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Abstract. In this paper, we show that for elections in distributed syt the conversion from non-binary choices
to binary choices does not always provide optimal resultsmmthe preferences of nodes are not identical. With this
observation, we study the problem of conducting democsedéctions in distributed systems in the form of social
choice and social welfare functions with three or more odaidis. \We present some impossibility and possibility
results for distributed democratic elections in preserid®@aantine behavior. We also discuss some existing elec-
tion schemes, and present a new approach that attemptsigataitne &ects of Byzantine votes. We analyze the
performance of these schemes through simulations to centipeir €ficacy in producing the most desirable social
welfare rankings.

1 Introduction

Many problems in distributed systems requetectionfor processes to carry out globally consistent actions.
For example, the problem of binary consensus can be viewad atection between two possible choices.
The value decided by the protocol can be considered the wilaeted by the system. Theader election
problem requires that all the processes in the system agreel@ader. The agreed upon leader may then
perform certain privileged tasks on assuming this role. t\postocols for leader election select processes
with the lowest or the highest identifier value as the lealleran be argued that such a selection on the
basis of identifiers does not constitute an ‘election’ iretsense as the results are not based on the choices
of the involved nodes in the system, assuming the nodes ccaie their preferences. Given that one of
the fundamental problems in the area of distributed syst#mesByzantine Agreement problem, assumes
malicious intent as well as collusion, it seems natural thatproblem of fair democratic elections be also
studied in this context.

Democratic elections have been studied extensively in #hsfiof economics and game theory. A large
set of interesting problems for elections with three or mmaedidates have already been explored [1, 2].
Arrow’s theorem, an important result on this topic, showpassibility of elections under some specific re-
quirements [3]. Yet, the confluence of democratic elect{@rith more than two candidates) and distributed
protocols has not been explored to the best of our knowlddgelvement of Byzantine processes in the sys-
tem presents some additional challenges for this task. ®tiemof strategy-proofnespt] does not readily
apply to Byzantine processes as they can be considerdgtbateal by individual losses. In this paper, we in-
troduce the notion of democratic elections in distributetiisgs by addressing the following sub-problems:

Sub-optimality of Standard Protocol: With the background setting of elections, the idea of degdn

a winner based on every node’s most preferred choice seepeslapy. With this approach the eventual
winner would be the node receiving highest number of voies tiroken arbitrarily). This scheme is called
‘plurality’ scheme in economics and game-theory literatittowever this approach does not always lead to
outcomes that maximize the overall gains for the system tditme ‘gains’ may be attributed to any property
that is relevant to global observations of the system, ssdheoverall latency of a message broadcast or
the average load on each node in the system in some disttibotaputing protocol. For example, let us
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consider a system with seven nod®s, P, ..., P7} that run a distributed protocol in presence of a leader
node that controls the distribution of work. Based on theltesy latency or load values of their individual
communications with three possible candidate nodes, enseodes want to elect a leader. lagh, and

c denote the three possible outcomes of such an election athmegycandidates. For one such instance of
voting assume that Table 1 represents the votes of eachmduesystem. This tabular representation means
that P, prefers the outcomle the most, and then prefeasoverc; the preferences of all other processes can
also be inferred in this manner. ‘Plurality’ method on thates profile, with coin-toss based tie breaking,
electsb or ¢ with equal probability, and never eleas. However, it is easy to verify that beats bothb

P, P, Ps P, Ps Ps P,
15t choice b b b c c c a
2" choice a a a a a a l:
3 choice c c c b b b c

Table 1.\otes by Processd®; to P,

andc on individual pairwise comparisons. Additionally, if a ji@mal vote counting mechanisty such as
Borda-Count Method (see Section 5) [5] is applied, thsrscore is strictly higher than those of bdiland
c. Hence, even though election afseems the most optimal outcome for the overall system, #relatd
approach never elects and by electing eithew or ¢ reduces the social welfgref the system.

Strategic Voting by Byzantine ProcessesThe Byzantine processes can exhibit any kind of malicious
behavior. One such malicious act is to cast strategic vaiabat the overall social welfare is not maxi-
mized. For example, in Table 1,#; is Byzantine, it may broadcast its vote (to all the procésaith c as

its first choice andh as its last. With the changed vote profile, even the pairwigeparison, or positional
voting schemes would not eleat Thus, this fault would result in decrease of overall sowgialfare of the
system. For binary choices, [7] studies the similar prob¥enen one of the two available choices is more
desirable, and it is beneficial for the system to agree orcti@te despite thefiorts of Byzantine processes.

In short the contributions of this paper are following:

— We introduce the problem of democratic elections in distaéll systems by studying: Social Choice and
Social Welfare in distributed settings with Byzantine faul

— We present the impossibility and possibility results famsospecific requirements for the problems.

— We propose a social welfare function called Pruned-Kemamy,by means of simulations show that our
scheme significantly outperforms other popular schemeByrantine Social Welfare problem.

2 Preliminaries

In economics and game theory, elections have been studiedniy in two forms — social choice functions,
and social welfare functions [6]. For both of these forme,\bters are required to cast their vote indicating
their preferences over all the candidates. As the resulbiirig, social choice functions elect one candidate
as the winner; whereas social welfare functions producevarath ranking of the candidates. Formally, these
functions are defined follows:

1 considers the positions of each candidate in all the vosssgiaing fixed points to each position and then computingeagde
points of every candidate
2 standard term from economics literature; defined in Se@idfor detailed explanations see [6]



Let A be a set of choic¢sandidates an{Py, ..., Py} be the set oh voters. LetL denote the set of linear
orders onA (£ is isomorphic to the set of permutations @). The preferences of each votérare given
by <; € £, wherea <; b means thaP; prefers choicé to choicea.
A social welfare functioril is a function of the form

W . L'—>L
A social choice functior© takes the form

cC:L"->A
The preferences of a voter as#ict if the voter is not indiferent between any two candidates. Throughout
the paper, we limit our focus tstrict preferences. Construction of a social choice function feosocial
welfare function, and vice-versa is trivial [8]. Given a sbavelfare function’W, one could construct a
social choice function by simply declaring the top-moskehcandidate in the result obtainedty as the
social choice. Conversely, to construct a social welfaretion W from a given social choice functio@
one could applC overk candidates and place the winning candidate on top of thdt r@sQ@, and repeat
this processek — 1 times (at each iteration, removing the candidates alrptbed in the result).

For the rest of this paper, we use the following terms in oscuksion:

Ranking : A ranking is a total order over a fixed set of candidates.
Vote : A vote is an individual voter's preference ranking over #et of candidates. Based on the above
notation,<; is the vote of voteP;.
Ballot : A ballot is a collection of the votes. The size of the ballothie number of votes the ballot contains.
Scheme: A scheme is a mechanism that takes a ballot as input and @esdairanking or the winner as
output.
Result: Given some ballot, the rankinginner produced by any scheme is called the result of thensehe
on that particular ballot instance.
Condorcet Candidate: If a candidate is preferred by all the voters over each ofdiner candidates in
a head-to-head comparisons, then such a candidate is Caledbrcet Candidatdt is not necessary that
such a candidate always exists.

3 Model

We assume a synchronous distributed system consistingpadcesses. In our model any two nodes in the
system can communicate privately with each other, thusnitheced communication graph is complete. Of
then nodes in the system, at moktcan be Byzantine. For the synchronous model of communitaf®)
showed that agreement can only be guaranteed vihem/3. Throughout this paper, we assume that this
bound of f < n/3 holds. All non-faulty processes in the system are caijledd processes, and the faulty
processes are calldrhd processes. The termsters processesandnodesrepresent the same entities, and
are used interchangeably. The set of choicgss known to all the nodes in the system and each node votes
with its strict preferences as a total order over the elementd.of

Byzantine Social Choice Problem:Given a set oin processes of which at mostare faulty, and a set
A of k choices, design a protocol that elects one candidate as¢iad shoice (while providing the guaran-
tees 1 to 3 listed below).

Byzantine Social Welfare Problem:Given a set of processes of which at mo$tare faulty, and a set
A of k choices, design a protocol that produces a ranking(totsrpiover the choices(while providing the
guarantees 1 to 3 listed below).

Protocol Guarantees For both of these problems, the protocol should providddahewing guarantees:

1. AgreementAll good processes decide on the same chicarding.



2. Termination The protocol terminates in a finite number of rounds.
3. Validity: This condition imposes requirement on the chgmeking decided based upon the preferences
provided by the good processes.

If V is the validity condition selected for the election, tH@BC(k, V) denotes the Byzantine Social Choice
problem overk choices that satisfies the validity conditid similarly BSW(k, V) denotes the Byzantine
Social Welfare problem that is defined with the constraitg @or the availablek choices.
Some examples of validity conditions are listed in Table ghim context of BSC problem. A brief outline
for the required steps of such a method is discussed in €ettio

In the standard Byzantine agreement problem [9], all thelgwocesses must agree on a common value
v € A. The only requirement on the decided value is that if all gpootesses propose the same value
then the value decided must also\béf all good processes do not propose the same value, themithero
requirement on the value that is decided. In Byzantine $@aice (BSC) problem the value decided by
the protocol is important, as some of the choices may be nesieaible than others.

Condition Description
S If vis the top choice of all good voters, themust be the winner.
M If vis top choice of majority of good voters, themust be the winner.
s If vis the last choice of all good voters, themustnot be the winner.
M’ If vis last choice of majority of good voters, themustnot be the winner.
P If vis not the top choice of any good process, thenustnot be the winner.

Table 2. Various Validity Conditions for Byzantine Social Choice

4 Byzantine Social Choice (BSC)

For the Byzantine Social Choice (BSC) problem, we alwaysirecagreement, and termination conditions
but may want to impose fierent validity conditions. In the standard Byzantine Agneet literature, the
problem of deciding from more than two choices is considemuivalent to that of choosing from a set of
two choices because a solution for either one of the probtembe used to solve the other [10]. However, as
we show in this paper (Sec. 1), this is not the case for the BSklgm.BSC(k, V) denotes a BSC problem
over k choices that satisfies the validity conditid®h Thus,BSG2, S) is the standard binary Byzantine
Agreement. Note that whehnequals two S, P andS’ are equivalent to the standard validity requirements
for binary Byzantine Agreement protocol [11]. SimilarM, and M’ are equivalent when there are only two
choices.

BS{3, M) is the Byzantine social choice problem on three choicels agreement, termination, and the
majority validity condition. We show in Section 4.1 thatglgroblem is impossible to solve in a distributed
system. However, somewhat surprisindd$ (3, M’) is possible to solve. As an example BEG3, M)
consider the problem of leader election in a distributedesgswith Byzantine processes. Suppose that
processes need to choose a leader among three choicesnéiws khat one of the three choices may be
Byzantine and the good processes would want to avoid it$i@eelthough there is no initial agreement
on which of these choices is Byzantine, it is a reasonablgngson that majority of good processes will
identify the Byzantine choice correctly. In Section 4.2, give a protocol for solvinddSG3, M’) .

Observe thaBSQk, S) is simply the standard Byzantine agreement problem in kvkeicery process
proposes its first choice. HenB&SGKk, S) is solvable for ank so long asf < n/3. Itis also possible to solve
BSdk, S A S’). We give such a protocol in Section 4.2.



4.1 Impossibilities

Arrow [3] showed that for elections with three or more altives, no voting system that provides two
basic propertiesPareto Hficiency?® andIindependence of Irrelevant Alternatives (IfA¥an guarantee non-
dictatorial elections. In this section, we show imposgiba for elections in distributed systems with Byzan-
tine faults. We focus on instancesBECKk, V) problems which are impossible to solve for specified values
of k andV. Let us first consider the case whkmrquals two. For this case, the conditidhd® andS’ are
equivalent. Standard Byzantine agreement protocols caisdxtto solvi8SJ2, S).

Lemma 1. There is no protocol to soM8SC(2 M) when > n/4.

Proof: If f > n/4, then good processes are at most43 Suppose that the set of choicegash}. Assume
that just the bare majority of good processes propose ‘@llirus, the total number of processes proposing
ais at most 8/8 + 1. The number of processes proposnig at least §/8 — 1. Then forn > 4, we have
that more processes are proposingsince processes do not know which processes are good thikem

is indistinguishable from the instance whem®/8 — 1 good processes propobeand remaining /8 + 1
processes propose In the second instance, the protocol must chdpsad therefore it will also choode

in the first instance.

Lemma 2. There is no protocol to solMSC(2 M’) when f> n/4.

Proof: For binary choicesk = 2, it can be easily observed that the problB®G2, M’) is equivalent to
BSd2, M). Thus, based on the result of previous lemB3(X2, M’) is also unsolvable whef > n/4.

Interestingly, presence of a large set of choices can atmbtteimpossibility.

Lemma 3. There is no protocol to solMBSC, P) for any k> n when f> 1.

Proof: Given thatk > n, consider the case when each process proposeeeedit value. Since each value
appears exactly once, there is no way to distinguish theeyaoposed by a bad process from that proposed
by a good process.

Theorem 1. There is no protocol to soM8SCk, M) for any k> 2 when f> n/4.

Proof: Suppose that there is a protocol that soB&k, M) for anyk > 3. We will use this protocol to solve
BSd2, M). Given an instance d8SG2, M) problem, all the processes construct an instand@3ik, M)

by first constructingk — 2 artificial choices. However, none of the good processes use theseeshasc
their first two choices. Now they run the protocol 888Gk, M) which must choose a value that has been
proposed by the majority (ties broken in favor of lower valaegood processes as the first choice. All good
processes return this as the decided value for the @&(2, M) problem. But by Lemma BBSG2, M) is
unsolvable.

3 for definition see Appendix, details in [3]
4 for definition see Appendix, details in [3]



4.2 Possibilities

As BSQKk, S) is solvable by standard Byzantine agreement [1L0]BSk, M) is unsolvable, it is natural to
seek some validity conditions that admit solution. Consitle following validity condition:

M, (Overwhelming Majority) If there is a choice that is the first choice of at leagA™good processes,
then all the good processes elect that choice.

It can be observed that any protocol that ensiedso ensured,. Similarly M is a stronger requirement
thanS and thus any protocol providing guaranteeNdgalso guaranteeS

Lemma 4. Protocola given by Algorithm 1, solveBSCK, M) when for any k> 2 when f< n/3.

Proof: Letv be the value proposed by at leagt'8 fraction of processes. It is easy to see tha:dn— f) >
1/4«(n— f) + f for all values off < n/3. Hence, all processes decidewn

|
Algorithm 1 Protocola at P; to ensureBSQk, M) and therefore alsBSQk, S)
T: array[1.n] (container to store all the votes) /* Proposals #
vote array[1.K] (ranking ofk candidates) /* My vote */
/* Every process proposes ffisst choice ¥
T[i] = votd1] /* index starts from 1 f

/* Step 1: Exchange first choice with all *
for j=1tondo
sendT][i] to P;
receiveT[]] from P;
/*if no value received fronP; setT[j] = 0 */
end for
/* Step 2: Agree orT vector : the ballot of all votes/*
for j=1tondo
run Standard Byzantine Agreement @ifj];
end for
/* Step 3: Choose the value with the highest tally, breakieg in favor of the smaller valug *
return the least value from.Xk that has the highest frequencyTin

We showed in Section 4.1 thRtis impossible to achieve whdn> n. However, if choices are limited, then
P can be guaranteed as follows.

Lemma 5. Protocola solvesBSC(, P) for 2 < k< n when f< min(n/k, n/3).

Proof: It is sufficient to show that the largest tally would be of a value prepdsy a correct process. Sup-
pose, if possible, the largest tally is for the valughich is not proposed by any good process. The tallyfor
can be at most. There aren— f proposals by good processes. None of these proposalsvisgiod therefore
all these proposals are for remainikg 1 values. Since none of these values had tally more thewe get
that the total number of proposals possible &re L) = f. From f < n/k, we obtain thatK— 1)« f <n— f
which is a contradiction because all correct processes madkast one proposal. [ ]

However, if we were to requireM’ A P) and use the steps in the protoeglwith suitable adjustments
(not picking a social choice that would violaké’) to handle the validity requirements, it would be evident
that the modified protocal would not satisfy 1" A P). Consider the example ballot presented in Table 3,
with Pg and P7 as Byzantine voters. In this example, a simple majority akierfirst choices would result



P, P, Ps P, Ps Ps P,
15t choice b b b c [ c C
2" choice a a a b a a a
3 choice c c c a b b b

Table 3. A ballot with Ps andP; as Byzantine Voters

in choosingc as the winner which violateM’. The protocola will elect a as the winner. However, an
overwhelming majority ofjoodprocesses, 4 out of 5, prefeovera. Note that the choica is not the first
choice for any process, leave alone being the first choicegobaprocess. It is not possible for a protocol
to deterministically know which nodes ageodand which arédadin all the instances. Thus to providé’
the only option any deterministic protocol would have tocdisl a choice that appeda — f)/2+ 1] or
more times as the bottom choice in the ballot. In this exampith n = 7 andf = 2, [(n- f)/2+ 1] is 3
and thus it is clear that any protocol that guaranféésan only choosa as winner (because bothandc
are last choices for at least three processes).

We now show the surprising result tREQk, M” A S) is solvable fork > 3 whenf < n/3. Protocol
B, shown in Algorithm 2, is based on the idea of processes gingaheir last choice. Since Byzantine
processes may send conflicting values tbedent processes, Protogbfirst agrees on the vectdr of last
choices. Each process then discards the values that apiar last choice at leagin — f)/2 + 1] times. It
should be noted that sinde< n/3, the size ofliscardset in protocop is at most two. Now all the processes
run Byzantine Agreement with their top choice from the rarmaj set.

Algorithm 2 TheBSQk, M” A S) Protocolg at P;

T: array[1.n] (container to store all the votes) /* Proposals }
vote array[1.K] (ranking ofk candidates) /* My vote */
/* Every process proposes itsst choice ¥

TIi] = votdkK]

/* Step 1: Exchange last choice with afl *
for j=1tondo

sendT][i] to P;

receiveT[j] from P;

/*if no value received fronP; setT[j] = 0*/
end for
/* Step 2: Agree orT vector, ballot of last choice voteg *
for j=1tondo

run Standard Byzantine Agreement @ifj];
end for
/* Step 3: Eliminate unqualified choiceg *
discard= set of choices to discard; initially}
for j = 1tokdo

/* countreturns the frequency of any valueTn*/

if (coun{votqj]) >=[(n— f)/2+ 1]) then

addvotq j] to discard

end if
end for
/* Step 4: Now use the remaining choices for selectmmchoices of processeg *
run Byzantine Agreement otop choice¢ discard

Lemma 6. Protocolg, given by Algorithm 2, solveBSCk, M’ A S) for k > 3when f< n/3.



Proof: We first note that iP; is good thenT[i] at Pj will be same as the value proposedmy This means
that if there is any valug that is considered the last choice by a majority of good meee then it appears
atleast (n— f)/2+ 1] times inT vector; all such values are discarded. Sikce3 and| discard| < 2, there
is at least one value which is not discarded by any good psot&ance, the agreement phase in step 4 leads
to selection of a choice proposed by some good process.

Itis also easy to verify that the protocol satisf&df all good processes hawveas their first choice, then
it cannot appeadr(n — f)/2 + 1] times as the last choice. Hence no good process will disb@édhoice and
will propose it in step 4. [ ]

Lemma 7. Protocol3 does not guarantee dcondition.

Proof: Consider the vote ballot presented in Table 4 in which 4 o&t@dodprocesses haveas their first
choice. Since it can not fierentiate betweegoodandbad processes based on the ballot, protggalould
be forced into electing as the social choice.

P, P, Ps P, Ps Ps P,
15t choice b b b b a [ d
2" choice a a a a c a a
3 choice c c c c b b b

Table 4. A ballot with Ps andP; as Byzantine Voters

Table 5 summarizes the presented impossibility and pdisgitgsults (presented in this paper) fofter-
ent validity conditions and ranges kfThe left-most column lists the validity conditions. Fockaondition
row the entries in second, third and fourth columns inditiagecorresponding impossibility theorems or the
related protocol that guarantees the condition on the winne

Requirement Impossibility Possibility
S - a,Bforallk>2
S’ - pforallk>2
M Unsolvable forf > n/4 A k> 2, Theorem L -
M’ Unsolvable forf > n/4 Ak =2, Theorem 1 Bfork>3
P Unsolvable forf > 1 Ak > n, Lemma 3 afor2<k<na f <minin/k,n/3)

Table 5. Summary of Protocols and Impossibilities presented®GKk, V) assumingf < n/3

5 Byzantine Social Welfare (BSW)

The problem of Byzantine Social Welfare can be seen as ansateto the BSC problem. In the Byzantine
Social Welfare (BSW) problem, the goal is to produagiaking, a total order ovek candidates, of choices
as the result of elections. Multiple such schemes existerlitarature of economics and game theory. We
now discuss some of these as social welfare functions, ayubpe a new scheme called Pruned-Kemeny
specially tailored towards handling Byzantine votes. Weufoonly on the schemes that require a single
round of voting. After exchanging their votes with all thénet processes in the system, the processes



participate inO(f) rounds of agreement to ensure that all the good processes aig the same ballot. If the
agreement protocol tak@srounds, then the overall message complexit@(srt).

From here on, for notational convenience we use a short fepresentation of rankings such tladuc
represents ranking > b > c.

PlacePlurality: For each position in the result ranking, the scheme findscémelidate with most votes
for that position in the ballot, and places this candidatéhat position in the result. Only the candidates
that are not already placed in the result ranking are coresidélurality based schemes satisfteand S’
criteria. Revisiting the example ballot of Table 1 from $&ctl, one can verify that the rankingsb and
bacare the two possible outcomes of a social welfare functiahapplies PlacePlurality.

Pairwise Comparison This scheme uses the Condorcet Criterion and comparesathwige preferences
over the ballot for al(g) pairs. Detailed description of the scheme is presented2h [1sing this scheme,
the output for the welfare function on the ballot of Table Ali&

Borda Count: This scheme applies the positional voting approach toutatie the points scored by each
candidate. Each position in a vote is assigned unique peitas position given the highest, and the bot-
tom position given the lowest points. The cumulative scdra oandidate is the sum of all the points it
accumulates over the complete ballot. The resulting segédflare ranking is the list of candidates sorted
in non-increasing order of their overall scores (ties bro&ebitrarily). For the ballot of Table 1, the social
welfare result using Borda Count schemalis:

Young in [13] shows with convincing arguments that most afstn simple schemes, including the three
presented above, do not necessarily produce the outcomrtes ¢hoptimal in terms of overall representation
of the voter preferences. The discussion in [13] points bat schemes that use theeanas the represen-
tative outcome of the voting process tend to generate imfaresults as opposed to the schemes that try to
compute an outcome that is close to thedian The following two schemes, use the median as the basis for
the result computation, and we show by means of simulatiantkttey do produceettersocial rankings.
Kemeny-Young SchemeThis approach, proposed by J. Kemeny and H. Young in [14 Us#&s a metric to
identify a ranking that is closest to the median of the balltte metric used in this scheme is titistance
between rankings, whemdistancebetween any two rankings is defined as the number of pairs achwh
the rankings dter. For example, taking = abcandr’ = bacthedistancebetween these two rankings is 1,
whereas i’ = cba then thedistancebetweernr andr’ is 3.

Algorithm 3 presents the steps involved in the scheme. Therse iterates over each of the possikie
permutations ok candidates and considers each ranking (permutation). dakigto identify a ranking
that maximizes the agreement on pairwise comparisons hétbverall ballot. For a detailed analysis of the
scheme, we refer the reader to [13]. Applying this scheméierballot in Table 1 gives a result ranking of
abc

Pruned-Kemeny. We propose a scheme called Pruned-Kemeny that is aimeddswatigating the dam-
aging dfects ofbad voters. The key motivation for this scheme is that good wtedhile indicating their
individual preferred choices would in addition be also imetl towards the final outcomes that are benefi-
cial to the overall system. Where as thed voters would not only send conflicting information to tipeod
voters, but also focus on manipulating their vote prefegerie order to reduce the overall welfare of the sys-
tem. The steps of the scheme are presented in Algorithm 4le8itm Kemeny-Young scheme our approach
also iterates through all the possible permutations of idaels, but we restrict the ballot in consideration
for each iterated permutation. The restriction on the ba@lattained in the following manner:

Let # denote the set of all permutations lotandidates, an® be the initial ballot ofn voters. For each
rankingr € $ compute a pruned ball@’ by setting8’ = 8\ ¥, where¥ is the collection off mostdistant



Algorithm 3 Kemeny-Young Scheme

P = Set of all permutations d candidates,
B = agreedupon ballot ofn votes
maxScore 0, maxRank= nil
for eachrankingr in # do
score= Kemeny-YoungScdre B)
if score> maxScorghen
maxScore score
maxRank= r
end if
end for
returnmaxRank

Kemeny-YoungScoréranking, ballot):
score=0
for each pair (@-b) in ranking do
score= score+ # of occurrences ai>b in ballot
end for
returnscore

rankings inB from r. Hence, size of the restricted ball6t is n — f. The score for ranking is its Kemeny-
Young score or8’. The result of the scheme is the ranking with highest scoes firoken arbitrarily). For
instance, when applied to the ballot of Table 1, this scherodyzesbacas the result.

We show shortly that the problem of finding a solution to thecgbn problem using either Kemeny-
Young or Pruned-Kemeny scheme is NP-Hard. In the contexistilolted systems, the round and message
complexities for agreement on the the ballots, performddrbeapplication of the schemes, are essentially
the complexities of the protocols used reach agreement.sé&/¢he Gradecast based Byzantine agreement
protocol presented in [15], mainly because this protocoVigies the early termination property. Based upon
this, the agreement requir€%n) rounds, and has the message complexit@@f*). For proofs and detailed
discussions on these bounds we refer the reader to [15].

Algorithm 4 Pruned-Kemeny Scheme

P = Set of all permutations d candidates,
B = agreedupon ballot ofn votes
maxScore 0, maxRank= nil
for eachrankingr in # do
¥ = f most distant rankings fromin 8
B =B\F
score= Kemeny-YoungScdres’)
if score> maxScorghen
maxScore= score
maxRank=r
end if
end for
returnmaxRank

Lemma 8. The problem of finding the result of a ballot using Pruned-Eeyscheme is NP-Hard.

Proof: Consider any instance of the problem of finding optimal ragkiwith Kemeny-Young scheme. Each
such instance can be converted to an instance of the probilBndimg the result with Pruned-Kemeny with

f set to zero. Hence, the Pruned-Kemeny based optimizatioolgmn is at least as hard as the Kemeny-
Young based problem, which is already known to be NP-Har{l [16



Theorem 2. Pruned-Kemeny satisfies S andr&quirements.

Proof: First, we prove that Pruned-Kemeny satisfied et us assume that Pruned-Kemeny viol&esnd
thus its output is ranking that does not put on top when all the good processes pats their top choice.
Hence, there is at least one candidatthat is immediately above in r. Construct a new ranking by
swapping the places afandvin r. We now show that” would have a higher Kemeny-Young score than
which would be a contradiction. Sincéputsv aboveu, it agrees with all the good processes on at least one
more pairwise comparison. It may disagree with the votedl di@ bad processes. Also, in the worst case
scenaria’ discardsf good votes during the protocol run. Thus in the worst casevkeall Kemeny-Young
score ofr’ increases by

n-f)—f-f=n-3f

in comparison to the Kemeny-Young scorerofl he first term oih — f is due to the increment (by at least
one point) in score for eaapodvote, however if we assume that it is possible to disdagbodvotes in
the worst case, the second term indicates that adjustméd, &l thebad processes might provide exact
opposite rankings in their votes, hence a further decrel$dthird term) in points is possible in the worst
case. Sinca > 3f + 1, the score of’ is strictly greater than that of which means being selected as the
final outcome of Pruned-Kemeny is a contradiction.

S’ can be shown similarly by placingat the bottom of each good vote.

Similar to the Kemeny-Young scheme, Pruned-Kemeny alsfoas exponential computations by it-
erating over all th&! permutations. However, for small valuesloand large values dai, the performance
of the scheme is acceptable.

Lemma 9. Kemeny-Young scheme satisfies S ang&uirements.

Proof: As Kemeny-Young is a special case of Pruned-Kemeny schethefvget to zero; the proof imme-
diately follows from Theorem 2.

6 Simulation Results

As mentioned in the end of Section 5, it is possible to haveaes in which thébad voters need not just
send conflicting information, but may as well have much moatignant intentions. Consider the case when
the goodvoters want to reach a consensus on a ranking that is behafitie system as a whole, and thus
have similar if not exactly the same preferences. On ther dthed, thebad voters may want to minimize
the benefit that the system may attain by the resulting weetanking (that is the outcome of the election).
Schemes that do not assume that a small section of voterg brébave in this manner, may thus produce
rankings which are prone to manipulation by treed voters. Given the knowledge that at mdstoters can
be bad our scheme Pruned-Kemeny tries to produce best possibi@ seelfare outcomes in presence of
such hostile voting by thbadvoters.

We now list the details of our experimental setup and the kitimns performed to evaluate the util-
ity of Pruned-Kemeny in computing ‘near-optimal’ welfai@nkings in comparison to the other discussed
schemes. Leb represent ardeal ranking for the BSW problem, such that selectionuads the result of the
election maximizes the social welfare of the system. Letassime thatv is not completely known to any
good process, however each good process tends to favateflganking. The voting preferences of good



and bad processes in presence oitial ranking are defined as follows :

Let goodProbdenote the probability of a good voter ranking two candiglatandb in the same order as
that in the ideal rankingy, andbadProbdenote the probability of dad voter ranking the candidates in
the reverse order to that . Hence, ifw ranks two candidatea andb with a > b thengoodProbis the
probability that anygoodvoter decides to pu > b in its vote, andbadProbis the probability that anpad
voter putsa < b in its vote. For our experimental setup we fix the followindues:

n=100 f = 33 badProb= 0.9

By setting f to its highest possible value, abddProbto a considerably high value in the possible range,
we try to realize the assumption tHaad voters would want to disrupt the election of ideal rankingd a
would vote in opposite polarity of thgoodvoters. The value of the number of candiddtés varied in the
range [3,8]. For each value &f the value ofgoodProbis varied from 0.55 to 0.90 in step increments of
0.05. For each such resulting configuration(lafn, f, goodProhbadProb, 50 ballots (ofn = 100 voters)
are generated by fixing ddeal ranking and applying the probabilistic model on individuates based on
goodProbandbadProb We then apply the discussed schemes, and findistance(defined in previous
section) of their result rankings from tlgeal ranking. We then compute the average distance over the 50
ballots for each configuration.

Figure 1 shows the variation in the these average distarloes/@As evident from the plots, Pruned-
Kemeny produces results that are much closer tddbal ranking even for comparatively low values of
goodProb In addition, the plots also indicate that as the number oflickates increases, the results of
Pruned-Kemeny consistently match fdeal ranking.

Another interesting observation is that the distance afltegor PlacePlurality from thaleal ranking
increases significantly with increase in the number of cdettds. This clearly indicates that PlacePlurality is
not a good choice for a social welfare function. We arguedeictin 1 that for more than three choices, the
plurality based methods do not guarantee best results. B$enations on the variation in result distances
clearly validate our argument.

7 Discussion

Extensive literature is already present on the topic of éeadection in distributed systems [11,17-19].
[11] presents various protocols and lower bounds for messagiplexity for the leader election problem
in absence of Byzantine processes. Leader Election hapedsostudied in presence of Byzantine failures.
[20] gives a randomized distributed protocol to elect a égad the asynchronous full information model
that tolerates/(6 + €) cheaters with positive constant success probability imds that is polylogarithmic
inn.

Our work studies the problem of democratic elections in &ibiged system as social choice and so-
cial welfare ranking problems [6]. When number of choicem@e than two, elections based on the top-
preference-only model may not lead to optimal results, amté we assume that processes in the system
propose a ranking of candidates rather than a single lederagreement that is dependent only on the
number of failures we use the deterministic early-stopggantine agreement protocol from [15] to reach
the agreement on every processes’ vote within{f + 1, f; + 2} rounds wheref, is the actual number of
failures. We focus on the guarantees on the social choicheosdcial welfare ranking produced by the
election, rather than on the message or bit complexity atiele protocols.

Prisco et al. in [21] present some impossibility and posisilriesults for thek-setconsensus problem in
which each node starts with one value and the protocol mestiel®n a value so that at most tokalalues
are decided by the correct processes. Kisetproblem does not involve voting over multiple candidates.
Under some specific boundary conditions there is a slightl@ydetween two impossibility results in [21]
and those presented in this work.



T T T T
PlacePlurality —#— i PlacePlurality —#—
Pairwise —&— Pairwise —&—
Borda —%— | 5l Borda —%— |
Kemeny —@— Kemeny —@—
Pruned —5—

Avg. Distance from Ideal
P
(5]
!

Avg. Distance from Ideal
w

0 . . 0 =) £ i il
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9
goodProb goodProb
(a) # of Candidates 3 (b) # of Candidates: 4
10 T T — 14 T —
PlacePlurality —#— PlacePlurality —#—
9 Pairwise —&— Pairwise —&—
Borda —¥— 12 Borda —%— -
8| Kemeny —— Kemeny —@—
= Pruned —5— = Pruned —5—
L} 7 o 10 b
=l =l
£ £
g ° g s 1
g s 8
3 3
3 o4 z 1
a 1 a
=) =)
2 z 4 ]
k.
2 4
£ = 0 = £ =
0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.55 0.6 0.65 0. 0.75 0.8 0.85 0.9
goodProb goodProb
(c) # of Candidates 5 (d) # of Candidates 6
20 T T — 30 T —
PlacePlurality —#— PlacePlurality —#—
18 Pairwise —&— Pairwise —&—
Borda —¥— 25 Borda —%— |
16 | Kemeny —— Kemeny —@—
= Pruned —5— = Pruned —5—
s s
£ £
(] (]
‘@ ‘@
2 2
8 8
2 2
a a
g g
< <
2
0
0.

0
0

.65 0.6 0.65 0.7 0.75 0.8 0.85 0.9 .65 0.6 0.65 0.7 0.75 0.8 0.85 0.9
goodProb goodProb

(e) # of Candidates 7 (f) # of Candidates- 8

Fig. 1. Average Distance of Results from Ideal

In the standard Byzantine agreement [9] the protocols oegdrto guarantee agreement on some value
that is proposed by a good process. With this objective, thpols do not need to guard against the pos-
sibility of Byzantine voters fiecting the eventual outcome by strategic reporting of thalines. However,

as we saw in section 3 it is important to design voting medmsithat do not allow this advantage to
Byzantine voters.



8 Future Work

If all the good processes lean towards some fidedl ranking, even with weak inclinations, the simulation
results indicate that our proposed approach Pruned-Kemmewdes desired results with much higher ac-
curacy in comparison to other schemes. However, determithi@ provable guarantees for optimal results
under some specific conditions is an important open chadlémgthis work.

Another interesting problem is to feéierentiate between the ideal results, and the results timaplgo
with the Condorcet Criterion. It should be noted that for sogiven ballot, it is possible to have a clear
Condorcet candidateanking yet the ideal winngianking might difer from it. However, in terms of compu-
tational complexity both Kemeny-Young and Pruned-Kemarhemes are NP-Hard, where as a Condorcet
candidatgranking can be found in polynomial time. With this obsemvatiit would be beneficial to design a
social welfare scheme that can strike a balance betweea tlvesapproaches. Depending on the constraints
of the computing environment, this balanced scheme could tiee flexibility to employ either the Pruned-
Kemeny or the Condorcet scheme so that thEedince between the social welfare resulting from the two
outcomes is either relatively small or bounded in some aebépform.

9 Conclusion

In this paper, we introduced the problem of democratic &astin distributed systems. We showed that the
standard approach of reducing three or more choices toybitaices does not guarantee optimal outcomes,
and hence the standard assumption of always having binaigeshis weak. We presented impossibility
results under some specific validity requirements, as gah@awed some surprising possibilities that result
from availability of more than two choices.

For producing results that are close to an ideal ranking vitnere exists one, we proposed a new scheme
called Pruned-Kemeny that aims to counter the votes of Birmaprocesses. The results of our simulations
show that for the purpose of finding ideal order, Pruned-K@maovides significantly improved results
over existing voting systems.
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Appendix

Notation

A : set of candidates

L : set of linear order otA

W : a social welfare function

C : a social choice function

<; . preference order (vote) of votéer

Pareto Efficiency (PE) If every voter prefers candidag over candidatd, then the outcomes of social
welfargchoice functions should reflect this, ie. any choice funtsbould not seledh (note that this does
not mean thaa must be chosen). Formally,<; afor alli = C (<1,. . ..<n) # b. Similarly, for such a case, a
social welfare function should not ratkhigher thara. Formally,b <; aforalli = b < a.

Independence of Irrelevant Alternatives (Il1A): The social preference between any two candidatasd
b depends only on the voters’ preference betwaamdb. Formally, for everya,b € A and every<; € £,
if we denote< = C(<1,. . .,<p) @and<’ = C(<3,. . ..<p) thena<j b & a<{ bfor alliimplies thaa<b < a<’b.

Dictatorship: Voteri is a dictator in social welfare functiom if for all (<1,. . .,<n) € L, W (<1,. . .,
<n) = <j. For a social choice functio@, voteri is a dictator if for all k1,...,<n) € L, C (<1,. . -, <n) = <.
The social preference in a dictatorship is simply that ofdiz¢ator, ignoring all other voters’ or C is not
a dictatorship if na is a dictator in it.

Arrow’s Impossibility Theorem : If there are three or more choices, then any voting systernddtisfies
both IIA and PE properties corresponds to a dictatorshipre/mter. {Taken from [3}



