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Abstract
Guaranteeing global consistency across distributed sys-
tems with uncertain physical clocks is a problem that
concerns several types of distributed systems such as
distributed databases. Google’s Spanner database im-
plements consistency across replicas groups by employ-
ing high precision clocks, reducing clock uncertainty,
and then using commit-wait, a technique which ensures
that causally related transactions are separated in time by
more than the clock synchronization error bound. How-
ever, employing a similar technique outside of Google’s
data-centers may be difficult due to operational concerns
or even impossible (e.g. when using cloud services like
Amazon EC2).
In this paper we introduce HybridTime, a hybrid be-
tween physical and logical clocks, that can be used to im-
plement a globally consistency database. Unlike Span-
ner, HybridTime does not need to wait out time error
bounds for most transactions, and thus may be used
with common time-synchronization systems. We have
implemented both HybridTime and commit-wait in the
same system and evaluate experimentally how Hybrid-
Time compares to Spanner’s commit-wait in a series of
practical scenarios, showing it can perform up to 1 order
of magnitude better in latency.

1 Introduction

A growing class of distributed systems, e.g. distributed
databases such as Spanner [7], are deployed at unprece-
dented scale and partitioned/replicated across multiple
datacenters both to improve serving latency and fault tol-
erance. In such systems, transactions frequently span
multiple datacenters and touch many servers, each serv-
ing different partitions of a dataset.

In order to provide good performance, many scalable
distributed databases such as Amazon’s Dynamo [9] and
Facebook’s Cassandra [13], relax the consistency model

and offer only eventual consistency. Others such as
HBase [1] and BigTable [4] offer strong consistency only
for operations touching a single partition, but not across
the database as a whole. These looser consistency mod-
els present difficulty for application developers, who are
typically accustomed to programming against fully lin-
earizable [11] single-node data structures.

Additionally, end users may be surprised and disturbed
if they witness a consistency anomaly: for example, in
a geo-replicated service, a user may first be routed to a
local datacenter and perform some action such as send-
ing an email message. If they then reload their browser
and are routed to another datacenter backend, they would
still expect to see their sent message in their email out-
box. Looser consistency models such as timeline consis-
tency [5] or eventual consistency [9] permit this kind of
anomaly, which is likely unacceptable for many applica-
tions such as banking or online commerce.

The easiest way to address consistency issues would
be to have perfectly accurate and synchronized clocks
across all servers; however, as absolutely accurate phys-
ical timekeeping is impossible in distributed systems,
the traditional approach to global consistency has been
to use logical clocks. Logical clocks, such as Lamport
Clocks [15] or Vector Clocks [10, 20]. Such clocks can
provide global, causally consistent view of data and up-
dates, but have two disadvantages: first, they require that
all clients must propagate clock data to achieve consis-
tent views, and second, the assigned timestamps have no
relation to physical time. Therefore, they are unable to
serve read requests that require a snapshot at a physical
point-in-time, a feature available in commercial systems
such as Oracle Flashback [17] and IBM DB2 [8] as well
as academic temporal database projects such as Immor-
talDB [19]. Moreover users expect that operations they
know occurred far apart in the real world appear ordered
as such independently of whether the system could estab-
lish a causal link between them, something that Vector
Clocks of Lamport Clocks cannot provide.
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It is important to mention that we refer to consistent
global state that is not only consistent state across differ-
ent replicas serving the same data, but also that state is
kept consistent across different partitions of the database,
possibly themselves spread out across geo-distributed
datacenters. Systems such as Spinnaker [23] use Paxos
[16] for the former, but fall back to pessimistic locking
schemes for cross-partition operations. Many of the ap-
plications for scalable databases involve a significant an-
alytical workload, in which read-only transactions fre-
quently run over the entirety of the dataset. For these
types of transactions, which may run for several minutes
or even hours, locking-based schemes for cross-partition
consistency are unacceptable, as they would prevent any
other concurrent operations.

Spanner introduced commit-wait, a way of ensuring
physical-time based consistent global state by forcing
operations to wait long enough so that all participants
agree that the operation’s timestamp has passed based on
worst case synchronization error bounds. While inno-
vative, the system performance becomes highly depen-
dent on the quality of the time synchronization infras-
tructure, and thus may have unacceptable performance
absent specialized hardware such as atomic clocks and
GPS receivers. Often, organizations rent computing in-
frastructure, e.g. Amazon EC2, and thus do not have the
infrastructure control necessary to add such high preci-
sion timekeeping equipment. In this paper, we present
HybridTime(HT), a hybrid between physical and log-
ical clocks and we show how HT can be used to achieve
the same semantics as Spanner, but with good perfor-
mance even with commonly available time synchroniza-
tion.

Like Spanner, our approach relies on physical time
measurements with bounded error to assign HybridTime
timestamps to events that occur in the system. How-
ever, unlike Spanner, our approach does not usually re-
quire the error to be waited out, thus allowing for usage
in common deployment scenarios where clocks are syn-
chronized through common protocols such as the Net-
work Time Protocol, in which clock synchronization er-
ror is often higher than with Spanner’s TrueTime. The
trade-off is that, in order to avoid commit-wait, Hy-
bridTime requires that timestamps be propagated across
machines to achieve the same consistency semantics as
Spanner. Contrary to vector clocks, which can expand as
the number of participants in the cluster grows, Hybrid-
Time timestamps have constant and small size.

HybridTime clocks follow similar update rules to
Lamport clocks, but the time values are not purely logi-
cal: each time value has both a logical component, which
helps in guaranteeing the same properties as a Lam-
port Clocks, and a physical component which allows the
event to be associated with a physical point-in-time. Like

logical timestamps, HT timestamps are required to be at-
tached to every message to and from clients. HT times-
tamps do not suffer from the problems of Vector Clocks,
which can grow over time as they accumulate state from
different machines. Instead, they are more like Lamport
Clock timestamps in that they have constant and small
size.

Moreover, in contrast to both Lamport and Vector
Clocks, when two events are separated by more than the
maximum clock error, it is possible to establish a tem-
poral ordering of events even if they are not causally
related, or if their causal relationship was established
through hidden channels that the system fails to capture.

In this paper we make the following contributions:

• We introduce the HybridTime clock, including up-
date algorithms and proofs of correctness.

• We introduce a real world implementation that il-
lustrates how the HybridTime clock can be used in
the same context as TrueTime is used in Spanner.

• We evaluate the implementation in a real world sce-
nario and demonstrate how HybridTime compares
to Spanner/TrueTime in similar scenarios.

• We describe how commit-wait can be implemented
with commonly available hardware and software.

The rest of this paper is organized as follows: Sec-
tion 2 presents the background and related work relative
to HybridTime and Spanner; In Section 3 we formalize
the underlying assumptions, introduce the clock update
algorithms and present proofs of correctness; In Section
4 we describe our implementation and how HybridTime
can be used to provide the same guarantees as required
by Spanner, in the same context; In Section 5 we evaluate
the implementation and show its practical value. Finally
in Section 6 we summarize the conclusions and make
some final remarks.

2 Background and related work

One of Spanner’s key benefits is that is externally con-
sistent, which is defined as fully linearizable, even in the
presence of hidden channels. In this paper we use the
term externally consistent in the same sense. Addition-
ally we use the term globally consistent to describe a sys-
tem which provides the same linearizability semantics,
provided that there are no hidden channels present.

Even though consistency within a replica group is
widely implemented in large scale databases, this is not
the case for inter-replica-group consistency. Dynamo
[9] author’s state that they use vector clocks to perform
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conflict-resolution within a single row but offer no equiv-
alent functionality for multi-row transactions. Cassan-
dra [13], which shares similarities with Dynamo, uses
plain wall clock timestamps, without taking clock er-
ror into consideration, and thus does not provide consis-
tency either within or between replica groups. Similarly,
BigTable [4] and its open source counterpart, HBase [1],
assign timestamps locally on each server and do not offer
consistency guarantees across replica groups (tablets).
Horizontally partitioned SQL systems such as MySQL
(typically described as “sharded MySQL”) similarly of-
fer within-partition consistency but offer no ability to
query a snapshot across multiple partitions.

Consistent systems would be trivial to implement if all
participants had access to a perfectly synchronized phys-
ical clock. However, it is well-known that it is impossible
for servers in a distributed system to have perfectly syn-
chronized clocks. Even with time synchronization mech-
anisms such as NTP [21], processes running on different
machines in a system have inaccurate clocks which suffer
some absolute error compared to an unknown theoreti-
cal reference clock. Additionally, real-life clocks exhibit
skew over time: clocks on different machines may drift
farther apart from each other as time progresses. Thus,
databases have typically resorted to other mechanisms to
assign timestamps to transactions in such a way that a
causally consistent snapshot may be computed.

One such timestamping mechanism is to use logical
clocks such as Vector Clocks [10,20] or Lamport Clocks
[15]. Systems utilizing such clocks to order events can
be globally consistent; however, they are not externally
consistent since they require that all client participants
propagate clocks. For example, if client A communicates
with client B over a hidden channel without forwarding
a timestamp, there is no guarantee that client B will be
able to see any modifications performed by client A.

Other systems such as Percolator [22], HBaseSI [27],
and Cloudtps [26] use a centralized timestamp oracle
process to assign monotonically increasing timestamps
to transactions and determine a serialization order. Thus,
they are both globally and externally consistent. How-
ever, this approach does not scale well to high transac-
tion throughput, and would add unacceptable latency if a
geo-distributed setup, where transactions running in re-
mote datacenters would have to pay a costly round-trip
to the timestamp oracle for each transaction.

Some systems implement some form of causal consis-
tency across wide-area networks. COPS [18] or Chain-
Reaction [2] enforce causality constraints across geo-
distributed systems, but do not embed physical meaning
in the timestamps. Finally, there has been noteworthy
work [24] on reasoning about physical time and clock
error with the aim of allowing to use physical time in
similar ways as logical time, such as global predicate de-

tection, but as far as we know it hasn’t been applied to
distributed databases.

Spanner’s key innovation is that timestamps assigned
by the system can be used to achieve external con-
sistency, but also have physical meaning. This is a
new aspect and is contrary to Vector Clocks and Lam-
port Clocks, in which timestamps are purely logical.
Moreover Spanner assigns timestamps with known er-
ror bounds. Similarly we’ll show that HybridTime
also provides physically meaningful timestamps with
bounded error.

3 HybridTime

As we’ll show in this paper HybridTime is always
globally consistent, and through selective applica-
tion of commit-wait is externally consistent. As
far as we know, ours is the only system that both
supports message-based consistency (HybridTime) and
time-based consistency (commit-wait) at the same time,
allowing the user to choose on a per-transaction basis
which one best fits the current needs. In the absence of
hidden channels, HybridTime provides lower latencies
and better throughput. In the presence of hidden chan-
nels, the user is free to revert to commit-wait and thus
obtain external consistency guarantees.

We now present the details of HybridTime. In Section
3.1 we introduce the underlying assumptions. We then
introduce the HybridTime clock and its update algorithm
along with proofs of correctness, in Section 3.2.

3.1 HybridTime Assumptions
Independent of how physical time measurements are ob-
tained, HybridTime relies on certain assumptions. In this
section we will introduce these assumptions and show
that they are plausible given the environment in which
most modern distributed systems are deployed. True-
Time also makes similar assumptions. HybridTime as-
sumes that machines have a reasonably accurate physical
clock, represented by the PCi(e) function, which outputs
the numeric timestamp returned by the physical clock as
read by process i for event e, that is able to provide ab-
solute time measurements (usually in milli- or microsec-
onds since 1 January 1970). Virtually all modern servers
are equipped with such a physical clock.

We moreover assume that there is an underlying phys-
ical synchronization substrate that keeps the physical
clocks across different servers synchronized with re-
gard to a reference server, the “reference” time1, repre-
sented by the PCre f (e) function which outputs the nu-
meric timestamp returned by the “reference” process for
event e. Additionally, we assume that such a substrate
is able to provide an error bound along with each time
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measurement, denoted by the Ei(e) function, which out-
puts the numeric value ε error of process i at the time e
occurred2. Again this is reasonable to assume since vir-
tually all large scale clusters execute time synchroniza-
tion daemons, such as the previously mentioned NTP,
which both synchronizes the server’s clocks and provides
at any moment a maximum bound on the clock error. It is
worth mentioning that TrueTime makes similar assump-
tions. Finally we note that we make no assumptions on
the actual accuracy of the clocks, i.e. the physical times-
tamps returned by server’s clocks may have an arbitrar-
ily large but finite error, as long as this error’s bound is
known3. Assumption 1 formalizes the expected relation-
ship between PCre f (e), PCi(e) and Ei(e).

Assumption 1. Physical clock error is bound

∀i,e : |PCre f (e)−PCi(e)|≤ Ei(e) (1)

That is, we assume that the physical timestamp re-
turned by each server’s physical clock is within certain
value of the reference time which is given and bound by
the Ei(e) function. This assumption is plausible since
most NTP deployments do provide a maximum error
with regard to a master daemon, the time reference.
Spanner’s authors mention that the TrueTime API does
something similar albeit with much greater precision. It
is noteworthy that that Ei(e) represents different error
functions, one per process, that the output of this func-
tion varies from process to process and over time.

We moreover assume that the timestamp returned by
the physical clock is monotonically increasing:

Assumption 2. Physical clock timestamps are process-
wise monotonically increasing

∀i,e, f : e → f ⇒ PCi(e)≤ PCi( f ) (2)

That is, when a server’s physical clock is queried for
the current time, it never outputs a value that is less than a
previous result. Again, this is plausible: NTP can be con-
figured to adjust server clocks by slowing them down or
speeding them up over reasonably large periods of time
to ensure that applications that rely on time reads are not
greatly affected by the adjustment. In certain cases, NTP
may skip time forward or backward, but such cases are
extreme and easily detected by monitoring the NTP dae-
mon status. Servers may choose to decommission them-
selves or fail-stop upon detection of such an event.

Based on these assumptions we can now introduce the
Physical clock API that is required at every node to sup-
port HybridTime, using each server’s physical clock and
the NTP protocol:

3.2 HybridTime Clock and Protocol
In this section we present the HybridTime clock
(HTC). A HybridTime clock timestamp is a pair

Algorithm 1 The Physical Clock API
i = server id()

1: function NOW : int physical, int ε
2: physical = PC i(now)
3: ε = E i(physical)
4: return p, ε
5: end function

(physical,logical) where the first component is a repre-
sentation of the physical time at which the event occurred
and the second component is a logical sequence number.
Algorithm 2 depicts the HTC algorithm.

Obtaining timestamps from the HTC clock works as
follows: each time a timestamp needs to be assigned
to an event or a message is sent, HTC.Now() is called
to obtain the latest Timestamp. The physical compo-
nent of this “latest” timestamp is either the value ob-
tained from the physical clock (PC) or the value stored
in last physical whichever is greater. Similarly the log-
ical value of the “latest” timestamp is either 0 if the cur-
rent PC value was selected or the next logical value in
the sequence if last physical was selected.

Updating the HTC clock works as follows: For any
incoming timestamp (“in” in Algorithm 2) if the incom-
ing value’s physical component is lower that the one ob-
tained through HTC.Now() then no action is required.
On the other hand if the incoming value’s physical com-
ponent is equal to the one obtained through HTC.Now()
then we set next logical to be the maximum of the
current logical value and the incoming logical value,
plus one. Finally, if the physical component of the in-
coming value is higher than the one obtained through
HTC.Now() we set last physical to it and next logical
to be the incoming timestamp’s logical component plus
one.

We later show that if one interprets an HTC Times-
tamp as a simple lexicographically comparable value,
Algorithm 2 implements a Lamport Clock, with the
additional advantage that generated timestamps have
physical meaning and are accurate representations of
physical time within a bound error.

Figure 1 depicts this update procedure for a sequence
of 7 events where some are causally related. As can be
seen in the figure, for any chain of events, both the phys-
ical and logical components of the assigned timestamps
are monotonically increasing.

To order the events timestamped using the Hybrid-
Time Clock algorithm we use Definition 1.

Definition 1. HCT (e) < HCT ( f ) is defined as the
lexicographical ordering of the timestamp two-tuple
(physical,logical)
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Algorithm 2 The HybridTime Clock Algorithm
1: types:
2: type Timestamp of {int physical, int logical}
3: var:
4: int last physical = 0
5: int next logical = 0
6: PhysicalClock pc; � Provides the API in Algo. 1

7: function NOW : Timestamp
8: Timestamp now;
9: int cur physical = pc.now().physical;

10: if cur physical ≥ last physical then
11: now.physical = cur physical;
12: now.logical = 0
13: last physical = cur physical;
14: next logical = 1;
15: else
16: now.physical = last physical;
17: now.logical = next logical;
18: next logical++;
19: end if
20: return now;
21: end function

22: function UPDATE(Timestamp in) : void
23: int Timestamp now = Now();
24: if now.physical > in.physical then
25: return;
26: end if
27: last physical = in.physical;
28: next logical = in.logical + 1;
29: end function

The definition of < usually allows to compare the ma-
jority of events without resorting to the logical value of
the timestamp, as illustrated by Fig. 1. The HybridTime
clock creates an ordering of events such that:

Theorem 1. The HybriTime clock happened-before re-
lation forms a total order of events

The proof of Theorem 1 is trivial since we are using
lexicographical ordering to order the events.

Although HybridTime clock does not make a direct
use of time measurement error we now show that such
errors in measurement are bounded such that the algo-
rithm does not accumulate error over time. This is im-
portant because, if no bound exists, then the physical
components of timestamps will become meaningless and
the ordering becomes nothing more than the one defined
with Logical clocks.

We start by defining the error in any HybridTime
timestamp assignment. Let HTCi( f ) represent a Hy-
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e5

e6

e7

(100,0)

(102,0)

(103, 0)

(108,1)

(108,2)

(108,1)

(110,2)

Figure 1: Example execution of the HybridTime clock
algorithm

bridTime clock timestamp assignment which takes the
form of a two-tuple (physical, logical) value. Let treal

f
be the “real” time at which f happened and let error( f )
be the error on the assignment of the physical timestamp
component by the HybridTime clock, i.e. error( f ) =
treal

f −HTCi( f ).physical.
For any event f , if f takes its physical timestamp com-

ponent from the physical clock due to Assumption 1 we
know that any physical clock read at process i, (PCi())
has bounded error given by function Ei(). This implies
that, in Algorithm 2 if the event takes the value of the
current clock read (line 11), then its error is equal to the
error obtained from the physical clock. This translates
to:

∀ f , i : HTCi( f ).physical = PCi( f )

→ error( f ) ∈ [−Ei( f ),Ei( f )]
(3)

We will now show that even if an event adopts the
physical timestamp component of the event that preceded
it, its error is still bound and is given by:

Theorem 2. For any event in a causal chain f , the
physical component of a HTC timestamp approximates
the “real” time the event occurred, with a error defined
and bounded by

∀e, f ,(e → f )

∧ (HTCi(e).physical = PCi(e))

∧ (HTCi( f ).physical = HTCj(e).physical)⇒
error( f ) ∈]−E j(e),Ei( f )[

(4)

We provide a full proof of Theorem 2 in Appendix 6.
Theorem 2 translates to the following. If the HybridTime
Clock timestamp assigned to f originates from an event
e that precedes it in a causal chain, and if e’s timestamp
was obtained from the physical clock, then the physical
time error of the assignment of e’s physical timestamp
component to f is in the interval (−E j(e),Ei( f )).

This means that the only difference between assigning
a physical timestamp component to an event from the
local clock or accepting one from another node is that
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that the left side of the interval is bound by the error as
measured when e occurred in node j instead of being
bound by the local error.

4 Implementation, Relation to Spanner

We have implemented HybridTime and commit-wait ex-
ternal consistency on top of a research prototype dis-
tributed and partially ACID compliant database and per-
formed a series of experiments in practical scenarios sim-
ilar to the ones Spanner was designed for. In this section
we introduce the research prototype database consistency
modes, architecture and transaction semantics.

Our implementation supports multiple external consis-
tency modes simultaneously. Clients are free to choose
which one best fits the use case and choose a consistency
mode for each write request. The following consistency
modes are supported.

• No Consistency - In this mode there are no exter-
nal consistency guarantees, transactions are assigned
timestamps from each server’s physical clock and no
guarantee is made that reads are consistent or repeat-
able.

• HybridTime Consistency - In this mode our imple-
mentation guarantees the global consistency as Span-
ner, absent hidden channels, but using HybridTime in-
stead of commit-wait. Clients choosing this consis-
tency mode on writes must make sure that the times-
tamp that is received from the server is propagated to
other servers and/or clients. Within the same client
process, timestamps are automatically propagated on
behalf of the user. If there are hidden channels, i.e.
if somehow a write or a read causes another write or
read without the timestamp being propagated, there is
no guarantee of external consistency.

• Commit-wait Consistency - In this mode our imple-
mentation guarantees the same external consistency
semantics as Spanner by also using commit-wait in the
way described in the original paper. However instead
of using TrueTime, which is a proprietary and pri-
vate API, we implemented commit-wait on top of the
widely used Network Time Protocol (NTP). Hence, in
this consistency mode we support hidden channels.

This flexibility means that, when the application de-
veloper knows that there are no hidden channels, or is
willing to propagate timestamps, they pay no commit-
wait cost. However, in the case that the application de-
veloper does make use of an external channel (eg an en-
terprise service bus or external web service) they may
selectively apply commit-wait in these situations. Based
on the authors’ experience working with large enterprises

with big data applications, we believe that many applica-
tions are fully-closed systems with no hidden channels,
and thus the vast majority of transactions can use Hy-
bridTime Consistency.

4.1 Architecture

We omit the full implementation details of the research
prototype database and instead introduce the characteris-
tics that are relevant for the implementation of the differ-
ent consistency modes.

Our research prototype database partitions the key
space and distributes these partitions across multiple ma-
chines. These partitions are analogous to tablets in
BigTable or regions in HBase. Each partition is served by
a set of replicas executing a consensus algorithm analo-
gous to Paxos. The leader is the only replica that can
accept writes. Each partition supports local transactions,
i.e. updates to a single replica set are ACID compliant,
but updates across replica sets are not atomic(A) or iso-
lated(I) in the current implementation (although they are
durable(D) and consistent(C))4. Hence clients wanting to
read/write to multiple partitions issue multiple, indepen-
dent, requests to each one.

We use MVCC to store multiple historical versions
of each data item, each tagged with the timestamp at
which the data was written, similar to the design used
by BigTable or Vertica [14]/C-Store [25]. Read opera-
tions are assigned a timestamp and always read the most
recently written version prior to that timestamp, ignoring
any future or past data.

4.2 Types of transactions

Our prototype supports three types of operations. We use
the same terminology that is used in the original Spanner
paper:

1. Read-Write(RW) Transactions - These encompass
all transactions that mutate existing data. A RW trans-
action may be preceded by a a read or sequence of
reads and needs to acquire locks for each touched
row before proceeding. In Spanner RW transactions
come in two types. Those that touch multiple replica-
groups (RG) and those than touch a single RG. In
the context of this paper we have only implemented
and evaluated the latter, but explain how HybridTime
could be used for the former.

2. Snapshot Transactions - Snapshot Transactions are
lock-free read-only transactions in the present. That
is, a client requests the latest state of a certain set of
data. However, because these rows may span differ-
ent RGs and even data centers, nodes need to agree
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what is the “present” and exactly which operations
have been committed before the “present”.

3. Time-travel Read - Time-travel reads are lock free
read-only transactions in the past. That is the client
request the state of a certain set of rows at a certain
past point in physical time. Because, again, such rows
may span different replica groups or data centers, all
participating nodes need to agree on exactly which
operations have been committed before the selected
“past” instant.

It is noteworthy that, from a client perspective, the
conceptual differences between Snapshot Transactions
(2) and Time-travel Reads (3) are only that the former
needs to be assigned a timestamp corresponding to the
present5 and the latter has its timestamp chosen as some
past point in time. Because of this in our implementa-
tion we make only the distinction between Write Trans-
actions, which mutate data and need to be assigned a
timestamp which all intervening nodes agree upon, and
Read Transactions which operate on some consistent
point-in-time snapshot. Read-Write transactions, while
interesting from a database perspective, make no differ-
ence on the implementation with regard to HybridTime
since the only relevant difference is that they undergo
a read phase where read locks are acquired prior to the
write phase.

Delving more into the concept of “external consis-
tency” in a database such as Spanner, we find that it
is very close to two fundamental concepts: i) Opera-
tions must act upon and yield a consistent global state
[12](CGS); ii) Operations must be atomic in the sense
that, when acting upon multiple replica groups under a
single transaction, a client which can observe changes
to a replica group can observe changes to all involved
replica groups. In practical terms i) means that if one
client executes transaction A, which touches a set of ma-
chines, and then executes another independent transac-
tion B, which touches another disjoint set of machines,
other clients may only observe the transaction sequences
[], [A], [A,B]. Since A and B are causally related the se-
quence [B] is not a CGS and should not be observed. One
the other hand ii) means that if a client executes a trans-
action that performs operation C on one replica group
and operation D on another replica group, another client
can only observe either [] or [C,D].

For the sake of clarity we omit the fact that in virtually
all message exchanges, clients send to and receive from
servers their last known HT timestamp. Similarly, this
happens between servers, with the difference that servers
can read and send the current value from the HT clock,
while clients cannot and can only propagate HT times-
tamps received from other servers.6

4.3 Write Transactions

The execution of Write Transactions with HybridTime
shares similarities with the execution of RW Transac-
tions in Spanner. For a single-RG Write Transaction, the
RG leader first acquires all relevant locks and then as-
signs a timestamp to the transaction, tsht . When replicas
replicate the transaction they update their HT clocks ac-
cording to the update rules introduced in Section 3.2. As
soon as the leader receives a majority of replication ac-
knowledgements, it applies the changes, deems the trans-
action committed, and notifies the client. Since for each
transaction the HT clocks of participating replicas are up-
dated, they agree that tsht

t x is in the past, which is relevant
for the execution of Read Transactions. Since all single-
RG transactions have to go through the leader, there is a
guarantee that if a transaction B is assigned a timestamp
after the the timestamp of transaction A, all replicas will
agree that B follows A.

Transactions that touch multiple RGs require a coor-
dinator RG which executes a two-phase commit proto-
col, on top of the consensus protocol that executes within
each RG. Upon receiving a request from the client, the
leader from the coordinator RG issues Prepare com-
mands to all participant RGs. The leader of each non-
coordinator participant RG acquires the relevant locks
and replies with its current HT timestamp. The coor-
dinator RG leader then chooses the highest of the times-
tamps received and assigns that timestamp to the transac-
tion, piggybacking this information as it sends an Apply
command to participant RG leaders. After receiving ac-
knowledgments that the transaction has been applied by
all participants the coordinator RG leader replies to the
client. Note that in Spanner the client drives the two-
phase commit protocol. This is similarly an alternative
here but one which we left out for simplicity.

As clients piggyback their last known timestamp ob-
tained from any server on each following request, it is
easy to see that, according to the HT clock update rules,
sequential transactions initiated from the same client
to different replica groups have sequential timestamps,
guaranteeing the desired “global consistency” property.
If transactions are causally related but their causal re-
lationship is established through hidden channels (i.e.
channels in which the last known HT timestamp is not
propagated), e.g. client 1 executes transaction A which
then causes, through hidden channels, client 2 to execute
transaction B, HT clocks alone cannot guarantee external
consistency. In this case, the user may explicitly perform
transaction A with commit-wait enabled, thus ensuring
the external consistency property at the cost of commit
latency. In the case that client 1 performs many write
transactions before communicating on the channel, they
may enable commit-wait only on the last of these trans-
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action in order to achieve the same consistency with little
impact on overall performance.

4.4 Read Transactions

All read transactions are executed on a consistent snap-
shot of global state without acquiring locks. Single
node reads achieve this by implementing Multi Version
Concurrency Control [3](MVCC) a well known database
technique. Clients can choose to specify a timestamp for
the transaction or leave it unspecified, in which case the
transaction will execute on the most recent state possible.

For read transactions that access a single RG, if the
client does not specify a timestamp, the transaction will
be performed by the leader, as it is the only node that is
guaranteed to have the most recent state. Upon receiving
the request from the client, the leader assigns the transac-
tion an HT timestamp, corresponding to the latest times-
tamp obtained from the HT clock, obtains an MVCC
snapshot and executes the transaction. Still for the single
RG read transaction case, the client might specify some
timestamp in the past in which to execute a transaction.
Replicas within a RG are required to keep up with the
leader within a fixed, pre-configured time interval, other-
wise are evicted. This means that if a client wishes to per-
form a point-in-time read that it knows is further in the
past than the replica delay period, it can route the request
to any replica instead of having to mandatorily route it
to the leader, as it is guaranteed that if the replica is still
alive it contains the transactions up to and including the
requested point in time. If the client specifies a point-in-
time that is more recent than the aforementioned period,
the transaction reverts to being routed to the leader.

Read transactions that span multiple RGs execute
much like the ones that span a single RG with some
subtle differences. If the client provides no timestamp
or if the specified timestamp is sufficiently close to the
present that it falls within the maximum physical time
measurement error (which is normally set to 1 second) of
at least one replica, then an initial negotiation round must
be performed where the client obtains the current times-
tamps from all participant leaders and chooses the oldest
one as the timestamp for the snapshot. The Read Trans-
action then proceeds as in the single RG case. In this
case Spanner’s authors chose to have the client choose
the timestamp in all cases, which avoids the initial ne-
gotiation round for recent transactions but may force the
Read Transaction to wait until the chosen timestamp is
safe (i.e. definitely in the past). We chose not to adopt
this approach, as clients may often run on unsynchro-
nized machines. Due to lack of time for the purposes of
this paper, we did not implement the negotiation phase
where the client obtains the most recent timestamps from
the leader, and focused our evaluation on single RG Read

Transactions. We note that the original Spanner paper
doesn’t measure such transactions either, and we would
have no basis for comparison in any case.

5 Experimental Evaluation

In this section we present our experimental results and
setup and demonstrate how HybridTime can be used
along side commit-wait and how it compares in terms
of latency.

5.1 Workload
We used the well know YCSB [6] as a workload for all
experiments. We used up to three simultaneous clients,
each running 8 threads with a mix of 60% insert, 20%
update, and 20% single-row read. The three clients cor-
respond to the three different consistency modes: each
client performs all writes with a single but differing
mode.

5.2 Experimental Setup
We executed all experiments in Google Compute Engine,
an Infrastructure-as-a-Service (IaaS) cloud provider. All
experiments were performed in the us-central1-a and
europe-west1-a “zones”. In each “zone” we assembled
a cluster of 10 machines of type n1-standard-8. This
type of machine has 8 “Virtual CPUs” each of which
corresponds to: “a single hyperthread on a 2.6GHz Intel
Sandy Bridge Xeon or Intel Ivy Bridge Xeon (or newer)
processor” so, more precisely, each machine has 4 cores
with hyperthreading. Each machine also has 30 GB
of memory and to each one we attached a “persistent
disk” of 350 GB capacity, formatted in the ext4 for-
mat, in which we store the persisted data and the write-
ahead-logs for the database. Our prototype database
runs on Linux, hence each machine was booted to a
debian-7-wheezy image. The operating system is in-
stalled to a different partition from the one that stores that
database data.

Server machines are configured to run NTP version
4.2.6 with the following configurations changed from the
default:

• The machine is configured with a single timeserver
provided by the Google Compute Engine infrastruc-
ture. We assume that this timeserver is typically
in the same datacenter as the machines being syn-
chronized, providing for low RTT and good up-
stream clock quality. We believe that most data-
centers already have NTP sources available within
a short RTT, and as databases using techniques such
as HybridTime become more commonplace, cloud
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providers will start to treat high-quality NTP as
standard infrastructure.

• The maximum polling interval is set to 8 seconds,
to ensure that the clock error bound is adjusted fre-
quently.

• The Allan intercept configuration is modified to 8
seconds.

These non-standard configurations prioritize tight
clock error bound estimates over actual clock accuracy.
That is to say, effects of jitter on the actual clock quality
is worsened, but the maximum error bounds provided to
the kernel remain much smaller. For systems such as Hy-
bridTime, a tighter bound on error has more benefit for
the application than smaller average clock offset. The
following table shows the maximum error numbers we
extracted from our clusters for one and two datacenters.

NTP Max. Error Min. Max. Avg. Stddev
Single DC 11.5 16.7 14.73 ± 2.468
Two DCs 12.3 20.1 16.36 ± 2.581

Unless explicitly stated all experimental results were
obtained with full durability enabled, i.e. no mutations
become visible without the system having made a call
to fsync()/fdatasync() for the the client’s data7, so
that the chances of losing data on a machine crash are
minimized. This on par with or beyond the settings of
some widely used large scale databases, e.g. Cassandra
uses a background thread that calls fsync() periodically
thus leaving a bigger window for data loss on a cluster-
global power outage, and HBase, at the time this paper
was written didn’t yet have “proper fsync support”8.

Because we performed the experiments on an IaaS
cloud provider, we were unable to obtain the hard-
ware/software layout that underlies the storage system,
making it impossible to provide a full description of how
“persistent disks” in Google Compute Engine are actu-
ally implemented. However, as durability is usually a
major concern for any database and an fsync() system
call typically takes a non-trivial amount of time to com-
plete on commodity hardware, for reference, we took
some measurements of the latency characteristics of the
storage medium in which we persist the data and write-
ahead-log. We used the “flexible I/O tester” bench-
mark tool with a 4 thread workload with 2 writers and 2
readers, each writer making an fsync()/fdatasync()

call on each write operation, and writing 1KB blocks,
roughly the same size as a row in the database bench-
mark workload. For this paper the most relevant re-
sults are the write latencies as these may represent a
significant portion of total request time and these were
(in msec): min=1 , max=39 , avg= 1.93, stdev=

2.08. This means that, in average, each client request
will spend at least ± 2 milliseconds waiting on I/O

which is an important factor in the experiments we de-
scribe in the following section.
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Figure 2: Write latency values with without replication
and fsync(), log scale

5.3 Experiment 1: Single datacenter, no
consensus

The goal of Experiment 1 is to reveal the impact each
of the consistency modes has on request latency with-
out other database concerns such as durability or fault-
tolerance coming into play, since addressing these two
requirements has a sizeable impact on database perfor-
mance. The question we aim to answer with this ex-
periment is, other database concerns aside, what is,
as close as possible, the standalone impact of the dif-
ferent consistency modes: no consistency vs. Hybrid-
Time consistency vs. Commit-Wait consistency in to-
tal request latency. Hence, for this experiment only, we
disabled fsync() calls, relying on the OS buffer to best
choose the time to actually persist the data. Moreover, for
this experiment only, we disabled consensus replication
thus writing data from client requests to a single node.
We performed Experiment 1 on a 10 node cluster on a
single datacenter. Figure 2 displays the main results we
obtained.

The chart in Fig. 2 plots latency over an arbitrary pe-
riod of time, as measured on the server, for each of the
consistency modes, overlapped with clock error. Latency
times are a moving average, each data point represent-
ing the average latency, in microseconds, since the pre-
vious datapoint. The chart in Fig. 3 plots the latency his-
tograms, as measured on the YCSB client, for percentiles
50%,75%,90%,99% and 99.9%.
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Figure 3: Write latency percentiles with without replica-
tion and fsync()

An important takeaway is that HybridTime consis-
tency has virtually no impact on latency. Although ex-
pected, this shows that, as claimed, it is possible to
obtain the same consistency benefits of commit-wait
through HybridTime by simply requiring that a sin-
gle timestamp be propagated by clients. Another take-
away from both charts is that, durability and replication
aside, the clock error has a very big impact on total la-
tency for commit-wait consistency. Commit-wait con-
sistency requests are about 2 orders of magnitude slower
than non-commit-wait ones (without fsync() and repli-
cation) with the maximum clock errors we were able to
extract from a traditional, albeit slightly tweaked, NTP
setup. As expected, the latency of commit-wait requests
closely track the clock error, increasing and decreasing
as it does. This serves as a baseline for the following
experiments.

Another very important takeaway is that while the
maximum clock error values that we were able to ob-
tain from NTP were higher than the ones that TrueTime
achieves and Spanner leverages (11-15 msec vs. 5-7
msec), they are not much higher, usually 2-2.5x. While
twice the time is significant, we note that we used pub-
lic servers to synchronize our time master, and the time
master itself had a 6-9 msecs maximum error. We argue
that this signifies that a setup in which commit-wait is
used with the typical NTP protocol, while maintain-
ing latency times close to the ones in Spanner, is not
only plausible but possible, e.g. for close enough data-
centers with a common, good time source, or whenever
there is access to a/some close and trustworthy stratum
19 source(s). We intend to explore this further in future
work.
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Figure 4: Write latency values with replication and
fsync(), log scale

5.4 Experiment 2: Single datacenter with
consensus

For Experiment 2 we evaluated request latency with
durability and consensus replication enabled. We aim to
answer two questions with this experiment: i) What is
the percentage of time spent waiting for commit-wait
consistency with replication and durability enabled;
i) Is it such that it makes HybridTime consistency a
preferred option in some cases.

The chart in Fig. 4 plots, again, latency over an arbi-
trary period of time, as measured on the server, for each
of the consistency modes overlapped with clock error.
Again, latency times are a moving average, each data
point representing the average latency, in microseconds,
since the previous datapoint.

At is can be seen in Fig. 4, even with durabil-
ity and replication enabled, HybridTime consistency re-
quests take about one order of magnitude less to com-
plete than commit-wait request. In fact HybridTime re-
quests take about 5 times less to complete than sin-
gle replica group writes as reported on the Spanner
paper, which makes HybridTime a possible choice in
latency-sensitive scenarios even if TrueTime-like ac-
curate clocks are possible.

Fig. 4 shows that even with a full database stack, a
lot of the time for commit-wait consistency requests is
still spent waiting out the clock error. That is, even over-
lapping replication which transmits data to other nodes
(who must call fsync() before replying) and the lo-
cal write-ahead-log append, 99.9% of the requests spend
86% percent of the total request time waiting out clock
error. We do not make a direct waited-time comparison
to the numbers published on the Spanner paper because
they’re reported single-replica, no commit-wait, request
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times are higher than the times we’ve obtained from our
database prototype even with replication included. We
speculate this is possibly due to other features imple-
mented in Spanner that are unpublished or that our re-
search prototype does not yet support, like multi-replica-
group write transactions.
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Figure 5: Write latency histograms, 2 datacenters.

5.5 Experiment 3: Two datacenters

For Experiment 3 we deployed our research prototype
database to two different datacenters and had clients
in each datacenter write to all partitions. The goal of
this experiment is both to demonstrate that, like Span-
ner’s commit-wait, HybridTime also works on a geo-
distributed cluster and that throughput from the YCSB
client is much higher for HybridTime consistency, vs
commit-wait consistency.

Fig. 5 displays the normalized latency histograms for
Experiment 3. One important takeaway from this exper-
iment is that not only does HybridTime show lower la-
tency values but these are also more stable, for instance
25% of all requests fell under the same bin in YSCB.
This makes sense since commit wait latencies vary with
the clock error, while HybridTime latencies only depend
on the server implementation, which hints that Hybrid-
Time might be a better alternative when latencies need to
follow strict SLAs.

Throughout the experimental evaluation we did not
focus on throughput as that is highly dependent on the
number of servers and clients, however it is worth men-
tioning that a single YSCB client using HybridTime con-
sistency achieves roughly 20 times the throughput of a
client using commit-wait consistency.

6 Conclusion

In this paper we’ve introduced a new global consis-
tency algorithm, HybridTime, which experiments show
keeps 1 order of magnitude lower latency than commit-
wait implemented on top of NTP. HybridTime both pro-
vides happened before ordering of transactions across a
globally distributed database and error bound, physically
meaningful timestamps, which can be used to answer
point-in-time queries.

We’ve also demonstrated how commit-wait can be im-
plemented on top of the widely used NTP protocol with
latencies that are worse, but within the same order of
magnitude, as Spanner’s. Moreover we’ve show that
both HybridTime and commit-wait can live in the same
system so that users are free to choose one or the other
on a per use-case basis. If hidden channels may exist,
then commit-wait is the better alternative and the only
one that ensures global consistency at the cost of being
1 order of magnitude slower to answer client request. If
on the other hand the system is closed and there are no
hidden channels then HybridTime still provides cluster-
wide consistency, even for geo-distributed clusters, but
keeps much lower latencies.

A - Proof of bound physical time error on
HybridTime timestamp assignment

Proof. Let e be the event occurring at node j prior
to event f occurring at node i, whose timestamp was
transported along with a message and used to call
HTC.U pdate(). Let it also be the case that the physi-
cal timestamp component of e is higher than PCi( f ) such
that the test in line 24 in Algorithm 2 passes, so that the
value of last physical is updated to the value of e’s phys-
ical timestamp component and later assigned as f s phys-
ical timestamp component.

If e’s timestamp was obtained from the physical clock
(PCj(e)) then, due to Assumption 1, the “real” time at
which e happened must fall under the interval:

treal
e ∈ [PCj(e)−E j(e),PCj(e)+E j(e)] (5)

We also know that the “real” time at which f must have
happened is in the interval:

treal
f ∈ [PCi( f )−Ei( f ),PCi( f )+Ei( f )] (6)

We know that, since e → f , the “real” time at which e
and f occurred can be related by:

treal
f > treal

e (7)
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Since e → f , from 5 and 7 we can assert that treal
f must

have occurred after e’s earliest possible value that is:

PCj(e)−E j(e)< treal
f (8)

On the right side of the interval we can assert that treal
f

must have occurred before PCi( f )+Ei( f ), that is:

treal
f ≤ PCi( f )+Ei( f ) (9)

Joining 8 and 9 together we get:

PCj(e)−E j(e)< treal
f ≤ PCi( f )+Ei( f ) (10)

If we subtract PCj(e), the value assigned to the phys-
ical component of f ’s timestamp, from the inequality in
10 we get:

−E j(e)< treal
f −PCj(e)≤

PCi( f )−PCj(e)+Ei( f )
(11)

Since We’ve selected PCi(e) as f ’s physical times-
tamp, i.e. (HTCi( f ).physical = HTCj(e).physical)∧
(HTC(e).physical = PCi(e)) we know, from Algorithm
2 that:

PCi( f )< PCj(e) (12)

From (12) we know that PCi( f )− PCj(e) < 0, that
HTCi( f ).physical = PCj(e) and we previously defined
treal

f −HTCi( f ).physical as error( f ) so 11 becomes:

−E j(e)< error( f )< Ei( f ) (13)

That is the the absolute error on the assignment of
PCi(e) as the physical component of f ’s timestamp is
bound by:

error( f ) ∈ (−E j(e),Ei( f )) (14)

Notes
1In TrueTime this server is referred to as the “time-master”
2Ei(e), PCre f (e), PCi(e) are assumed to use the same time resolu-

tion, usually milli- or microseconds.
3As we’ll show later in practice we limit the maximum error of a

server by evicting it from the cluster if the error surpasses a maximum,
but this is not relevant for this analysis

4This is implemented through two phase commit in Spanner
5Which Spanner’s authors solve simply by having the client choose

the “current” timestamp and having servers wait until that timestamp is
guaranteed to be in the past.

6To prevent malicious clients from manipulating the clock, a pro-
duction implementation should authenticate the clock values using a
scheme such as HMAC. Our research prototype assumes that clients
are not malicious.

7Although the actual durability semantics of an
fsync()/fdatasync() call is usually dependent on software
and hardware the usually accepted contract is that after such a call all
previously written data is durable and will survive a power outage

8Proper fsync support for HBase is currently in-progress and
tracked by https://issues.apache.org/jira/browse/HBASE-5954

9A stratum 1 source in NTP terms is a GPS or atomic clock
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