78] (10)
Y3, Yeces] = [241,86,35,0,8, 182

Each process i then sends its Yece;. Let Py send [87,77] to process 1 and 2 and
[123,149] to process 3.

Finally, in Step 4, each process constructs the Z; matrix in the same way it
constructed the X; matrix. Then, we have:

241, 86, 35, 35
241, 86, 35, 35
241, 86, 35, 0
241, 86,0, 35

7y = 7y = (11)

241, 86,35, 35
241, 86, 35, 35

73 =1 241.86.35.0 (12)
241,86, 35, 82
Finally, the algorithm will output for each process:
value; = [241, 86, 35, 35]
con fidencey = [2,2,2,2]
valuey = [241, 86, 35, 35] (13)
confidences = [2,2,2,2)
values = [241, 86, 35, 35]
confidences = [2,2,2,1]

4 Proof of Correctness

In this section, we show the correctness of our algorithm. The first lemma shows
a crucial property of Y in Step 3 of Fig. 2.

Lemma 1. Assume P; and P; are non-faulty processes. In Step 3 of Fig. 2,
if P; sets Yi[k] to x #1 and P; sets Y;[k] to y #L1; then, x = y. Formally,
VP;, P; € G,Vk : Yi[k| #L AY;[k] #1 = Y;[k] = Y;[k].

Proof. If P; sets © #1 to Y;[k], then the kth column of X; contained at least
n — t copies of x. Only t rows can correspond to faulty processes, so at least
n — 2t of the rows that contain x in column k come from non-faulty processes.
This means that those n — 2¢ non-faulty processes also sent vectors to P; which
set z to the kth column for those processes. Suppose y # x and y #.L . This
means that there must be n — 2t values which are L in the kth column of X;
at process P;. But, n — 2t > t so P; will set Yj[k] to L, which contradicts that

y#L and y # x.

Theorem 1 (Property (1)). All non-faulty processes with positive confidence
about process k have identical valuelk]. Formally,

VP;, P; € G,Yk : confidence;[k] > 0 A con fidence;[k] > 0

implies
value; [k] = value;[k].

Proof. First note that the Z; matrix will contain the Y; vectors from Step 3 of
Fig. 2 for all P;. By Lemma 1, if there is a majority of a value that is not L in
the kth column of Z;; then, all values in that column that are not the majority
and not L are from a faulty process. This implies that if any non-faulty process
P; sets confidence;[k] > 1; then, all other non-faulty processes P; that set
confidence;[k] > 1 also set value;[k] = value;[k].

Theorem 2 (Property (2)). For any two non-faulty processes, the difference
in their confidence levels for any process Py can differ by at most 1. Formally,

VP;, P; € G,Vk : |confidence;[k] — confidence;[k]| < 1.

Proof. Assume some non-faulty process P; sets con fidence;[k] = ¢ and value;[k] =
x. Process P; setting con fidence;[k] = ¢ implies that a set R of processes sent x
to P; in Step 3 of Fig. 2. Let R, C R be the faulty processes that sent = to P;.
By problem setup, |R.| < ¢. This means that the number of processes that also
sent to any other process can differ by at most ¢. Let P; be the process that
receive the most messages in support of z. Then, all other processes receive at
least | R| —t messages in support of x. Step 4 of the algorithm in Fig. 2 compares
the support of x to 2t + 1 and t to select the confidence level. By the above
reasoning, the support of z differs by at most ¢ between any non-faulty process.
Therefore, the difference in confidence level between any non-faulty processes is
at most 1.

Theorem 3 (Property (3)). If Py is non-faulty, then, all non-faulty processes
P; have the value sent by process Py and their confidence level on this value is
2. Formally,

VP;, P, € G : (confidence;[k] = 2) A (value;[k] = vy) .

Proof. If P; is a non-faulty process, then, all processes will receive v; from P; in
Step 2 of Fig. 2. Next, all non-faulty processes will also claim that P; sent v; for
Step 3. Let G be the set of all non-faulty processes, by the assumptions of our
problem |G| > n —t and all non-faulty processes will distribute error correction
vectors with v; in the 7th entry in Step 3. So, every non-faulty process P; will
set confidence;[i] = 2 and value;[i] = v; in Step 4.

Theorem 4. The algorithms in Fig. 2 has bit message complexity of O(mtn?).

Proof. In Step 1, every process sends its value to every other process taking
mn? message bits. In Step 2, each process computes Vece; which contains at
most 2t + 1 values of length m bits. Every process then sends its Vece; to every
other process resulting in at most m(2t + 1)n? message bits. In Step 3, the same
number of message bits are sent as Step 2. This results in a total of at most

mn? + 2m(2t + 1)n? message bits being sent by this algorithm. This is O(mtn?).

5 Application

The all-to-all gradecast algorithm can be used to create an exceptionally sim-
ple byzantine agreement algorithm. Ben-Or, Dolev and Hoch[2] give a simple
algorithm for Byzantine agreement and approximate agreement based on the
gradecast algorithm. A modification to the gradecast algorithm is needed for
their Byzantine agreement algorithm. The modification is to make the algo-
rithm take a set of known faulty processes that the algorithm will ignore and
set all values for processes in the faulty set to L . This has the effect of making
that process in the faulty set disappear as if they had crashed. The Byzantine

consensus algorithm is symmetric, can agree upon an arbitrary value (as long
as there is some method of resolving a tie), and has an early stopping property.
They define early stopping to mean if there are f < ¢ actual failures; then, the
algorithm terminates in min(f + 2,¢ + 1) rounds. The message bit complexity
with our all-to-all gradecast algorithm is O(mt?n?).

The algorithm starts off with a faulty set which is initially empty. Then, for
each round r up to ¢+ 1 rounds the algorithm performs as follows: The algorithm
performs an all-to-all gradecast of the current value ignoring all processes in the
faulty set. The algorithm then adds up how often each value was received which
had a confidence greater than or equal to one. Next, it sets the current value to
the value that has the largest count. If there is more than one with the same
count; then, use some tie breaking scheme, such as always choosing the smaller
value. The algorithm adds all processes that have confidence one or less to the
faulty set. Next, the algorithm counts the number of processes that sent the
current value with confidence 2. If this count is greater than n —t, the algorithm
performs one more iteration of the loop and then exits the loop prematurely. To
finish, the algorithm returns the current value.

The approximate agreement algorithm presented by Ben-Or, Dolev and Hoch
is very similar to the byzantine agreement algorithm described above. The all-to-
all gradecast algorithm we describe can be plugged into their algorithm without
changing any of the properties of the original algorithm.

6 Conclusion

Many algorithms have a step where every process broadcasts a value. Gradecast
is a broadcast algorithm that gives a confidence level to each receiving process.
This confidence level gives information about the state of other processes. We
have presented an all-to-all gradecast with message bit complexity O(mtn?).
The original gradecast algorithm presented by Feldman and Micali[l] is a one
to all broadcast protocol. Using the original gradecast algorithm to produce all-
to-all gives O(mn?) message bit complexity. Our algorithm can be used in place
of the original gradecast algorithm when an all-to-all broadcasts is used. The
algorithm presented uses coding to reduce the amount of redundant information
being transmitted. We presented proofs that our modified algorithm maintains
the important properties of the original gradecast. Having an all-to-all gradecast
algorithm that is efficient in message bit complexity admits a simple symmetric
arbitrary valued Byzantine agreement with early stopping property that only
takes O(mt?n?) message bit complexity. Other algorithms may also benefit from
using coding in the fashion presented here.

References

1. P. Feldman and S. Micali, “Optimal algorithms for byzantine agreement,” in
Proceedings of the twentieth annual ACM symposium on Theory of computing, ser.
STOC ’88. New York, NY, USA: ACM, 1988, pp. 148-161. [Online]. Available:
http://doi.acm.org/10.1145/62212.62225

10.

11.

12.

13.

14.
15.

16.

. M. Ben-Or, D. Dolev, and E. N. Hoch, “Simple gradecast based algorithms,” Sep.

2010. [Online]. Available: http://arxiv.org/abs/1007.1049

R. M. Roth, Introduction to coding theory. Cambridge University Press, 2006.
D. Dolev, N. A. Lynch, S. S. Pinter, E. W. Stark, and W. E. Weihl, “Reaching
approximate agreement in the presence of faults,” Journal of the ACM, vol. 33,
pp. 499-516, 1986.

A. D. Fekete, “Asymptotically optimal algorithms for approximate agreement,”
in Proceedings of the fifth annual ACM symposium on Principles of distributed
computing, ser. PODC ’86. New York, NY, USA: ACM, 1986, pp. 73-87.
[Online]. Available: http://doi.acm.org/10.1145/10590.10597

B. A. Coan and J. L. Welch, “Modular construction of a byzantine
agreement protocol with optimal message bit complexity,” Information and
Computation, vol. 97, mno. 1, pp. 61 - 85, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/089054019290004Y

T. K. Srikanth and S. Toueg, “Simulating authenticated broadcasts to derive
simple fault-tolerant algorithms,” Distributed Computing, vol. 2, pp. 80-94, 1987,
10.1007/BF01667080. [Online]. Available: http://dx.doi.org/10.1007/BF01667080
J.-M. Hélary, M. Hurfin, A. Mostéfaoui, M. Raynal, and F. Tronel, “Computing
global functions in asynchronous distributed systems prone to process crashes,” in
International Conference on Distributed Computing Systems, 2000, pp. 584-591.
M. Pease, R. Shostak, and L. Lamport, “Reaching agreement in the presence
of faults,” J. ACM, vol. 27, pp. 228-234, April 1980. [Online]. Available:
http://doi.acm.org/10.1145/322186.322188

G. Liang and N. H. Vaidya, “Error-free multi-valued consensus with byzantine
failures,” CoRR, vol. abs/1101.3520, 2011.

R. Friedman, A. Mostéfaoui, S. Rajsbaum, and M. Raynal, “Asynchronous agree-
ment and its relation with error-correcting codes,” IEEE Trans. Computers, vol. 56,
no. 7, pp. 865-875, 2007.

T. Krol, “Interactive consistency algorithms based on voting and error-correcting
codes,” in TwentyFifth International Symposium on Fault- Tolerant Computing, Di-
gest of Papers, FTCS-25 Silver Jubilee, IEEE Computer Society Press, Los Alami-
tos, 1995, pp. 89-98.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,” ACM
Trans. Program. Lang. Syst., vol. 4, pp. 382-401, July 1982. [Online]. Available:
http://doi.acm.org/10.1145/357172.357176

“Parchive: Parity archive tool,” http://parchive.sourceforge.net/.

I. S. Reed and G. Solomon, “Polynomial codes over certain finite fields,” Society
for Industrial and Applied Mathematics, vol. 8, no. 2, pp. 300-304, 1960.

A. Partow, “Schifra reed-solomon error correcting code library,”
http://www.schifra.com/.

