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Abstract. In this paper, we show that for elections in distributed systems the conversion from non-binary choices
to binary choices does not always provide optimal results when the preferences of nodes are not identical. With this
observation, we study the problem of conducting democraticelections in distributed systems in the form of social
choice and social welfare functions with three or more candidates. We present some impossibility and possibility
results for distributed democratic elections in presence of Byzantine behavior. We also discuss some existing elec-
tion schemes, and present a new approach that attempts to mitigate the effects of Byzantine votes. We analyze the
performance of these schemes through simulations to compare their efficacy in producing the most desirable social
welfare rankings.

1 Introduction

Many problems in distributed systems requireelectionfor processes to carry out globally consistent actions.
For example, the problem of binary consensus can be viewed asan election between two possible choices.
The value decided by the protocol can be considered the winner elected by the system. Theleader election
problem requires that all the processes in the system agree on a leader. The agreed upon leader may then
perform certain privileged tasks on assuming this role. Most protocols for leader election select processes
with the lowest or the highest identifier value as the leader.It can be argued that such a selection on the
basis of identifiers does not constitute an ‘election’ in true sense as the results are not based on the choices
of the involved nodes in the system, assuming the nodes can indicate their preferences. Given that one of
the fundamental problems in the area of distributed systems, the Byzantine Agreement problem, assumes
malicious intent as well as collusion, it seems natural thatthe problem of fair democratic elections be also
studied in this context.

Democratic elections have been studied extensively in the fields of economics and game theory. A large
set of interesting problems for elections with three or morecandidates have already been explored [1, 2].
Arrow’s theorem, an important result on this topic, shows impossibility of elections under some specific re-
quirements [3]. Yet, the confluence of democratic elections(with more than two candidates) and distributed
protocols has not been explored to the best of our knowledge.Involvement of Byzantine processes in the sys-
tem presents some additional challenges for this task. The notion of strategy-proofness[4] does not readily
apply to Byzantine processes as they can be considered unaffected by individual losses. In this paper, we in-
troduce the notion of democratic elections in distributed settings by addressing the following sub-problems:

Sub-optimality of Standard Protocol: With the background setting of elections, the idea of deciding on
a winner based on every node’s most preferred choice seems appealing. With this approach the eventual
winner would be the node receiving highest number of votes (ties broken arbitrarily). This scheme is called
‘plurality’ scheme in economics and game-theory literature. However this approach does not always lead to
outcomes that maximize the overall gains for the system. Theterm ‘gains’ may be attributed to any property
that is relevant to global observations of the system, such as the overall latency of a message broadcast or
the average load on each node in the system in some distributed computing protocol. For example, let us
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consider a system with seven nodes{P1, P2, . . ., P7} that run a distributed protocol in presence of a leader
node that controls the distribution of work. Based on the resulting latency or load values of their individual
communications with three possible candidate nodes, the seven nodes want to elect a leader. Leta,b, and
c denote the three possible outcomes of such an election amongthree candidates. For one such instance of
voting assume that Table 1 represents the votes of each node in the system. This tabular representation means
thatP1 prefers the outcomeb the most, and then prefersa overc; the preferences of all other processes can
also be inferred in this manner. ‘Plurality’ method on this vote profile, with coin-toss based tie breaking,
electsb or c with equal probability, and never electsa . However, it is easy to verify thata beats bothb

P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c a
2nd choice a a a a a a b
3rd choice c c c b b b c

Table 1.Votes by ProcessesP1 to P7

andc on individual pairwise comparisons. Additionally, if a positional vote counting mechanism1, such as
Borda-Count Method (see Section 5) [5] is applied, thena’s score is strictly higher than those of bothb and
c. Hence, even though election ofa seems the most optimal outcome for the overall system, the standard
approach never electsa, and by electing eitherb or c reduces the social welfare2 of the system.

Strategic Voting by Byzantine Processes:The Byzantine processes can exhibit any kind of malicious
behavior. One such malicious act is to cast strategic votes so that the overall social welfare is not maxi-
mized. For example, in Table 1, ifP7 is Byzantine, it may broadcast its vote (to all the processes) with c as
its first choice anda as its last. With the changed vote profile, even the pairwise comparison, or positional
voting schemes would not electa. Thus, this fault would result in decrease of overall socialwelfare of the
system. For binary choices, [7] studies the similar problemwhen one of the two available choices is more
desirable, and it is beneficial for the system to agree on thatchoice despite the efforts of Byzantine processes.

In short the contributions of this paper are following:

– We introduce the problem of democratic elections in distributed systems by studying: Social Choice and
Social Welfare in distributed settings with Byzantine faults.

– We present the impossibility and possibility results for some specific requirements for the problems.
– We propose a social welfare function called Pruned-Kemeny,and by means of simulations show that our

scheme significantly outperforms other popular schemes forByzantine Social Welfare problem.

2 Preliminaries

In economics and game theory, elections have been studied primarily in two forms – social choice functions,
and social welfare functions [6]. For both of these forms, the voters are required to cast their vote indicating
their preferences over all the candidates. As the result of voting, social choice functions elect one candidate
as the winner; whereas social welfare functions produce an overall ranking of the candidates. Formally, these
functions are defined follows:

1 considers the positions of each candidate in all the votes, assigning fixed points to each position and then computing aggregate
points of every candidate

2 standard term from economics literature; defined in Section2. For detailed explanations see [6]



LetA be a set of choices/candidates and{P1, ..., Pn} be the set ofn voters. LetL denote the set of linear
orders onA (L is isomorphic to the set of permutations onA). The preferences of each voterPi are given
by ≺i ∈ L, wherea ≺i b means thatPi prefers choiceb to choicea.
A social welfare functionW is a function of the form

W : Ln→ L

A social choice functionC takes the form
C : Ln→A

The preferences of a voter arestrict if the voter is not indifferent between any two candidates. Throughout
the paper, we limit our focus tostrict preferences. Construction of a social choice function froma social
welfare function, and vice-versa is trivial [8]. Given a social welfare functionW, one could construct a
social choice function by simply declaring the top-most ranked candidate in the result obtained byW as the
social choice. Conversely, to construct a social welfare functionW from a given social choice functionC
one could applyC overk candidates and place the winning candidate on top of the result of C, and repeat
this processesk− 1 times (at each iteration, removing the candidates alreadyplaced in the result).

For the rest of this paper, we use the following terms in our discussion:
Ranking : A ranking is a total order over a fixed set of candidates.
Vote : A vote is an individual voter’s preference ranking over theset of candidates. Based on the above
notation,≺i is the vote of voterPi .
Ballot : A ballot is a collection of the votes. The size of the ballot is the number of votes the ballot contains.
Scheme: A scheme is a mechanism that takes a ballot as input and produces a ranking or the winner as
output.
Result : Given some ballot, the ranking/winner produced by any scheme is called the result of the scheme
on that particular ballot instance.
Condorcet Candidate : If a candidate is preferred by all the voters over each of theother candidates in
a head-to-head comparisons, then such a candidate is calledCondorcet Candidate. It is not necessary that
such a candidate always exists.

3 Model

We assume a synchronous distributed system consisting ofn processes. In our model any two nodes in the
system can communicate privately with each other, thus the induced communication graph is complete. Of
then nodes in the system, at mostf can be Byzantine. For the synchronous model of communication, [9]
showed that agreement can only be guaranteed whenf < n/3. Throughout this paper, we assume that this
bound of f < n/3 holds. All non-faulty processes in the system are calledgoodprocesses, and the faulty
processes are calledbadprocesses. The termsvoters, processes, andnodesrepresent the same entities, and
are used interchangeably. The set of choices,A, is known to all the nodes in the system and each node votes
with its strict preferences as a total order over the elements ofA.

Byzantine Social Choice Problem:Given a set ofn processes of which at mostf are faulty, and a set
A of k choices, design a protocol that elects one candidate as the social choice (while providing the guaran-
tees 1 to 3 listed below).

Byzantine Social Welfare Problem:Given a set ofn processes of which at mostf are faulty, and a set
A of k choices, design a protocol that produces a ranking(total order) over the choices(while providing the
guarantees 1 to 3 listed below).

Protocol Guarantees: For both of these problems, the protocol should provide thefollowing guarantees:

1. Agreement: All good processes decide on the same choice/ranking.



2. Termination: The protocol terminates in a finite number of rounds.
3. Validity: This condition imposes requirement on the choice/ranking decided based upon the preferences

provided by the good processes.

If V is the validity condition selected for the election, thenBSC(k,V) denotes the Byzantine Social Choice
problem overk choices that satisfies the validity conditionV; similarly BSW(k,V) denotes the Byzantine
Social Welfare problem that is defined with the constraints of V for the availablek choices.
Some examples of validity conditions are listed in Table 2 inthe context of BSC problem. A brief outline
for the required steps of such a method is discussed in Section 7.

In the standard Byzantine agreement problem [9], all the good processes must agree on a common value
v ∈ A. The only requirement on the decided value is that if all goodprocesses propose the same valuev,
then the value decided must also bev. If all good processes do not propose the same value, then there is no
requirement on the value that is decided. In Byzantine Social Choice (BSC) problem the value decided by
the protocol is important, as some of the choices may be more desirable than others.

Condition Description
S If v is the top choice of all good voters, thenv must be the winner.
M If v is top choice of majority of good voters, thenv must be the winner.
S′ If v is the last choice of all good voters, thenv mustnot be the winner.
M′ If v is last choice of majority of good voters, thenv mustnot be the winner.
P If v is not the top choice of any good process, thenv mustnot be the winner.

Table 2.Various Validity Conditions for Byzantine Social Choice

4 Byzantine Social Choice (BSC)

For the Byzantine Social Choice (BSC) problem, we always require agreement, and termination conditions
but may want to impose different validity conditions. In the standard Byzantine Agreement literature, the
problem of deciding from more than two choices is consideredequivalent to that of choosing from a set of
two choices because a solution for either one of the problemscan be used to solve the other [10]. However, as
we show in this paper (Sec. 1), this is not the case for the BSC problem.BSC(k,V) denotes a BSC problem
over k choices that satisfies the validity conditionV. Thus,BSC(2,S) is the standard binary Byzantine
Agreement. Note that whenk equals two,S,P andS′ are equivalent to the standard validity requirements
for binary Byzantine Agreement protocol [11]. Similarly,M andM′ are equivalent when there are only two
choices.

BSC(3,M) is the Byzantine social choice problem on three choices with agreement, termination, and the
majority validity condition. We show in Section 4.1 that this problem is impossible to solve in a distributed
system. However, somewhat surprisinglyBSC(3,M′) is possible to solve. As an example ofBSC(3,M′)
consider the problem of leader election in a distributed system with Byzantine processes. Suppose that
processes need to choose a leader among three choices. It is known that one of the three choices may be
Byzantine and the good processes would want to avoid its election. Although there is no initial agreement
on which of these choices is Byzantine, it is a reasonable assumption that majority of good processes will
identify the Byzantine choice correctly. In Section 4.2, wegive a protocol for solvingBSC(3,M′) .

Observe thatBSC(k,S) is simply the standard Byzantine agreement problem in which every process
proposes its first choice. HenceBSC(k,S) is solvable for anyk so long asf < n/3. It is also possible to solve
BSC(k,S ∧ S′). We give such a protocol in Section 4.2.



4.1 Impossibilities

Arrow [3] showed that for elections with three or more alternatives, no voting system that provides two
basic properties:Pareto Efficiency3 andIndependence of Irrelevant Alternatives (IIA)4, can guarantee non-
dictatorial elections. In this section, we show impossibilities for elections in distributed systems with Byzan-
tine faults. We focus on instances ofBSC(k,V) problems which are impossible to solve for specified values
of k andV. Let us first consider the case whenk equals two. For this case, the conditionsS,P andS′ are
equivalent. Standard Byzantine agreement protocols can beused to solveBSC(2,S).

Lemma 1. There is no protocol to solveBSC(2,M) when f≥ n/4.

Proof: If f ≥ n/4, then good processes are at most 3n/4. Suppose that the set of choices is{a, b}. Assume
that just the bare majority of good processes propose valuea. Thus, the total number of processes proposing
a is at most 3n/8 + 1. The number of processes proposingb is at least 5n/8 − 1. Then forn ≥ 4, we have
that more processes are proposingb. Since processes do not know which processes are good, this problem
is indistinguishable from the instance where 5n/8 − 1 good processes proposeb and remaining 3n/8 + 1
processes proposea. In the second instance, the protocol must chooseb, and therefore it will also chooseb
in the first instance.

Lemma 2. There is no protocol to solveBSC(2,M′) when f≥ n/4.

Proof: For binary choices,k = 2, it can be easily observed that the problemBSC(2,M′) is equivalent to
BSC(2,M). Thus, based on the result of previous lemma,BSC(2,M′) is also unsolvable whenf ≥ n/4.

Interestingly, presence of a large set of choices can also lead to impossibility.

Lemma 3. There is no protocol to solveBSC(k,P) for any k≥ n when f≥ 1.

Proof: Given thatk ≥ n, consider the case when each process proposes a different value. Since each value
appears exactly once, there is no way to distinguish the value proposed by a bad process from that proposed
by a good process.

Theorem 1. There is no protocol to solveBSC(k,M) for any k≥ 2 when f≥ n/4.

Proof: Suppose that there is a protocol that solvesBSC(k,M) for anyk ≥ 3. We will use this protocol to solve
BSC(2,M). Given an instance ofBSC(2,M) problem, all the processes construct an instance ofBSC(k,M)
by first constructingk − 2 artificial choices. However, none of the good processes use these choices as
their first two choices. Now they run the protocol forBSC(k,M) which must choose a value that has been
proposed by the majority (ties broken in favor of lower value) of good processes as the first choice. All good
processes return this as the decided value for the givenBSC(2,M) problem. But by Lemma 1,BSC(2,M) is
unsolvable.

3 for definition see Appendix, details in [3]
4 for definition see Appendix, details in [3]



4.2 Possibilities

As BSC(k,S) is solvable by standard Byzantine agreement [10] andBSC(k,M) is unsolvable, it is natural to
seek some validity conditions that admit solution. Consider the following validity condition:

Mo (Overwhelming Majority): If there is a choice that is the first choice of at least 3/4th good processes,
then all the good processes elect that choice.
It can be observed that any protocol that ensuresM also ensuresMo. Similarly Mo is a stronger requirement
thanS, and thus any protocol providing guarantee onMo also guaranteesS.

Lemma 4. Protocolα given by Algorithm 1, solvesBSC(k,Mo) when for any k≥ 2 when f< n/3.

Proof: Let v be the value proposed by at least 3/4th fraction of processes. It is easy to see that 3/4∗ (n− f ) >
1/4 ∗ (n− f ) + f for all values off < n/3. Hence, all processes decide onv.

Algorithm 1 Protocolα at Pi to ensureBSC(k,Mo) and therefore alsoBSC(k,S)
T: array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking ofk candidates) /* My vote * /
/* Every process proposes itsfirst choice */
T[i] = vote[1] /* index starts from 1 */
/* Step 1: Exchange first choice with all */
for j = 1 ton do

sendT[i] to Pj

receiveT[ j] from Pj

/* if no value received fromPj setT[ j] = 0 */
end for
/* Step 2: Agree onT vector : the ballot of all votes */
for j = 1 ton do

run Standard Byzantine Agreement onT[ j];
end for
/* Step 3: Choose the value with the highest tally, breaking ties in favor of the smaller value */
return the least value from 1..k that has the highest frequency inT.

We showed in Section 4.1 thatP is impossible to achieve whenk ≥ n. However, if choices are limited, then
P can be guaranteed as follows.

Lemma 5. Protocolα solvesBSC(k,P) for 2 ≤ k< n when f< min(n/k, n/3).

Proof: It is sufficient to show that the largest tally would be of a value proposed by a correct process. Sup-
pose, if possible, the largest tally is for the valuev which is not proposed by any good process. The tally forv
can be at mostf . There aren− f proposals by good processes. None of these proposals is forv, and therefore
all these proposals are for remainingk − 1 values. Since none of these values had tally more thanv, we get
that the total number of proposals possible are (k− 1) ∗ f . From f < n/k, we obtain that (k− 1) ∗ f < n− f
which is a contradiction because all correct processes makeat least one proposal. �

However, if we were to require (M′ ∧ P) and use the steps in the protocolα, with suitable adjustments
(not picking a social choice that would violateM′) to handle the validity requirements, it would be evident
that the modified protocolα would not satisfy (M′ ∧ P). Consider the example ballot presented in Table 3,
with P6 andP7 as Byzantine voters. In this example, a simple majority overthe first choices would result



P1 P2 P3 P4 P5 P6 P7

1st choice b b b c c c c
2nd choice a a a b a a a
3rd choice c c c a b b b

Table 3.A ballot with P6 andP7 as Byzantine Voters

in choosingc as the winner which violatesM′. The protocolα will elect a as the winner. However, an
overwhelming majority ofgoodprocesses, 4 out of 5, preferb overa. Note that the choicea is not the first
choice for any process, leave alone being the first choice of agoodprocess. It is not possible for a protocol
to deterministically know which nodes aregoodand which arebad in all the instances. Thus to provideM′

the only option any deterministic protocol would have to discard a choice that appears⌊(n− f )/2+ 1⌋ or
more times as the bottom choice in the ballot. In this example, with n = 7 and f = 2, ⌊(n − f )/2 + 1⌋ is 3
and thus it is clear that any protocol that guaranteesM′ can only choosea as winner (because bothb andc
are last choices for at least three processes).

We now show the surprising result thatBSC(k,M′ ∧ S) is solvable fork ≥ 3 when f < n/3. Protocol
β, shown in Algorithm 2, is based on the idea of processes proposing their last choice. Since Byzantine
processes may send conflicting values to different processes, Protocolβ first agrees on the vectorT of last
choices. Each process then discards the values that appear as the last choice at least⌊(n− f )/2+ 1⌋ times. It
should be noted that sincef < n/3, the size ofdiscardset in protocolβ is at most two. Now all the processes
run Byzantine Agreement with their top choice from the remaining set.

Algorithm 2 TheBSC(k,M′ ∧ S) Protocolβ at Pi

T: array[1..n] (container to store all the votes) /* Proposals */
vote: array[1..k] (ranking ofk candidates) /* My vote * /
/* Every process proposes itslast choice */
T[i] = vote[k]
/* Step 1: Exchange last choice with all */
for j = 1 ton do

sendT[i] to Pj

receiveT[ j] from Pj

/* if no value received fromPj setT[ j] = 0 */
end for
/* Step 2: Agree onT vector, ballot of last choice votes */
for j = 1 ton do

run Standard Byzantine Agreement onT[ j];
end for
/* Step 3: Eliminate unqualified choices */
discard= set of choices to discard; initially{φ}
for j = 1 tok do
/* countreturns the frequency of any value inT * /
if (count(vote[ j]) >= ⌊(n− f )/2+ 1⌋) then

addvote[ j] to discard
end if

end for
/* Step 4: Now use the remaining choices for selectingtop choices of processes */
run Byzantine Agreement ontop choice< discard

Lemma 6. Protocolβ, given by Algorithm 2, solvesBSC(k,M′ ∧ S) for k ≥ 3 when f< n/3.



Proof: We first note that ifPi is good thenT[i] at P j will be same as the value proposed byPi . This means
that if there is any valuev that is considered the last choice by a majority of good processes then it appears
at least⌊(n− f )/2+ 1⌋ times inT vector; all such values are discarded. Sincek ≥ 3 and| discard| ≤ 2, there
is at least one value which is not discarded by any good process. Hence, the agreement phase in step 4 leads
to selection of a choice proposed by some good process.

It is also easy to verify that the protocol satisfiesS. If all good processes havev as their first choice, then
it cannot appear⌊(n− f )/2+ 1⌋ times as the last choice. Hence no good process will discard this choice and
will propose it in step 4. �

Lemma 7. Protocolβ does not guarantee Mo condition.

Proof: Consider the vote ballot presented in Table 4 in which 4 out of5 goodprocesses haveb as their first
choice. Since it can not differentiate betweengoodandbadprocesses based on the ballot, protocolβ would
be forced into electinga as the social choice.

P1 P2 P3 P4 P5 P6 P7

1st choice b b b b a c c
2nd choice a a a a c a a
3rd choice c c c c b b b

Table 4.A ballot with P6 andP7 as Byzantine Voters

Table 5 summarizes the presented impossibility and possibility results (presented in this paper) for differ-
ent validity conditions and ranges ofk. The left-most column lists the validity conditions. For each condition
row the entries in second, third and fourth columns indicatethe corresponding impossibility theorems or the
related protocol that guarantees the condition on the winner.

Requirement Impossibility Possibility
S - α, β for all k ≥ 2
S′ - β for all k ≥ 2
M Unsolvable forf ≥ n/4∧ k ≥ 2, Theorem 1 -
M′ Unsolvable forf ≥ n/4∧ k = 2, Theorem 1 β for k ≥ 3
P Unsolvable forf ≥ 1∧ k ≥ n, Lemma 3 α for 2 ≤ k < n∧ f < min(n/k,n/3)

Table 5.Summary of Protocols and Impossibilities presented forBSC(k,V) assumingf < n/3

5 Byzantine Social Welfare (BSW)

The problem of Byzantine Social Welfare can be seen as an extension to the BSC problem. In the Byzantine
Social Welfare (BSW) problem, the goal is to produce aranking, a total order overk candidates, of choices
as the result of elections. Multiple such schemes exist in the literature of economics and game theory. We
now discuss some of these as social welfare functions, and propose a new scheme called Pruned-Kemeny
specially tailored towards handling Byzantine votes. We focus only on the schemes that require a single
round of voting. After exchanging their votes with all the other processes in the system, the processes



participate inO( f ) rounds of agreement to ensure that all the good processes agree on the same ballot. If the
agreement protocol takesm rounds, then the overall message complexity isO(mn3).

From here on, for notational convenience we use a short form representation of rankings such thatabc
represents rankinga ≻ b ≻ c.

PlacePlurality: For each position in the result ranking, the scheme finds thecandidate with most votes
for that position in the ballot, and places this candidate atthat position in the result. Only the candidates
that are not already placed in the result ranking are considered. Plurality based schemes satisfiesS andS′

criteria. Revisiting the example ballot of Table 1 from Section 1, one can verify that the rankingscab and
bacare the two possible outcomes of a social welfare function that applies PlacePlurality.

Pairwise Comparison: This scheme uses the Condorcet Criterion and compares the pairwise preferences
over the ballot for all

(

k
2

)

pairs. Detailed description of the scheme is presented in [12]. Using this scheme,
the output for the welfare function on the ballot of Table 1 isabc.

Borda Count: This scheme applies the positional voting approach to calculate the points scored by each
candidate. Each position in a vote is assigned unique points- top position given the highest, and the bot-
tom position given the lowest points. The cumulative score of a candidate is the sum of all the points it
accumulates over the complete ballot. The resulting socialwelfare ranking is the list of candidates sorted
in non-increasing order of their overall scores (ties broken arbitrarily). For the ballot of Table 1, the social
welfare result using Borda Count scheme isabc.

Young in [13] shows with convincing arguments that most of these simple schemes, including the three
presented above, do not necessarily produce the outcomes that are optimal in terms of overall representation
of the voter preferences. The discussion in [13] points out that schemes that use themeanas the represen-
tative outcome of the voting process tend to generate ‘inferior’ results as opposed to the schemes that try to
compute an outcome that is close to themedian. The following two schemes, use the median as the basis for
the result computation, and we show by means of simulation that they do producebettersocial rankings.
Kemeny-Young Scheme: This approach, proposed by J. Kemeny and H. Young in [14, 13], uses a metric to
identify a ranking that is closest to the median of the ballot. The metric used in this scheme is thedistance
between rankings, wheredistancebetween any two rankings is defined as the number of pairs on which
the rankings differ. For example, takingr = abcandr′ = bac thedistancebetween these two rankings is 1,
whereas ifr′ = cba, then thedistancebetweenr andr′ is 3.
Algorithm 3 presents the steps involved in the scheme. The scheme iterates over each of the possiblek!
permutations ofk candidates and considers each ranking (permutation). The goal is to identify a ranking
that maximizes the agreement on pairwise comparisons with the overall ballot. For a detailed analysis of the
scheme, we refer the reader to [13]. Applying this scheme on the ballot in Table 1 gives a result ranking of
abc.
Pruned-Kemeny: We propose a scheme called Pruned-Kemeny that is aimed towards mitigating the dam-
aging effects ofbad voters. The key motivation for this scheme is that good voters, while indicating their
individual preferred choices would in addition be also inclined towards the final outcomes that are benefi-
cial to the overall system. Where as thebadvoters would not only send conflicting information to thegood
voters, but also focus on manipulating their vote preferences in order to reduce the overall welfare of the sys-
tem. The steps of the scheme are presented in Algorithm 4. Similar to Kemeny-Young scheme our approach
also iterates through all the possible permutations of candidates, but we restrict the ballot in consideration
for each iterated permutation. The restriction on the ballot is attained in the following manner:
Let P denote the set of all permutations ofk candidates, andB be the initial ballot ofn voters. For each
rankingr ∈ P compute a pruned ballotB′ by settingB′ = B\F , whereF is the collection off mostdistant



Algorithm 3 Kemeny-Young Scheme
P = Set of all permutations ofk candidates,
B = agreedupon ballot ofn votes
maxScore= 0,maxRank= nil
for each rankingr in P do

score= Kemeny-YoungScore(r, B)
if score>maxScorethen

maxScore= score
maxRank= r

end if
end for
returnmaxRank

Kemeny-YoungScore(ranking, ballot):
score= 0
for each pair (a≻b) in ranking do

score= score+ # of occurrences ofa≻b in ballot
end for

returnscore

rankings inB from r. Hence, size of the restricted ballotB′ is n− f . The score for rankingr is its Kemeny-
Young score onB′. The result of the scheme is the ranking with highest score (ties broken arbitrarily). For
instance, when applied to the ballot of Table 1, this scheme producesbacas the result.

We show shortly that the problem of finding a solution to the election problem using either Kemeny-
Young or Pruned-Kemeny scheme is NP-Hard. In the context of distributed systems, the round and message
complexities for agreement on the the ballots, performed before application of the schemes, are essentially
the complexities of the protocols used reach agreement. We use the Gradecast based Byzantine agreement
protocol presented in [15], mainly because this protocol provides the early termination property. Based upon
this, the agreement requiresO(n) rounds, and has the message complexity ofO(n4). For proofs and detailed
discussions on these bounds we refer the reader to [15].

Algorithm 4 Pruned-Kemeny Scheme
P = Set of all permutations ofk candidates,
B = agreedupon ballot ofn votes
maxScore= 0,maxRank= nil
for each rankingr in P do
F = f most distant rankings fromr in B
B′ = B \ F

score= Kemeny-YoungScore(r,B′)
if score>maxScorethen

maxScore= score
maxRank= r

end if
end for
returnmaxRank

Lemma 8. The problem of finding the result of a ballot using Pruned-Kemeny scheme is NP-Hard.

Proof: Consider any instance of the problem of finding optimal rankings with Kemeny-Young scheme. Each
such instance can be converted to an instance of the problem of finding the result with Pruned-Kemeny with
f set to zero. Hence, the Pruned-Kemeny based optimization problem is at least as hard as the Kemeny-
Young based problem, which is already known to be NP-Hard [16].



Theorem 2. Pruned-Kemeny satisfies S and S′ requirements.

Proof: First, we prove that Pruned-Kemeny satisfiesS. Let us assume that Pruned-Kemeny violatesS, and
thus its output is rankingr that does not putv on top when all the good processes putv as their top choice.
Hence, there is at least one candidateu that is immediately abovev in r. Construct a new rankingr′ by
swapping the places ofu andv in r. We now show thatr′ would have a higher Kemeny-Young score thanr,
which would be a contradiction. Sincer′ putsv aboveu, it agrees with all the good processes on at least one
more pairwise comparison. It may disagree with the votes of all the bad processes. Also, in the worst case
scenarior′ discardsf good votes during the protocol run. Thus in the worst case theoverall Kemeny-Young
score ofr′ increases by

(n− f ) − f − f = n− 3 f

in comparison to the Kemeny-Young score ofr. The first term ofn − f is due to the increment (by at least
one point) in score for eachgoodvote, however if we assume that it is possible to discardf goodvotes in
the worst case, the second term indicates that adjustment. Also, all thebad processes might provide exact
opposite rankings in their votes, hence a further decrease of f (third term) in points is possible in the worst
case. Sincen ≥ 3 f + 1, the score ofr′ is strictly greater than that ofr, which meansr being selected as the
final outcome of Pruned-Kemeny is a contradiction.
S′ can be shown similarly by placingv at the bottom of each good vote.

Similar to the Kemeny-Young scheme, Pruned-Kemeny also performs exponential computations by it-
erating over all thek! permutations. However, for small values ofk and large values ofn, the performance
of the scheme is acceptable.

Lemma 9. Kemeny-Young scheme satisfies S and S′ requirements.

Proof: As Kemeny-Young is a special case of Pruned-Kemeny scheme with f set to zero; the proof imme-
diately follows from Theorem 2.

6 Simulation Results

As mentioned in the end of Section 5, it is possible to have scenarios in which thebadvoters need not just
send conflicting information, but may as well have much more malignant intentions. Consider the case when
thegoodvoters want to reach a consensus on a ranking that is beneficial to the system as a whole, and thus
have similar if not exactly the same preferences. On the other hand, thebad voters may want to minimize
the benefit that the system may attain by the resulting welfare ranking (that is the outcome of the election).
Schemes that do not assume that a small section of voters might behave in this manner, may thus produce
rankings which are prone to manipulation by thebadvoters. Given the knowledge that at mostf voters can
bebad, our scheme Pruned-Kemeny tries to produce best possible social welfare outcomes in presence of
such hostile voting by thebadvoters.

We now list the details of our experimental setup and the simulations performed to evaluate the util-
ity of Pruned-Kemeny in computing ‘near-optimal’ welfare rankings in comparison to the other discussed
schemes. Letω represent anideal ranking for the BSW problem, such that selection ofω as the result of the
election maximizes the social welfare of the system. Let us assume thatω is not completely known to any
good process, however each good process tends to favor theideal ranking. The voting preferences of good



and bad processes in presence of anideal ranking are defined as follows :
Let goodProbdenote the probability of a good voter ranking two candidates a andb in the same order as
that in the ideal rankingω, andbadProbdenote the probability of abad voter ranking the candidates in
the reverse order to that inω. Hence, ifω ranks two candidatesa andb with a ≻ b thengoodProbis the
probability that anygoodvoter decides to puta ≻ b in its vote, andbadProbis the probability that anybad
voter putsa ≺ b in its vote. For our experimental setup we fix the following values:

n = 100, f = 33, badProb= 0.9

By setting f to its highest possible value, andbadProbto a considerably high value in the possible range,
we try to realize the assumption thatbad voters would want to disrupt the election of ideal ranking, and
would vote in opposite polarity of thegoodvoters. The value of the number of candidatesk is varied in the
range [3,8]. For each value ofk, the value ofgoodProbis varied from 0.55 to 0.90 in step increments of
0.05. For each such resulting configuration of〈k, n, f , goodProb, badProb〉, 50 ballots (ofn = 100 voters)
are generated by fixing anideal ranking and applying the probabilistic model on individualvotes based on
goodProbandbadProb. We then apply the discussed schemes, and find thedistance(defined in previous
section) of their result rankings from theideal ranking. We then compute the average distance over the 50
ballots for each configuration.

Figure 1 shows the variation in the these average distance values. As evident from the plots, Pruned-
Kemeny produces results that are much closer to theideal ranking even for comparatively low values of
goodProb. In addition, the plots also indicate that as the number of candidates increases, the results of
Pruned-Kemeny consistently match theideal ranking.

Another interesting observation is that the distance of results for PlacePlurality from theideal ranking
increases significantly with increase in the number of candidates. This clearly indicates that PlacePlurality is
not a good choice for a social welfare function. We argued in Section 1 that for more than three choices, the
plurality based methods do not guarantee best results. The observations on the variation in result distances
clearly validate our argument.

7 Discussion

Extensive literature is already present on the topic of leader election in distributed systems [11, 17–19].
[11] presents various protocols and lower bounds for message complexity for the leader election problem
in absence of Byzantine processes. Leader Election has alsobeen studied in presence of Byzantine failures.
[20] gives a randomized distributed protocol to elect a leader in the asynchronous full information model
that toleratesn/(6+ ǫ) cheaters with positive constant success probability in rounds that is polylogarithmic
in n.

Our work studies the problem of democratic elections in a distributed system as social choice and so-
cial welfare ranking problems [6]. When number of choices ismore than two, elections based on the top-
preference-only model may not lead to optimal results, and hence we assume that processes in the system
propose a ranking of candidates rather than a single leader.For agreement that is dependent only on the
number of failures we use the deterministic early-stoppingByzantine agreement protocol from [15] to reach
the agreement on every processes’ vote withinmin{ f + 1, fa + 2} rounds wherefa is the actual number of
failures. We focus on the guarantees on the social choice or the social welfare ranking produced by the
election, rather than on the message or bit complexity of election protocols.

Prisco et al. in [21] present some impossibility and possibility results for thek-setconsensus problem in
which each node starts with one value and the protocol must decide on a value so that at most totalk values
are decided by the correct processes. Thek-setproblem does not involve voting over multiple candidates.
Under some specific boundary conditions there is a slight overlap between two impossibility results in [21]
and those presented in this work.
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(a) # of Candidates= 3
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(b) # of Candidates= 4
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(c) # of Candidates= 5
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(d) # of Candidates= 6
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(e) # of Candidates= 7

 0

 5

 10

 15

 20

 25

 30

 0.55  0.6  0.65  0.7  0.75  0.8  0.85  0.9

A
vg

. D
is

ta
nc

e 
fr

om
 Id

ea
l

goodProb

PlacePlurality
Pairwise

Borda
Kemeny
Pruned

(f) # of Candidates= 8

Fig. 1. Average Distance of Results from Ideal

In the standard Byzantine agreement [9] the protocols only need to guarantee agreement on some value
that is proposed by a good process. With this objective, the protocols do not need to guard against the pos-
sibility of Byzantine voters affecting the eventual outcome by strategic reporting of theirvalues. However,
as we saw in section 3 it is important to design voting mechanisms that do not allow this advantage to
Byzantine voters.



8 Future Work

If all the good processes lean towards some fixedideal ranking, even with weak inclinations, the simulation
results indicate that our proposed approach Pruned-Kemenyprovides desired results with much higher ac-
curacy in comparison to other schemes. However, determining the provable guarantees for optimal results
under some specific conditions is an important open challenge for this work.

Another interesting problem is to differentiate between the ideal results, and the results that comply
with the Condorcet Criterion. It should be noted that for some given ballot, it is possible to have a clear
Condorcet candidate/ranking yet the ideal winner/ranking might differ from it. However, in terms of compu-
tational complexity both Kemeny-Young and Pruned-Kemeny schemes are NP-Hard, where as a Condorcet
candidate/ranking can be found in polynomial time. With this observation, it would be beneficial to design a
social welfare scheme that can strike a balance between these two approaches. Depending on the constraints
of the computing environment, this balanced scheme could have the flexibility to employ either the Pruned-
Kemeny or the Condorcet scheme so that the difference between the social welfare resulting from the two
outcomes is either relatively small or bounded in some acceptable form.

9 Conclusion

In this paper, we introduced the problem of democratic elections in distributed systems. We showed that the
standard approach of reducing three or more choices to binary choices does not guarantee optimal outcomes,
and hence the standard assumption of always having binary choices is weak. We presented impossibility
results under some specific validity requirements, as well as showed some surprising possibilities that result
from availability of more than two choices.

For producing results that are close to an ideal ranking whenthere exists one, we proposed a new scheme
called Pruned-Kemeny that aims to counter the votes of Byzantine processes. The results of our simulations
show that for the purpose of finding ideal order, Pruned-Kemeny provides significantly improved results
over existing voting systems.
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Appendix

Notation
A : set of candidates
L : set of linear order onA
W : a social welfare function
C : a social choice function
≺i : preference order (vote) of voteri

Pareto Efficiency (PE): If every voter prefers candidatea over candidateb, then the outcomes of social
welfare/choice functions should reflect this, ie. any choice function should not selectb (note that this does
not mean thata must be chosen). Formally,b≺i a for all i ⇒ C (≺1,. . .,≺n) , b. Similarly, for such a case, a
social welfare function should not rankb higher thana. Formally,b ≺i a for all i ⇒ b ≺W a.

Independence of Irrelevant Alternatives (IIA): The social preference between any two candidatesa and
b depends only on the voters’ preference betweena andb. Formally, for everya,b ∈ A and every≺i ∈ L,
if we denote≺ = C(≺1,. . .,≺n) and≺′ =C(≺′1,. . .,≺′n) thena≺i b⇔ a≺′i b for all i implies thata≺ b⇔ a≺′ b.

Dictatorship: Voter i is a dictator in social welfare functionW if for all (≺1,. . ., ≺n) ∈ L,W (≺1,. . .,
≺n) = ≺i . For a social choice functionC, voter i is a dictator if for all (≺1,. . .,≺n) ∈ L, C (≺1,. . .,≺n) = ≺i.
The social preference in a dictatorship is simply that of thedictator, ignoring all other voters.W orC is not
a dictatorship if noi is a dictator in it.

Arrow’s Impossibility Theorem : If there are three or more choices, then any voting system that satisfies
both IIA and PE properties corresponds to a dictatorship by one voter. {Taken from [3]}


